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Abstract

Either for recreational or professional reasons, ships travel across the globe

generating a network of maritime traffic with routes connecting key areas such as

ports, off-shore facilities or fishing areas. Monitoring vessels’ position relatively

to maritime routes provides crucial information about their destination, and

can help reducing the risk of collision. In this paper, we implement a fuzzy

logic approach for associating vessels to maritime routes, suitable to variable

surveillance contexts and very sparse data. Moreover, the framework is agnostic

to the way maritime routes are provided, either reflecting patterns-of-life from

statistical models extracted from real data or being hand-crafted by a user.

Fuzzy membership functions enable expressing that vessels can belong more

or less to route corridors, while they follow only one of the possible routes.

The computation of membership scores relies on a precise distance computation

involving geometrical properties of Earth, valid for very large route segments.

The defuzzification step allows non-specific outputs. Several instantiations with

aggregation operators of different semantics are compared on a real dataset of

tracklets from the Automatic Identification System, with ground truth labels

of routes. The performance is assessed in a quality space along with the three

dimensions of correctness, specificity and confidence.
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1. Introduction1

In the maritime domain, the ocean is facing an ever-increasing traffic and pres-2

sure from human activities. For instance, energy and goods transportation3

represents together up to 90% of the global maritime traffic [1] and defines a4

world-wide network of transportation and distribution connecting ports across5

the world. Other activities at sea such as fishing, sailing, cruising also generate6

a network of their own, with maritime routes linking key areas such as ports,7

off-shore facilities or fishing areas.8

As the number of vessels entering and leaving ports increases, navigational9

issues arise. In particular, big vessels such as tankers or cargo vessels follow10

freely routes with loose temporal and spatial constraints, while other types11

such as fishing vessels or passengers follow paths dictated by their respective12

professional activities, often with a shorter time-scale (e.g., fishing areas may13

change from one day to another one). In this respect, to prevent collisions or14

hazardous situations due to lousy spatial constraints at sea but also to anticipate15

future needs of autonomous shipping [2, 3], policies and reporting systems have16

been implemented [4].17

Monitoring the maritime traffic involves knowing for instance the origin and18

destination of vessels, the route they follow or plan to follow, the estimated19

time of arrival (ETA) in ports, as well as possible changes in this respect [5].20

In particular, knowing which maritime route a vessel is following can provide21

an estimation of its origin and destination, but also predict future long-term22

position or detect abnormal behaviour in transiting. Moreover, the position23

of vessels relatively to some areas is also an indicator to detect possible illegal24

activities or behaviours (e.g., illegal fishing) or to prevent hazardous situations25

such as a vessel engaged in fishing in an area known for frequent traffic.26

Before the inception of satellite technologies enabling a tracking of sea-going27

vessels and the large use of the Internet to communicate information worldwide,28

maritime traffic used to be largely unknown. The companies knew when their29
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vessels were in ports but in-between ports of call, the precise location of the30

vessel was not tracked on a high frequency rate. Port authorities knew incoming31

vessels with a short notice and coastal authorities could use coastal radars to32

be aware of local traffic. Similarly vessels, when at sea, were aware of their33

immediate surroundings and performed a paper chart-based navigation with,34

more recently, assistance from electronic sensors and charts.35

Thanks to the recent development of satellites harvesting vessel signals on36

a large scale possibly combined to coastal systems such as radars, and the In-37

ternet as a worldwide platform for data sharing, vessels no longer disappear38

beyond the horizon line [6]. The Automatic Identification System (AIS) is a39

legally-enforced system put in place by the International Maritime Organisa-40

tion (IMO). Originally deployed on-board vessels to prevent collision risk, it has41

become a source of data on maritime navigation [7] widely used for extracting42

patterns of maritime traffic or understanding the maritime situation. Its high43

rate of transmission and vast network of receiving antennas allow in particular44

estimating the normal maritime traffic as well as identifying the main maritime45

areas such as ports, fishing areas, or anchorage areas. As maritime navigation46

aims at developing greener technologies [8], AIS data are exploited for a wide47

range of applications which make use of the modelling of the maritime traffic at48

sea (such as for ship collision avoidance [9]), and its economical, environmental49

and societal impacts [10]: exhaust of greenhouse gases from cruise and ferry50

operations [11] or commercial shipping [12], and impact on populations [13], as51

well as port activity [14] and maritime routing [15].52

Today, optimisation in maritime routing is based on several criteria depend-53

ing on the particular objective targeted [16], while the most frequent ones are54

the travel time [17], the estimated time of arrival, carbon emissions [18], fuel55

consumption [19], various costs [20, 21], the bathymetric or ice risk [22, 23]56

or the sailing time in static sea state [24]. Either considered individually or57

combined, these criteria help providing optimised maritime routes.58

The notion of maritime route is vague in itself. Although it indeed denotes59

the path to be followed by a vessel between two ports, its data-driven estimation60

is an object with fuzzy boundaries. The generation of maritime routes from a61

dataset (typically the AIS) is usually based on clustering algorithms [25, 26],62
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providing a synthetic representation of the routes followed by vessels over a past63

period, also enabling anomaly detection from those maritime routes [27]. In a64

similar fashion than highways link cities in a road network, data analytics draws65

a network of routes between the main maritime areas of interest [28], some of66

the ports being hubs, i.e. major nodes of the network [29]. The main difference67

with highways or railroads is that the maritime network is neither closed nor68

constrained to physical paths, but open (although subject to bathymetric, legal69

and geopolitical restrictions), making the maritime routes estimated from data70

fuzzy objects.71

Moreover, the user’s information needs about the route followed by a vessel72

depend on the current mission context, the geographical area, the type of vessel,73

or other subjective considerations. And such subjectivity inevitably appear in74

the basic task of associating a vessel to an established maritime route. We are75

thus looking at a solution which would (1) be robust to the lack of data, (2)76

flexible to contextual users’ needs and (3) capture the vagueness related to the77

notion of maritime route. We propose in this paper we framework addressing78

these three requirements. It is based on a fuzzy logic approach integrated as a79

decision support tool.80

In this work, we propose an association of vessel to route method based on81

fuzzy logic, which is agnostic to the way the maritime route is defined (data cloud82

of AIS contacts, manually drawn). The approach relies on a precise computation83

of spatial distance in position and course over ground which accounts for long84

range travels.85

The paper is organised as follows. We first provide some background in86

Section 2, where we present basic geometric concepts pertaining to the definition87

of maritime trajectories with long distances, basics on fuzzy set theory and the88

AIS dataset used in this study. In Section 3, we further detail the geometry89

of maritime routes and provide detailed computation of the distance between90

a vessel and a maritime route along the two features of position and course91

over ground. We present in Section 4 a semantic framework for vessel to route92

association, where membership degrees of vessel to routes are computed through93

several aggregation operators. The approach is illustrated in Section 5 on a94

real AIS dataset, enriched with ground truth labeled tracklets, while results95
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are presented along the three quality dimensions of correctness, precision and96

confidence. Finally, conclusions and future work are discussed in Section 6.97

2. Background98

To optimise their route, ship captains can rely on dedicated pieces of software99

such as Seaware1, SPOS2 (Ship Performance Optimization System) or BonVoy-100

age System3, amongst others. Those pieces of software take into consideration101

elements such as the weather forecast, winds and waves effects and other vessels102

of the fleets in order to save fuel, save time, assist captains and deck crew, and103

as a whole enhance the safety of travel. The maritime routes followed by the104

vessels are then drawn accordingly.105

To compute the optimal route, these software thus use some definition of106

the object of “maritime route”. However, this object has not a clear definition107

and the interpretation of a maritime route varies across domains. While it108

could be defined by mariners through a sequence of waypoints for the prescribed109

trajectory between an origin and a destination, the data analytics field rather110

defines maritime routes through areas were vessels have frequently traveled in111

the past.112

In this work, we will specifically address the study of the position of vessels113

relatively to maritime routes. This thus includes estimating “which route is114

followed by the vessel”. Similarly, such a vessel to route association would be115

efficient enough to discriminate between vessel located within a maritime route116

corridor and following it, so having as next port of call the destination port of117

the route, and a vessel physically located on the route extent, but for any reason118

not following it. For instance, this happens when a vessel crosses a maritime119

route with any angle, or when a vessel conducts another activity on the maritime120

route, such as fishing. This semantic discrimination is of paramount importance121

to properly assess maritime traffic and behaviours.122

1http://www.amiwx.com/seawareenroute.html
2https://www.dtn.com/weather/shipping/spos/
3https://www.stormgeo.com/products/s-suite/s-planner/bonvoyage-system-bvs/
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2.1. Geometrical considerations for maritime routes123

We first introduce some approximations relatively to the geometry of Earth,124

and then provide some backgrond on computation of distances between points125

and trajectories.126

2.1.1. Approximations127

In order to fully define tracks and trajectories in R3 in a mathematical represen-128

tation of the Earth such as the WGS84 ellipsoid that most positioning systems129

use, a series of parameters has to be determined. Each point Ai, i = 1, . . . , n,130

defining either a trajectory or a data point in tracks has actually three coor-131

dinates, a longitude λi, a latitude φi and a height hi. The latitude and the132

height are directly linked to the ellipsoid itself defined by parameters a and b,133

with a ≥ b > 0, denoting the lengths of the semi-major axis and semi-minor134

axis respectively. The eccentricity of the generatrix ellipse denoted by e is then135

defined as e =
√
1− b2

a2 .136

Our formalisation involves two approximations: first, we neglect the height

parameter as the tidal effects on geodetic distances are negligible on distance

computation, as vessels are located on the geoid (and not the ellipsoid); second,

it has been shown [30] that the use of a sphere rather than an ellipsoid, for

the same set of coordinates, gives variation in distance that do not exceed 0.5%

of the said distance, the actual variation being in most cases much smaller.

Consequently, h can be removed from the set of parameters while a and b can

be replaced by ρ, the radius of the Earth. Since the local radius of the Earth

changes with respect to the local latitude, a mean radius is chosen, as:

ρ =
2× ρeq + ρpol

3

where ρeq = 6378137.0 m is the equatorial radius and ρpol = 6356752.3 m is the137

polar radius of the Earth4.138

Discrete trajectories and tracks are thus uniquely defined by the sets of

points Ais together with ρ as a parameter. A pair a consecutive points (A,B)

4For applications that are area-specific, it is possible to set the radius value to the best-

fitting local Earth radius value, for marginal gain in precision of distance computation.
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defines itself a segment that can be used as a dual representation:

Tρ = {A1, . . . , An} ≡ {A1A2, . . . An−1An}

The n− 1 segments are represented by the smallest great circle arc between139

pairs of consecutive points, on the sphere of radius ρ. This relies on the reason-140

able assumption that two consecutive points are always linked by the smallest of141

the great circle arcs (i.e., no segment can be longer than an half-circle length).142

With such a set of parameters and assumptions, trajectories are then uniquely143

and minimally defined in space.144

2.1.2. Distance from vessel to maritime trajectories145

The Haversine distance When it comes to computing the distance between

two points on the Earth, the Haversine distance is mostly used in the litera-

ture, although some instances of the use of Euclidean distances [31, 32] can be

found. Given the point A of coordinates (λA, φA) and the point B of coordinates

(λB , φB), the Haversine distance on a sphere of radius ρ is denoted H(A,B) and

defined as:

H(A,B) = 2ρ arcsin

((
sin2

(
φB − φA

2

)
+ cos(φB) cos(φA) sin

2

(
λB − λA

2

)) 1
2

)
(2.1)

The Haversine distance appears to have nice properties: it allows a better146

consideration of the curvature of the Earth [33] in the round-Earth approxima-147

tion than Euclidean distances, it is simple to compute, it allows reliable long-148

distance computations without deviating that much from reality, than would149

require the more complex and time-consuming ellipsoid distance.150

The difference in distance between a great circle and a great ellipse arc151

reaches a maximum of 0.5% [30]. Therefore, the consistent use of a great circle152

has a negligible effect on the measure of the distance itself and will be used in153

this work.154

Distances to and between trajectories In the literature, distance compu-155

tation between two trajectories mostly consider trajectories as a set of points,156

either under the form of a cluster, or under the form of a series of points (that157
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we defined as a track, when the points originate from sensor data). This re-158

duces the distance between two trajectories to the distance between two sets of159

points, and the Hausdorff (or similar) distance [34] is thus often applied [35],160

sometimes modified [36] for a measure of dissimilarity [37], as a matching de-161

gree of trajectories between radar and satellite imagery [38], for the mining of162

clusters [39]. Other distances such as cost distance [40], or similarity measures163

Fréchet or discrete Fréchet [41] are also used.164

Since tracks represent the movement of mobile objects, time considerations165

should be included when computing distances between several moving objects166

[42], with interpolation between points for approximating missing values.167

We propose in this paper a geometrical approach that not only takes the168

points as elements of computation, but includes the lines that link those points.169

Computed as a centreline [43], defining the central behaviour of the vessels170

that follow the route of interest, the distance between the vessel and the route171

of interest is defined as the distance to the great arc circle that interpolates172

intermediate waypoints along the route.173

When the closest point of segment lies in the segment between two vertices174

of the route prototype, it is necessary to compute the value of the local bearing175

(equivalent to the local course over ground of a vessel that would be located176

in this point and heading to the next vertex). Indeed, the local bearing of a177

segment evolves as the mobile travels along it, from its initial vertex until the178

final vertex. This is exemplified by Figure 1 which shows a (long) segment179

from Brest, France (48.4 N, 4.5 W) to New York City, USA (40.6 N, 74.0 W).180

Although the final point is South of the original point, the vessel takes an initial181

bearing of 288 (West-NorthWest), which goes slightly towards the North, and182

the northermost point of the trajectory occurs at circa 30% of the total distance183

of the direct route (geodesic line on the sphere).184

More particularly, our approach allows the computation over long distances,185

avoiding the inaccuracies of planimetric approaches, and is resilient to data186

blackout areas (in which vessels can be very close to the route but far away from187

any data points). Actually, the synthetic track can be reduced up to two points188

(the origin and the destination), and such route prototype can be handled in189

the same framework as a route prototype computed from data points, regardless190
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Figure 1: Illustration of the variation of the bearing along one segment. Top: geodesic line

linking Brest and New York City (great circle arc). Bottom left: representation of the segment

on a traditional planimetric map. Bottom right: evolution of the value of the local bearing of

a mobile along the segment from Brest (start, left) to New York City (arrival, right). Angles

are in degrees from the North, therefore 270 is full West.

of the number and spatial distribution thereof. Details of the computation on191

those route prototypes are presented hereafter in Section 3.192

2.2. Fuzzy logic193

Fuzzy set theory was developed by Lotfi Zadeh to reason with linguistic vari-194

ables, describing vague information such as human language descriptions (“small,195

large, quick, young”), and concepts which cannot be defined by an interval with196

strict limits, such as “the vessel is small” or “the vessel has a quite low speed”197

[44, 45]. Fuzzy set theory provides a mathematical setting for reasoning with198

subjective concepts themselves represented by membership functions [46].199

Let X be a set of possible values, named the universe of discourse. A fuzzy200

set µA is a set with imprecise (not well defined) boundaries, i.e., fuzzy boundaries201

and extends the concept of classical (crisp) set. In classical set theory, a subset202

A ⊆ X is said to be crisp and is represented by a characteristic function µA203

such that µA : X → {0; 1} with µA(x) = 1 if x ∈ A and µA(x) = 0 if x /∈ A. A204

fuzzy set is defined by a membership function µA(x) which is a generalisation205

of the characteristic function and can take its values in the interval [0, 1], when206

normalised. A normalised fuzzy set µA over X can be represented by a set of207
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ordered pairs:208

µA = {(x, µA(x)) |x ∈ X} (2.2)

with µA(x) ∈ [0; 1] being the degree of membership of x to the fuzzy set µA.209

The complement of a fuzzy set is defined classically by µA(x) = 1−µA(x), ∀x ∈210

X .211

Fuzzy sets are combined using t-norms (i.e., triangular norms) and t-conorms212

operators, acting as conjunctive and disjunctive operators respectively [46, 47].213

In Section 4.1, we will compare classical t-norms and t-cornoms, as the minimum214

(resp. maximum), the product, and Łukasiewicz that we will denote by tM (resp.215

sM ), tP and sP , tL and sL, respectively.216

Compared to probabilities which define degrees of belief regarding the oc-217

currence (or truth) of an event, being itself either true or false, fuzzy sets define218

degrees of truth for events which are thus allowed to be more or less true. Fuzzy219

sets capture thus the notion of graduality [48] and will be used in the following220

to define fuzzy concepts related to the association of vessels to maritime routes221

such as “vessel close to a maritime corridor” or “vessel travelling in the direc-222

tion of the maritime corridor” (Section 2.2). Fuzzy concepts allow to express223

that vessels can be more or less close to a route, or travel more or less in the224

direction of the route. This semantics contrasts with a probabilistic approach225

which expresses that vessels are probably on the route or are probably travelling226

in the direction of the route. As such, it does not rely on prior statistics.227

Mamdani inference rule allows to combine two fuzzy concepts to define a

new fuzzy one as:

if x1 is µA and x2 is µB then y is µC (2.3)

where µA, µB and µC are three fuzzy sets defined on different universal sets.

µA and µB are the antecedent fuzzy sets while µC is the consequent fuzzy set.

Such kind of rules can be used to define fuzzy rule-based classifiers, where each

class k is associated to one or more fuzzy rules (Γk) of the type:

(Γk) : if x1 is µA and x2 is µB then y is of class Ck with confidence ck (2.4)

Several approaches exist to derive the confidence (or certainty) factors. A single

winner rule decision would lead to select the class which has the maximum

10



weighted firing strength:

Ck = argmax
k

(t(µA(x1), µB(x2))wk) (2.5)

where t is a t-norm, and wk is the weight assigned to rule (Γk).228

In the following, we will propose another method for selecting classes which229

allows more expressiveness and less drastic decision. While fuzzy logic has230

been used in maritime applications as discussed in Section 1, to the best of our231

knowledge, it has never been used to estimate the route followed by a vessel.232

3. Geometry of maritime routes233

The global distance from a vessel to a maritime route can be defined as an234

aggregation of individual distances along different features. Although many235

features can be considered to characterise the vessel position relatively to mar-236

itime routes [49], we will focus in this work on the only features of position,237

with the two coordinates of latitude and longitude, and the course over ground.238

We detail below the individual contribution of the whereabouts on the one239

hand (Section 3.1) and the course over ground on the other hand (Section 3.2).240

These distance values will further serve as a basis for the global computation of241

the membership of a vessel to a route, in Section 4.242

Ri = {A1, . . . , An}

where Aj(λj , φj) is a point of the synthetic route. Points are either synthetic243

or real waypoints. Two consecutive points (Ai, Ai+1) define a segment.244

3.1. Contribution of the whereabouts245

The problem of the computation of the distance between a point and a trajectory246

is equivalent to the problem of the computation of the distance between a point247

and a segment of this trajectory. For maritime trajectories, a segment is the248

great circle arc linking two consecutive synthetic waypoints, as explained in the249

description of the route prototype in Section 2.1. The distance of a vessel to a250

route is then defined as the smallest distance to any single segment of the route251

prototype.252
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For the computation of the distance of a point X of coordinates (λX , φX)253

to the smallest great circle arc linking A (λA, φA) and B (λB , φB), we consider254

the vectors255

A⃗ =


cos(φA) · cos(λA)

cos(φA) · sin(λA)

sin(φA)

 , B⃗ =


cos(φB) · cos(λB)

cos(φB) · sin(λB)

sin(φB)

 , X⃗ =


cos(φX) · cos(λX)

cos(φX) · sin(λX)

sin(φX)


(3.1)

We have a twofold situation for the point X: either its closest point on the256

great circle generated by AB falls within the smallest arc between A and B.257

This case will be called an inside case as the projection of X on the great circle258

lies between A and B; it is displayed in blue in Figure 2(a). Alternatively, the259

closest point to X falls within the largest arc between A and B. This case will260

be called an outside case and is displayed in red in Figure 2(a).

(a) (b)

Figure 2: The position of the vessel relatively to the trajectory segment drives different com-

putational cases. (a) Distance from a point to the smallest great circle arc. The great circle

(AB) is divided into two arcs: the smallest one (in bold) is the arc of interest in our study,

while the largest one is the arc going around the sphere. (b) Xproj is the projection of the

point of interest X on the great circle plane, itself further projected on the great circle, to

decide if the closest point to X falls inside or outside AB

261

To decide to which case (inside or outside) belongs the point of interest, we

consider the plane passing through A, B and O (i.e., the great circle plane), on

which we project the point X. The projection,

X⃗proj = X⃗ − (n⃗ · X⃗) · n⃗ (3.2)

is necessarily inside the circle of centre O and of radius ρ, because of the proper-262

ties of spheres and great circles. The normalisation enables to bring the point on263
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the great circle as x⃗norm =
X⃗proj

∥X⃗proj∥
. We introduce M⃗ = A⃗+B⃗

2 . The comparison264

of the scalar (or dot) products of (x⃗norm · M⃗) and (A⃗ · M⃗) enables to decide.265

Indeed, the only case where (A⃗ · x⃗norm) can be greater than (A⃗ · M⃗) is when266

the normalised projection of X is between A and B on the great circle. This267

situation is explained in Figure 2(b), showing the great circle plan.268

In an inside case, the distance to the segment is equal to the distance to the

closest point of the arc. We first compute a normal vector to the great circle

plan with a vector product as n⃗ = A⃗×B⃗ and we measure the minimum distance

to the point X using the properties of the scalar product to compute the central

angle and deduct the distance:

Dinside(X,AB) = ρ · arcsin
(
n⃗ · X⃗

)
(3.3)

In an outside case, the distance of the point to the segment AB is equal to

the smallest distance to any of the vertices of the segment (see Figure 2(a)). We

define the orthogonal area of a segment the area covering all the points for which

the closest point to the segment is not one of the two vertices of the segment

(i.e., the area for which the projection lies within the smallest great circle arc).

The distance will then be defined using the Haversine distance (see Eq. (2.1)):

Doutside(X,AB) = min

(
H(A,X), H(B,X)

)
(3.4)

The distance of the vessel to the entire trajectory T (i.e., the maritime route

prototype) is then given by:

D(X,T ) = min
k∈S

Dk(X, k) (3.5)

where S is the set of segments that build the trajectory T and Dk is either269

Dinside or Doutside depending on the position of X relatively to the segment k270

as detailed above.271

Now, we will compute the contribution of the course over ground to the272

global membership score, as it depends on the positional feature values.273

3.2. Contribution of the Course Over Ground274

Principles The course over ground provides directional information which is275

precious in the association of a tracklet to a given route, enabling to distinguish276
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between the vessels sailing alongside the route and those sailing either in the277

opposite direction or perpendicularly to that route, while still being on the278

spatial extent of the route (i.e., the route area).279

As the AIS message provides the instantaneous course over ground of the280

vessel, we want to compute the value of the local course over ground of the281

trajectory. In our case, the trajectory is a synthetic trajectory composed of282

consecutive waypoints linked by great circle arcs. The trajectory is therefore283

divided into segments, as shown in Figure 3.284

Figure 3: Representation of a synthetic maritime route under the form of a 4-segment route

prototype with respect to its environment. In purple, the “outside area”, which is defined as

the area “before” the first segment and “after” the last segment, and in grey, the “inside area”.

Out of the segments, two of them are of particular interest for the compu-285

tation of the course over ground:286

• The closest segment to the vessel position, while the distance to the seg-287

ments have been computed following the formulas presented in Section288

3.1;289

• The closest segment to the point of interest amongst the (at most two)290

adjacent segments to the first one (which will be called by convention the291

second closest, albeit other non-adjacent segments to the closest could be292

closer than it).293

In Figure 5, three segments are presented, linking four vertices, named A, B,294

C and D, ordered chronologically, and the segment of interest is BC. Depending295

on the situation, the second closest segment will then be either AB or CD.296

Those segments are shown in Figure 4 in three different scenarios, in which297

the closest segment is coloured in green while the second segment is coloured in298

orange. The bottom-right corner of Figure 4 shows a peculiar situation in which299

the point x3 is not in the orthogonal area of both segments of interest. In this300

14



Figure 4: Closest (green) and second closest (orange) segments of a route prototype with

respect to a point of interest. Top-left: a 4-segment prototype, from A to E. Top-right:

classical case. Bottom-left: BC is the second segment, because adjacent to CD (the closest),

although AB is closer. Bottom-right: CD and BC are at the same distance

case, its distance to both segments BC and CD is identical (equals the distance301

between C and x3), and the said “closest” and “second closest” segments are302

determined by the side of the bisector straight line of the angle ˆBCD (figured303

as a dotted line) on which the point of interest lies.304

Figure 5 also shows the orthogonal areas for each of the three segments. The305

position of the point of interest with respect to those areas will be of paramount306

importance for the computation of the local course over ground.307

Figure 5: Different areas taken into consideration for the COG computation

We distinguish between five cases of point location, which share three com-308

putational cases:309

• The point is in the orthogonal area of the closest segment and not in the310
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orthogonal area of the second closest (red area) [Computational case 1]311

• The point is in both orthogonal areas of the closest and the second closest312

segments, and the second closest segment is before the closest (yellow area)313

[Computational case 2]314

• The point is in both orthogonal areas of the closest and the second closest315

segments, and the second closest segment is after the closest (orange area)316

[Computational case 2]317

• The point is not in the orthogonal area of the closest segment, and the318

second closest segment is before (blue area) [Computational case 3]319

• The point is not in the orthogonal area of the closest segment, and the320

second closest segment is after (green area) [Computational case 3]321

On top of those cases that apply if the point is in the grey area of Figure322

3, another case applies if the point is in the purple area of Figure 3, which is323

presented in the computational case 0.324

Computational case 0 This case, represented by the purple area of the325

Figure 3, has two subcases: when the point is before the first segment or when326

the point is after the last segment.327

In the first case, the retained value for the local course over ground of the328

prototype is the initial bearing of the first segment. In the second case, the329

retained value for the local course over ground is the final bearing of the last330

segment.331

Computational case 1 The computational case number 1, represented by332

the red area of the Figure 5 is pretty straightforward. The sole closest seg-333

ment is used, and the heading of the segment at the closest point to X is334

considered as being the local course over ground value of the trajectory. In-335

deed, the heading generally evolves along a great circle arc (cf. Section 2.1.2),336

therefore, given B the initial point of the segment, C the final point of the337

segment and K the closest point of the BC segment to the point X, we define338

K⃗ = ρ · X⃗−(X⃗·(B⃗×C⃗))·(B⃗×C⃗)

∥X⃗−(X⃗·(B⃗×C⃗))·(B⃗×C⃗)∥
. Given that arctan 2(y, x) = arg(x + iy), where339

i2 = −1, we compute the latitude, longitude and heading of the trajectory at340
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the point K, reduced to the computation of the initial heading GK−→C of the341

KC segment, as:342

λk = arctan 2(Ky,Kx) (3.6)

φK = arctan 2

(
Kz,

√
K2

x +K2
y

)
(3.7)

GX = GK−→C = arctan 2
(
cosφC · sin (λC − λK),

cosφK · sinφC − sinφK · cosφC · cos (λC − λK)
) (3.8)

Computational case 2 The computational case number 2, represented by343

the yellow and orange areas in the Figure 5 is less obvious in its computation.344

Indeed, not only the closest segment is relevant to the determination of the345

local heading, but also the second closest segment, which can be the one before346

(yellow area of Figure 5) or the one after (orange area of Figure 5).347

As in this case, both projections are located on the two great circles along348

the two considered segments, it is possible to compute a heading for both, using349

the same formulas as in computational case 1. Let K1 be the closest point to X350

in the closest segment BC, and let K2 be the closest point to X in the second351

closest segment, so either AB or CD. Let us denote the headings in K1 and K2352

as G1 = GK1−→C , and either G2 = GK2−→B or G2 = GK2−→D, respectively.353

Because the difference in distance between KK1 and KK2 can be high, a

weighted mean of the heading values is used, giving more weight to the heading

of the closest segment. We thus define p = ⌊KK1

KK2
⌋ the integer representing the

difference between the values. If KK2 does not exceed twice the value of KK1,

a simple circular mean value is computed, as GX = ∆
c
(G1, G2). However, if

KK2 > 2 ·KK1, the circular mean is computed recursively as:

GX = G(p) = ∆
c
(G1, G(p− 1)), with G(0) = G2 (3.9)

Computational case 3 The computational case number 3, represented by354

the blue and green areas in Figure 5, needs also two separate heading computa-355

tions. Indeed, as being located outside the orthogonal areas of both the closest356

and the second closest segment, computational cases 1 and 2 do not apply.357
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Whether the second closest segment is located before (blue case) or after358

(green case) the closest one does not change the computation method. As in359

this case X is in-between two segments, we call those two segments the former360

segment (which is the second closest in the blue case and the closest in the green361

case) and the next segment (which is the closest in the blue case and the second362

closest in the green case) respectively. Two headings are computed: the initial363

heading of the next segment and the final heading of the former segment5.364

Therefore, considering the final heading of the former segment as G1 and365

the initial heading of the next segment as G2, we compute, according to the366

right-hand side of the equation (3.8) and the schema presented in Figure 5:367

G1 =

GB−→A + π , if blue case

GC−→B + π , if green case
G2 =

GB−→C , if blue case

GC−→D , if green case
368

Then the estimated local heading of point X is computed as the circular369

mean of the two angles. Note that no weight is allocated as the distances to the370

closest and the second closest segment are in fact, by definition, equal, but the371

point is allocated to the segment in its quadrant.372

GX = ∆
c
(G1, G2) (3.10)

At this point, and whatever the computational case in which the point of373

interest falls, a course over ground GX has been computed, its value depicting374

the course over ground of the maritime route prototype at its closest point with375

the point of interest.376

In this section, we computed the elements that allow us, from our consid-377

eration of the geometry of maritime routes, to get the information needed to378

compute the contribution of various features in the vessel to route association379

process. As we focus on the whereabouts and the course over ground, their380

contributions were presented in this Section, and will be used in the following381

Section for membership score computation, aggregation and route association.382

5The final heading of a segment is the initial heading of the same segment considered

backwards, to which is added π rad.
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4. Semantic framework for vessel to maritime route383

association384

Whereas the semantics of maritime route can be various [50], it appears that385

maritime routes have two different meanings, one related to the “itinerary” a386

vessel is planning to follow, one related to their synthetic representation which387

itself defines a surface over the sea (i.e., the route area or corridor). In this388

respect, we can consider the synthetic maritime route as a fuzzy set, to which389

vessels belong more or less. This allows to distinguish between the events “being390

in a route corridor” (e.g., a vessel fishing on the area where other vessels generally391

traveled while transiting between two ports) and “traveling in the direction of392

a route” (e.g., a vessel transiting between two ports with a trajectory more or393

less parallel to a given maritime route). These two events are mainly defined394

and discriminated by the two features of position (latitude and longitude) and395

course over ground.396

In this section, we present the computation of the membership scores to a397

route R of a vessel represented by its local features ϕ = (λ, φ, θ) collected as398

data points. The local features are estimated based on the computation details399

provided in Section 3. Generally, a series of n ∈ N∗ consecutive data points400

is used, averaged through an arithmetic mean for the positional values of the401

whereabouts, and a circular angular mean for the course of ground. In the402

experimentation reported in Section 5, n was set to 5. The general framework403

is displayed in Figure 6 which elements will be detailed in the next sections.404

4.1. A fuzzy logic approach to route association405

For a given route R, the combination of the distance of the vessel to the route406

and its direction relatively to the route will together provide information if the407

vessel follows that route. We define the event “The vessel follows route R” as the408

conjunction the two fuzzy events “The vessel is on route R” and “The vessel is409

in the direction of route R”. We will first define the fuzzy membership functions410

corresponding to the two sets of fuzzy events along the respective features of411

whereabouts and course over ground relatively to R (Section 4.1.1). We will412
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Figure 6: General framework for vessel-to-route association

then define in Section 4.1.2 the fuzzy rules allowing to infer if the vessel is413

following route R or if it is “off-route” (i.e., not following any route). Finally, in414

Section 4.2 we will define two decision schemes which provide the set of routes415

possibly followed by the vessel.416

4.1.1. Fuzzy membership functions417

The translation of distances along the whereabouts and course over ground418

respectively, into membership scores is done through the definition of fuzzy419

membership functions which express fuzzy events such as “Vessel close to a420

route” or “Vessel in the same direction of the route”. The fuzzy sets thus defined421

allow expressing the fuzziness of the maritime route, allowing vessels to be “more422

or less on a route”, to be “more or less in the same direction than the route”, or423

to “follow more or less a route”.424

Score from the whereabouts From the geodesic distance d between the

synthetic route and the vessel track we derive a membership score (hereafter

referred as the whereabouts score) ranging from 0 to 1, where 0 translates into

a “the vessel is extremely far from the route” and 1 score translates into “the

vessel is on the route” (or maximally close to the route), from the exclusive

point of view of the whereabouts. A score between 0 and 1 translates into a
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partial membership. While many decreasing functions can adequately represent

the membership degree of a vessel to a route according to its distance d to the

route prototype, we will use here a trapezoidal function µ(w)
close(d) : R+ −→ [0, 1]

defined as:

µ
(w)
close(d) =


1 if d ≤ τl

0 if d ≥ τu

d−τu
τl−τu

otherwise

(4.1)

where τl is threshold below which the membership score is maximal, τu the425

threshold above which the membership score is minimal.426

Score from the course over ground Similarly, from the angular difference427

δ between the course over ground of the point and the local course over ground428

of the route, we define a membership function where 1 translates into “the vessel429

travels in a parallel direction to the route” and 0 translates into “the vessel travels430

in the opposite direction to the route”. A score between 0 and 1 translates into431

a partial agreement between the two directions.432

We distinguish between two angles: the angle with respect to the local North

reported by the vessel, denoted by ĈX and the computed angle with respect to

the local North of the route, projected on the point X, denoted by GX . Since

ĈX ∈ [0, 2π[ and GX ∈ [0, 2π[, let us note their angular difference D̂0 ∈]− π, π]

mod(2π) as D̂0 = ĈX − GX . Since we are not interested in the sign of the

circular angular difference, in the rest of this paper we will use D̂ ∈ [0, π]

defined as D̂ =| D̂0 |. For a data contact ϕ = (λ, φ, θ), and a point X = (λ, φ):

δ(ϕ,R) = |θ −GX |

Using also a trapezoidal function, the fuzzy membership function is defined as

µ
(c)
dir(δ) : [0, π] −→ [0, 1]:

µ
(c)
dir(δ) =


1 if δ < θl

0 if δ > θu

δ−θu
θl−θu

otherwise

(4.2)

where θu ≥ θl, such that θl is the threshold below which the membership score433

is maximal and θu the threshold above which the membership score is minimal.434
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Remark 1. For each route Ri, we define a set of membership functions charac-435

terising the travel of the vessel relatively to that specific route. The parameters436

τl, τu, θl and θu have to be chosen so they represent the width of the route for437

instance, or some subjective tolerance regarding both the distance and angle of438

the vessel relatively to that route.439

4.1.2. Inference and aggregation440

A vessel is following a route if its position is close enough to the spatial extent441

of the route and if its direction is similar to the route. The inference is thus442

performed through the series of fuzzy rules valid for each of the route Ri, of the443

form:444

If Vessel is on the area of route Ri

(Γi) : and Vessel is in the direction of route Ri (4.3)

then Vessel is following route Ri

Thus, we will combine conjunctively the scores on the individual features of po-

sition µ(w)
close and course over ground µ(c)

dir previously described. Let us denote by

Λ(ϕ,Ri) the global (or aggregated) membership score of the vessel, represented

by its data contact or tracklet ϕ with respect to the maritime route Ri, itself

defined as the route prototype. We have:

Λ(ϕ,Ri) = t
(
µ
(w)
close(d), µ

(c)
dir(δ)

)
(4.4)

where t is a t-norm as introduced in Section 2.2. Some comparative behaviour445

of these three operators will be presented later in Section 5.446

The inference being performed relatively to each route, it allows then to447

identify the set of routes likely or possibly followed by the vessel, and to detect448

vessels likely off-route.449

4.1.3. Vessels following a route or off-route450

A vessel is said to follow a route if it follows at least one of the relevant routes

Ri, i = 1, . . . ,m. Hence, this is expressed by the disjunction of the previous

fuzzy events and defined as:

Λ(ϕ,R) = s (Λ(ϕ,R1), . . . ,Λ(ϕ,Rm)) (4.5)
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where s(·, ·) denotes a t-conorm. If we use the bounded sum (or Łukasiewicz)

sL as a t-conorm, we get:

Λ(ϕ,R) = min

(
m∑
i=1

Λ(ϕ,Ri), 1

)
(4.6)

or with the maximum t-cornorm sM :

Λ(ϕ,R) = max
i∈J1,mK

Λ(ϕ,Ri) (4.7)

The complement event “Vessel following no route” (or “off-route”) is thus

defined using the classical negation operator:

Λ(ϕ,R0) = 1− Λ(ϕ,R) (4.8)

R0 is used as a convention to denote “no route”.451

In case the sum of all scores is greater than 1, a normalisation process can

be performed in order to get all the normalised scores summing up to 1. In this

respect, ∀i ∈ J1,mK, we define

Λ∗(ϕ,Ri) =
Λ(ϕ,Ri)

m∑
j=1

(Λ(ϕ,Rj))
(4.9)

where Λ∗(ϕ,Ri) denotes the normalised value of Λ(ϕ,Ri).452

4.2. Route association453

Let us denote by R = {R1, . . . , Rm} the set of possible routes and by ΩR the

set of labels to be assigned by the fuzzy classifier to the vessel. Depending on

the classification problem, we will define:

Ω
(2)
R = {R0, R} and Ω

(m)
R = {R0, R1, . . . , Rm}

We present below two decision methods for route association.454

The decision methods allow to assign a set of possible classes to the vessel,455

and thus enable more or less specific results. Let us denote by R̂(ϕ) ⊆ ΩR456

the corresponding set of routes assigned by the classifier, and k the number of457

classes associated to ϕ so that |R̂(ϕ)| = k.458
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4.2.1. Top-k459

For a number of possible routes k fixed, the k routes corresponding to the

highest membership scores are retrieved. Let denote by ΨΩR
the set of classes

in decreasing order according to their score and by ψRi
the rank of the class Ri

in ΨΩR
, then ∀i, j ∈ J0,mK2, i ̸= j,

Λ(ϕ,Ri) ≥ Λ(ϕ,Rj) =⇒ ψRi
≤ ψRj

. (4.10)

Then, the set of retrieved routes is:

R̂(ϕ) = {Ri ∈ ΩR|ψRi
≤ k} (4.11)

Although in the general case, |R̂(ϕ)| = k, this may not be true as in particular:460

• in case some scores tie, several routes will have the same rank and thus461

|R̂(ϕ)| ≥ k;462

• routes with 0 scores will be excluded, leading to |R̂(ϕ)| ≤ k.463

The quality characterisation of the classifier will still allow to capture this464

through the specificity measure as described in Section 5.1.465

The advantage of the Top-k approach is to be able to set the desired number466

of output classes, whatever the scores of the classes in the association process.467

The drawback though is that in case a single class has a very high score, other468

irrelevant classes will still be assigned to ϕ.469

4.2.2. Threshold470

In the threshold decision method, we fix instead a threshold value εi ∈ [0; 1],

for each i = 0, . . . ,m, and are only kept the classes having a score superior or

equal to this threshold. Then, the set of routes possibly followed by the vessel

is:

R̂(ϕ) = {Ri ∈ ΩR|Λ(ϕ,Ri) ≥ εi} (4.12)

The advantage of the threshold method is to be able discard classes with471

scores too low to be relevant. Moreover, the thresholds can be set individually472

to the different routes and thus somehow capture their geometry. The drawback473
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however is to define properly the thresholds. Although expert knowledge elici-474

tation methods can be used, we will rather set in this work arbitrary thresholds475

based on our own knowledge of the area.476

Remark 2. It can result in no class being selected, so that R̂(ϕ) = ∅ is the477

empty set. In this case, a Top-1 method will be applied. The confidence will be478

quite low (see Section 5.1).479

Remark 3. Additionally, the two decision methods Top-k and Threshold can480

both be refined to consider a set of weights ξi for each route and allow further481

consideration independently of the membership score. These weights could be482

used for instance to give more importance to some routes than to others, based483

on a specific operational request.484

5. Illustration on real data485

We will illustrate our approach on real AIS data by considering two classification486

problems:487

• on the one hand, the association of tracklets to the 18 classes constituted488

by the 17 routes and the “off-route” class, so that Ω(18)
R = {R0, R1, . . . , R17}489

is the set of possible labels;490

• and on the other hand the association of tracklets to the two “off-route”491

and “on-route” classes, so that Ω(2)
R = {R0, R} is the set of possible labels.492

We name those problems the “18-class problem” and “2-class problem”, respec-493

tively. For the 18-class problem, we use the dataset denoted by I∗ of 400 on-route494

tracklets with 17 labels, while for the 2-class problem we use the whole dataset495

of 800 tracklets, with only two labels, denoted by I.496

5.1. Association quality dimensions497

We will characterise the performances of different instantiations of the vessel to498

route association classifier along the three dimensions of correctness, specificity499

and confidence as described below. The different instantations of the classifier500

are defined by a set of parameters χ referring in particular to the definition of501

membership functions, aggregation and the decision methods.502
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For each tracklet ϕj of the dataset I, the set of possible route labels output503

by the classifier under the computational set of parameters χ is denoted by504

R̂χ(ϕj) ⊆ ΩR while the ground truth is denoted by R∗(ϕj) ∈ ΩR.505

5.1.1. Correctness506

The correctness characterises the ability of the classifier to output the correct

route followed by the vessel. It is defined here as the frequency of correct

associations over the whole testing dataset. An association is deemed correct

is one of the output classes is the ground truth class R∗(ϕj). For a given

dataset D ∈ {I; I∗} and a classifier with parameters χ, the correctness measure

is defined as:

Γ(χ,D) =
1

| D |
∑
j∈D

∆
(
R̂χ(ϕj)

)
where ∆(A) =

1 if A ∋ R∗(ϕj)

0 else
(5.1)

In the two-class problem, such as for the I dataset, the correctness measure

reduces to the classical accuracy measure:

Γ(χ, I) =
TP + TN

TP + FP + FN + TN
(5.2)

where TP , TN , FP and FN are elements of the confusion matrix (see Table507

1). The correctness measure is thus maximal (and equal to 1) if all the samples

Real

On-route Off-route

Estimated
On-route True Positive (TP) False Positive (FP)

Off-route False Negative (FN) True Negative (TN)

Table 1: Confusion matrix
508

ϕj of the dataset are assigned a set of classes which contains the true class.509

5.1.2. Specificity510

The specificity is related to the number of output classes and is defined relatively

to the normalised Hartley measure, averaged over all samples of the dataset:

S(χ,D) =
1

| D |
∑
j∈D

H1

(
R̂χ(ϕj)

)
where H1(A) = 1− log2(| A |)

log2(| ΩR |)
(5.3)
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where A ⊆ ΩR, and ΩR is the universal set. H1(A) is maximum and equals to 1511

if and only if the classifier outputs a single class, while it is minimum and equals512

0 if the classifier outputs all classes of ΩR. In case we have only two classes,513

i.e. |ΩR| = 2 the specificity will always be maximum as a single class will be514

output, and this measure is thus irrelevant in this case.515

5.1.3. Confidence516

The confidence is defined as the degree of trust that the correct class is within

the set of output classes. We define it relatively to the scores of output classes,

as:

C(χ,D) =
1

|D|
∑
j∈D

γ
(
R̂χ(ϕj)

)
where γ(A) =

∑
r∈A

Λϕj , r)∑
r∈ΩR

Λ(ϕj , r)
(5.4)

where Λ(ϕj , r) is the aggregated membership score for route r assigned to track-517

let ϕj .518

Thus, the local scores (for each route) are aggregated with a disjunctive519

operator, meaning that one of them is true. The confidence value is linked to520

the number of possible routes (i.e., the specificity), as the bigger the set, the521

higher the confidence. The confidence value is also linked to the values of each522

individual score for the selected routes. It is 1 if all the routes are selected.523

5.2. Vessels travelling on maritime routes524

We provide herein the results of our fuzzy classifier applied to a dataset of real525

data extracted from the AIS, with ground truth route labels (available at [51]),526

as detailed in [52]. We first analyse the capability of the classifier to discriminate527

between the 17 routes according to different parameters such as the t-norm or528

defuzzification (i.e., decision) method. We then highlight the robustness of the529

classifier to discriminate between vessels travelling on overlapping twin-routes530

(reverse origin and destination). We finally show that our approach is agnostic531

to the way the routes are constructed by appending the set of synthetic routes532

from TREAD by two hand-crafted routes for which no data were available.533
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5.2.1. Route association: 18-class problem534

We use here the dataset of the 400 “on-route” tracklets (denoted dataset I∗)535

with 17 possible labels corresponding to the 17 routes of R. The output of the536

classifier will be provided over ΩR = {R0, R1, . . . , R17}, where a rejection class537

R0 is added for “off-route vessels” understood as “vessel not travelling on the 17538

routes”.539

Comparison of decision methods We first set the t-norm as the product,540

tP and observe the comparative results for the two decision methods “Top-k”541

and “Threshold” and corresponding parameter values. Figure 7 displays the542

results of the association. The three dimensions of correctness, specificity and543

confidence are presented pairwise in three distinct charts. Together with dots544

of the curves are displayed specific parameter values: k, for the Top-k method545

(red curve) and ε, for the Threshold method (green curve). The same threshold546

value is used for all the routes.547

We observe a natural decrease of the correctness as the specificity increases548

(Fig. 7(a)), a natural increase of correctness as the confidence increases (Fig.549

7(b)) as well as a natural decrease of specificity as the confidence increases550

(Fig. 7(c)). An optimum seems to be reached for a threshold around ε = 0.6551

providing a correctness just below 0.9, for a specificity of 0.8 (corresponding to552

2 routes output). When a single route is output though (maximum specificity),553

the correctness drops significantly. This can be explained by the pairs of twin554

routes in our dataset, very close to each other. Further analysis is performed in555

Section 5.2.2 below.556

The Threshold approach outperforms the Top-k approach within a range557

of ε values between 0.3 and 0.7. This is confirmed by Figure 7(c), which also558

shows that in terms of specificity, a threshold value of 0.6 is worth a Top-2, and559

we can approximate a value of 0.35 being worth a Top-3. This means that, on560

average across the 400 tracklets, a Threshold approach with a 0.6 value outputs561

2 classes. Figure 7(b) shows that there is no clear improvement in correctness562

when the threshold value ranges from 0.2 to 0.6.563

Remark 4. We observe a maximum correctness at 0.91, which means that in564

about 9% of the cases, some routes truly assigned to vessels are assigned null565
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(a) Correctness versus specificity (b) Correctness versus confidence

(c) Specificity versus confidence

Figure 7: Association quality for different decision methods and a product t-norm as aggre-

gation operator. Parameter values (k or ε) are displayed on the dots

scores by the classifier. This is due to a rough estimation of the membership566

functions which does not capture the actual spatial extent of the routes. Indeed,567

some routes have a low width, while other have a wider width. In the later case,568

a too low τl leads inevitably to a null membership score.569

Remark 5. If we interpret the relationship between confidence and correctness570

as under- verus over-confidence of the classifier, the median in the graph of Fig.571

7(b) would display an exact confidence. We can thus read these results as the572

classifier being under-confident (or cautious) for threshold values between circa573

0.3 and 0.88, and over-confident for the over values.574
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Comparison of aggregation methods We set now the decision method to575

the Threshold method with varying parameter from 0.1 to 0.9, with 0.1 steps.576

Figure 8 displays comparative results using three different t-norms introduced577

in Section 2.2 for the aggregation along the two features. Figure 8(a) shows

(a) Correctness versus specificity (b) Correctness versus confidence

(c) Specificity versus confidence

Figure 8: Association quality for different feature aggregation operators, using the Threshold

method for decision. Threshold values ε are displayed on each dot of the graphs

578

that the optimum at parameter values between 0.6 and 0.7 is consistent across579

the aggregation methods used, while the aggregation method does not impact580

much the results in terms of specificity-correctness. Figure 8(b) shows that581

correctness reaches a plateau for values of the threshold between 0.2 and 0.6,582

although the confidence is higher for the stronger t-norm. Figure 8(c) shows583

that for both specificity and confidence, the weakest the t-norm, the better the584

outcome, which is a result that is expected by the very nature of those two585
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quality measures. Best results are thus obtained with tL.586

5.2.2. Association to reverse route587

We consider now the case of “twin-routes”, being pairs of routes having the588

same origin and destination ports, but with opposite directions. Six pairs (so589

12 routes) fall within this category in our dataset of routes. The twin-routes of590

our dataset are {R01, R02}, {R03, R04}, {R05, R06}, {R07, R08}, {R10, R11} and591

{R12, R13}.592

We would like to test the robustness of our classifier to correctly associate593

vessels travelling within the corridor of the opposite route. To such an aim, we594

modified the dataset reversing the COG of all tracklets on one route of the pair595

together with the label. We thus obtain sets of tracklets on the extent of routes,596

in the opposite direction. We refer below to this dataset as “reverse”, while the597

previous one is referred to as “original”.598

The association results are presented in Figure 9, where the correctness is599

displayed for varying values of decision parameters for both decision methods.600

Top-k in Fig. 9(a) and Threshold in Fig. 9(b).601

The results show that on both datasets said “original” and “reverse” the602

association only shows significant discrepancies (> 4%) occur for the Top-1603

technique. Only for this parameter value, the correctness is low in the Top-k604

approach (< 70%). In general, the rest of the Top-k approach gives a slight605

advantage to the “original” association, although the significance of the k > 1606

cases must be further assessed and is possibly route-related. The Threshold607

approach though, show very similar associating results regardless the threshold608

selected. That means that vessels travelling on the spatial extent of a route609

which overlaps with the opposite direction, will still be assigned to the correct610

route. These results show the robustness of our approach to correct association611

to twin-routes with overlapping spatial extents, as they are best discriminated612

by their direction.613

5.2.3. Hand-crafted maritime route: Brest-Douarnenez example614

One original feature of the proposed approach is to be agnostic to the represen-615

tation of the synthetic route. Here we consider an hand-crafted route, which is616
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(a) Correctness for both original and reverse

directions according to the value of k in the

Top-k approach

(b) Correctness of accuracy for both original

and reverse direction according to the thresh-

old value

(c) Difference in correctness between original

and reverse direction in the Top-k approach

(d) Difference in correctness between original

and reverse direction in the Threshold ap-

proach

Figure 9: Comparative results for Top-k and Threshold approaches in terms of correctness for

association with both original maritime route and with their counterpart

not the result of some AIS data processing, but rather provided by an operator617

aware of that route.618

We selected the ports of Brest and Douarnenez, being both already in the set619

of ports of the dataset. We hand-picked 5 virtual waypoints and generated two620

routes, one for each direction. Figure 10 shows the associated route prototypes621

generated by the 5 virtual waypoints, that will serve as basis for computation.622

We thus append the set of original routes R with these two hand-crafted623

routes, so that now |R′| = 19. We ran the vessel-to-route association classifier624

over the 400 off-route tracklets, i.e. over I \ I∗ dataset, using a Top-1 decision625

method. All tracklets assigned to one of the two routes as best score were first626

isolated and their true (i.e., labeled) origin and destination retrieved from the627
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Figure 10: In black, the bidirectional hand-crafted route between Brest and Douarnenez

together with the 17 routes of the dataset

original labeled AIS dataset. Table 2 shows all the selected tracklets, together628

with their score, true and estimated origins and destinations.629

This table shows that although the number of vessels navigating between630

Brest and Douarnenez is not large enough to generate a maritime route via631

the TREAD software (and be reflected in our dataset), some vessels still travel632

through this route (for instance tracklets 475 and 650, cf. Table 2).633

Table 3 shows the confusion matrix for the origins (on the left-hand side) and634

the destinations (on the right-hand side) of the tracklets for which one of the two635

hand-crafted routes were output by the classifier. It is worth noticing that out of636

the 17 tracklets which had Douarnenez as either origin or destination), 14 were637

actually estimated correctly (82%). Instead, Brest was correctly estimated for638

only 4 tracklets. This can be explained by the relative isolation of Douarnenez639

compared to the other maritime routes, while Brest is the nodal point of the640

local network. Also, out of the 17 tracklets, only 2 tracklets were actually corre-641

sponding to Douarnenez to Brest journeys while none of the actual routes that642

the vessels followed were one of the other 17 routes of the dataset. An interest-643

ing result is that one of these two tracklets was the only one to be assigned a644

confidence score of 1, proving the utility of including hand-crafted routes and645

the ability of the classifier to process them together with data-extracted routes.646
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# Confidence Estimated Origin Estimated Destination True Origin True Destination

401 0.847448 Douarnenez Brest Brest Ocean

407 0.605311 Douarnenez Brest Douarnenez Ocean

409 0.716976 Brest Douarnenez Ocean Douarnenez

460 0.941618 Brest Douarnenez Ocean Douarnenez

475 1.000000 Douarnenez Brest Douarnenez Brest

487 0.969345 Brest Douarnenez Ocean Douarnenez

498 0.554150 Douarnenez Brest Douarnenez Ocean

504 0.507506 Douarnenez Brest Douarnenez Unknown

540 0.664743 Brest Douarnenez Ocean Douarnenez

604 0.730807 Douarnenez Brest Le Conquet Camaret

633 0.929956 Douarnenez Brest Douarnenez Ocean

650 0.677828 Douarnenez Brest Douarnenez Brest

684 0.467977 Douarnenez Brest Douarnenez Ocean

694 0.391742 Douarnenez Brest Douarnenez Fishing

731 0.949339 Douarnenez Brest Ocean Brest

770 0.368832 Brest Douarnenez Fishing Douarnenez

772 0.990857 Brest Douarnenez Brest Ocean

Table 2: True and estimated origins and destinations for tracklets assigned to the hand-crafted

routes Brest-Douarnenez and Douarnenez-Brest

Origin Destination

True True

Douarnenez Brest else Douarnenez Brest else

Estimated
Douarnenez 9 0 2 Douarnenez 5 0 1

Brest 0 1 5 Brest 0 3 8

Table 3: Results for association with both Brest-Douarnenez and Douarnenez-Brest, split by

origin and destination ports

6. Conclusions647

The work presented in this paper is part of the research in the fields of maritime648

transportation and fuzzy logic. We proposed a fuzzy logic approach to vessel-649

to-route association, which relies on the very notion of maritime routes and its650

fuzzy constructs.651

We presented a detailed geometrical approach to compute the distance be-652

tween a vessel and a maritime route valid when segments of trajectories span653

over very large distance. The approach is original with respect to data-centric654

methods where statistical motion models help compensating the possible lack655

of data. Focused on geometrical features only, our method for distance compu-656

tation is agnostic to the way the maritime route is obtained, and is valid for657
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hand-crafted routes.658

The distance of a vessel to a maritime route is used to define the two fuzzy659

concepts of “vessel close to the route corridor”, and “vessel traveling in the same660

direction than the maritime route”. Two main features are considered: the661

position and the course over ground. It is expected that if the vessel is both662

in the vicinity of the spatial extent of a given route and exhibits a course over663

ground corresponding to the direction of the route, the vessel is likely to follow664

that specific maritime route. As a consequence, the approach is also able to665

detect vessels far from some maritime routes of interest, vessels close or within666

the route corridor but in reverse or perpendicular direction.667

Membership scores along the two features of position and course over ground668

are combined through a t-norm (conjunction) to obtain a membership score669

of the vessel to a given maritime route. This aggregated score is interpreted670

as a likelihood degree that the vessel is actually following that route. The671

decision step further allows selecting the subset of routes possibly followed by672

the vessel. Two decision methods have been proposed which both enable non-673

specific answers as subsets of routes rather than single ones. The “top-k decision”674

selects the k most likely routes, while the “threshold decision” selects only routes675

which scores exceeds a given threshold.676

A series of experiments has been conducted on real data excerpt from the677

AIS in the Brest area (France). A dataset of 800 maritime tracklets was pre-678

viously labeled with the route the corresponding vessels were actually followed,679

providing thus some ground truth and enabling the assessment of the correct-680

ness of our method. This ground truthed dataset along with the maritime routes681

of interest have been made available in a companion data publication. Those682

experiments include the assessment of association to pairwise maritime routes683

(e.g. corresponding to ferry trips between close ports) and hand-crafted mar-684

itime routes in addition to assessment of association to classical data extracted685

routes. The main interest in the fuzzy rule-based classifier proposed is its inter-686

pretability and flexibility, possibly at the expense of the classification accuracy.687

Rather than a unique solution to route association, we defined a framework to688

associate vessels to maritime routes which considers users’ needs and knowledge.689

The framework allows customising the antecedent fuzzy membership functions690
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according to specific routes geometry or user needs, while optimising some pa-691

rameters such as the weights of the fuzzy rules by means of a training data set692

with ground truth labels, and achieve a higher accuracy. Typically, the param-693

eters for defining the route membership should reflect the specific area under694

surveillance as well as the specific route. The aggregation operator (t-norm)695

could reflect more or less optimistic (or pessimistic) approach of the operator,696

and can change given the mission context. In future work, we would address697

the optimisation of this set of parameters to fit both the data (and capture the698

actual patterns of life) and the users’ knowledge and information needs.699

With little improvement, the approach proposed could be used in the scope700

of the development of future maritime green routes [53, 54]. Indeed, in order to701

navigate in areas with low past traffic where no or few data is available, hand-702

crafted routes could be used as precise guides that our computation can make703

the vessel follow. This could be beneficial to navigation software applications, in704

offering assistance in navigational choices, and helping to reduce the economic705

or ecological impacts of voyage paths.706

Acknowledgments707

The authors wish to thank the NATO Allied Command Transformation (NATO-708

ACT) for supporting this work through the funding of the Centre for Maritime709

Research and Experimentation.710

References711

[1] C. Iphar, A. Napoli, C. Ray, Integrity assessment of a worldwide maritime712

tracking system for a geospatial risk analysis at sea, in: Proceedings of the713

20th AGILE International Conference on Geographic Information Science714

(AGILE 2017), 2017.715

[2] C. Kooij, M. Loonstijn, R. Hekkenberg, K. Visser, Towards autonomous716

shipping: Operational challenges of unmanned short sea cargo vessels, in:717

P. Kujala, L. Lu (Eds.), Marine Design XIII, 2018, pp. 871–880.718

[3] J. Montewka, K. Wróbel, E. Heikkilä, O. Valdez-Banda, F. Goerlandt,719

36



S. Haugen, Challenges, solution proposals and research directions in safety720

and risk assessment of autonomous shipping, in: Proceedings of PSAM 14721

- Probabilistic Safety Assessment and Management Conference, 2018.722

[4] M. D. Robards, G. Silber, J. Adams, J. Arroyo, D. Lorenzini, K. Schwehr,723

J. Amos, Conservation science and policy applications of the marine vessel724

Automatic Identification System (AIS), Bulletin of Marine Science 92 (1)725

(2016) 75–103. doi:10.5343/bms.2015.1034.726

[5] O. Bodunov, F. Schmidt, A. Martin, A. Brito, C. Fetzer, Grand challenge:727

Real-time destination and ETA prediction for maritime traffic, in: Proceed-728

ings of the DEBS’18 conference, 2018. doi:10.1145/3210284.3220502.729

[6] T. Wahl, G. K. Høye, A. Lyngvi, B. T. Narheim, New possible roles of730

small satellites in maritime surveillance, Acta Astronautica 56 (1-2) (2005)731

273–277. doi:10.1016/j.actaastro.2004.09.025.732

[7] M. Fournier, R. Casey Hilliard, S. Rezaee, R. Pelot, Past, present, and733

future of the satellite-based automatic identification system: areas of ap-734

plications (2004–2016), WMU Journal of Maritime Affairs 17 (3) (2018)735

311–345. doi:10.1007/s13437-018-0151-6.736

[8] L. Zhen, Y. Wu, S. Wang, G. Laporte, Green technology adoption for737

fleet deployment in a shipping network, Transportation Research Part B:738

Methodological (2020) 388–410doi:10.1016/j.trb.2020.06.004.739

[9] H. Rong, A. Teixeira, C. Guedes Soares, Ship collision avoidance behaviour740

recognition and analysis based on AIS data, Ocean Engineering (2022).741

doi:10.1016/j.oceaneng.2021.110479.742

[10] V. Prochazka, R. Adland, F.-C. Wolff, Contracting decisions in the crude743

oil transportation market: Evidence from fixtures matched with AIS data,744

Transportation Research Part A: Policy and Practice 130 (2019) 37–53.745

doi:10.1016/j.tra.2019.09.009.746

[11] M. Tichavska, B. Tovar, Port-city exhaust emission model: An application747

to cruise and ferry operations in las palmas port, Transportation Research748

37

https://doi.org/10.5343/bms.2015.1034
https://doi.org/10.1145/3210284.3220502
https://doi.org/10.1016/j.actaastro.2004.09.025
https://doi.org/10.1007/s13437-018-0151-6
https://doi.org/10.1016/j.trb.2020.06.004
https://doi.org/10.1016/j.oceaneng.2021.110479
https://doi.org/10.1016/j.tra.2019.09.009


Part A: Policy and Practice 78 (2015) 347–360. doi:10.1016/j.tra.2015.749

05.021.750

[12] L. Styhre, H. Winnes, J. Black, J. Lee, H. Le-Griffin, Greenhouse gas emis-751

sions from ships in ports – case studies in four continents, Transporta-752

tion Research Part D: Transport and Environment 54 (2017) 212–224.753

doi:10.1016/j.trd.2017.04.033.754

[13] D. Toscano, F. Murena, F. Quaranta, L. Mocerino, Assessment of the im-755

pact of ship emissions on air quality based on a complete annual emission756

inventory using ais data for the port of naples, Ocean Engineering (2021).757

doi:10.1016/j.oceaneng.2021.109166.758

[14] C. Liu, J. Liu, X. Zhou, Z. Zhao, C. Wan, Z. Liu, AIS data-driven approach759

to estimate navigable capacity of busy waterways focusing on ships entering760

and leaving port, Ocean Engineering (2020). doi:10.1016/j.oceaneng.761

2020.108215.762

[15] J. Cai, G. Chen, M. Lutzen, N. Gorm Maly Rytter, A practical AIS-based763

route library for voyage planning at the pre-fixture stage, Ocean Engineer-764

ing (2021). doi:10.1016/j.oceaneng.2021.109478.765

[16] T. P. Zis, H. N. Psaraftis, L. Ding, Ship weather routing: A taxonomy766

and survey, Ocean Engineering (2020). doi:10.1016/j.oceaneng.2020.767

107697.768

[17] K. Kepaptsoglou, G. Fountas, M. G. Karlaftis, Weather impact on con-769

tainership routing in closed seas: A chance-constraint optimization ap-770

proach, Transportation Research Part C: Emerging Technologies (2015)771

139–155doi:10.1016/j.trc.2015.01.027.772

[18] V. N. Armstrong, Vessel optimisation for low carbon shipping, Ocean En-773

gineering (2013) 195–207doi:10.1016/j.oceaneng.2013.06.018.774

[19] M. Bentin, D. Zastrau, M. Schlaak, D. Freye, R. Elsner, S. Kotzur, A new775

routing optimization tool-influence of wind and waves on fuel consumption776

of ships with and without wind assisted ship propulsion systems, Trans-777

portation Research Procedia (2016) 153–162doi:10.1016/j.trpro.2016.778

05.051.779

38

https://doi.org/10.1016/j.tra.2015.05.021
https://doi.org/10.1016/j.tra.2015.05.021
https://doi.org/10.1016/j.tra.2015.05.021
https://doi.org/10.1016/j.trd.2017.04.033
https://doi.org/10.1016/j.oceaneng.2021.109166
https://doi.org/10.1016/j.oceaneng.2020.108215
https://doi.org/10.1016/j.oceaneng.2020.108215
https://doi.org/10.1016/j.oceaneng.2020.108215
https://doi.org/10.1016/j.oceaneng.2021.109478
https://doi.org/10.1016/j.oceaneng.2020.107697
https://doi.org/10.1016/j.oceaneng.2020.107697
https://doi.org/10.1016/j.oceaneng.2020.107697
https://doi.org/10.1016/j.trc.2015.01.027
https://doi.org/10.1016/j.oceaneng.2013.06.018
https://doi.org/10.1016/j.trpro.2016.05.051
https://doi.org/10.1016/j.trpro.2016.05.051
https://doi.org/10.1016/j.trpro.2016.05.051


[20] V. Windeck, A Liner Shipping Network Design, Springer Gabler, Wies-780

baden, Germany, 2013.781

[21] M. Grifoll, F. Martinez de Oses, M. Castells, Potential economic benefits of782

using a weather ship routing system at short sea shipping, WMU Journal783

of Maritime Affairs (2018) 195–211doi:10.1007/s13437-018-0143-6.784

[22] L. Perera, C. Guedes Soares, Weather routing and safe ship handling in785

the future of shipping, Ocean Engineering (2017) 684–695doi:10.1016/j.786

oceaneng.2016.09.007.787

[23] V. Kotovirta, R. Jalonen, L. Axell, K. Riska, R. Berglung, A system for788

route optimization in ice-covered waters, Cold Regions Science and Tech-789

nology (2009) 52–62doi:10.1016/j.coldregions.2008.07.003.790

[24] C. P. Padhy, D. Sen, P. K. Bhaskaran, Application of wave model for791

weather routing of ships in the north indian ocean, Natural Hazards (2008)792

373–385doi:10.1007/s11069-007-9126-1.793

[25] G. Pallotta, M. Vespe, K. Bryan, Traffic Route Extraction and Anomaly794

Detection from AIS Data, in: Proceedings of the COST MOVE Workshop795

on Moving Objects at Sea, 2013.796

[26] G. Pallotta, M. Vespe, K. Bryan, Vessel Pattern Knowledge Discovery from797

AIS Data: A Framework for Anomaly Detection and Route Prediction,798

Entropy 15 (6) (2013) 2218–2245. doi:10.3390/e15062218.799

[27] H. Rong, A. Teixeira, C. Guedes Soares, Data mining approach to shipping800

route characterization and anomaly detection based on ais data, Ocean801

Engineering (2020). doi:10.1016/j.oceaneng.2020.106936.802

[28] P. Coscia, P. Braca, L. Millefiori, F. Palmieri, P. Villett, Multiple ornstein-803

uhlenbeck processes for maritime traffic graph representation, IEEE trans-804

actions on Aerospace and Electronic Systems (2018). doi:10.1109/TAES.805

2018.2808098.806

[29] Z. Sun, J. Zheng, Finding potential hub locations for liner shipping, Trans-807

portation Research Part B: Methodological (2016) 750–761doi:10.1016/808

j.trb.2016.03.005.809

39

https://doi.org/10.1007/s13437-018-0143-6
https://doi.org/10.1016/j.oceaneng.2016.09.007
https://doi.org/10.1016/j.oceaneng.2016.09.007
https://doi.org/10.1016/j.oceaneng.2016.09.007
https://doi.org/10.1016/j.coldregions.2008.07.003
https://doi.org/10.1007/s11069-007-9126-1
https://doi.org/10.3390/e15062218
https://doi.org/10.1016/j.oceaneng.2020.106936
https://doi.org/10.1109/TAES.2018.2808098
https://doi.org/10.1109/TAES.2018.2808098
https://doi.org/10.1109/TAES.2018.2808098
https://doi.org/10.1016/j.trb.2016.03.005
https://doi.org/10.1016/j.trb.2016.03.005
https://doi.org/10.1016/j.trb.2016.03.005


[30] W.-K. Tseng, J.-L. Guo, C.-P. Liu, A comparison of great circle, great810

ellipse, and geodesic sailing, Journal of Marine Science and Technology811

21 (3) (2013) 287–299. doi:10.6119/JMST-012-0430-5.812

[31] C. S. Jensen, D. Lin, B. Chin Ooi, Continuous clustering of moving ob-813

jects, IEEE Transactions on Knowledge and Data Engineering 19 (9) (2007)814

1161–1174. doi:10.1109/TKDE.2007.1054.815

[32] F. Boem, F. A. Pellegrino, G. Fenu, T. Parisini, Multi–feature trajectory816

clustering using Earth Mover’s Distance, in: Proceedings of the 2011 IEEE817

Conference on Automation Science and Engineering, 2011. doi:10.1109/818

CASE.2011.6042423.819

[33] G. Spiliopoulos, K. Chatzikokolakis, D. Zissis, E. Biliri, D. Papaspyros,820

G. Tsapelas, S. Mouzakitis, Knowledge extraction from maritime spa-821

tiotemporal data: An evaluation of clustering algorithms on big data, in:822

Proceedings of the 2017 IEEE International Conference on Big Data (BIG-823

DATA), 2017, pp. 1682–1687. doi:10.1109/BigData.2017.8258106.824

[34] S. Qi, P. Bouros, D. Sacharidis, N. Mamoulis, Efficient point-based trajec-825

tory search, in: C. Claramunt, M. Schneider, R. C.-W. Wong, L. Xiong,826

W.-K. Loh, C. Shahabi, K.-J. Li (Eds.), Advances in Spatial and Temporal827

Databases, Springer, 2015, pp. 179–196. doi:10.1007/978-3-319-22363-828

6_10.829

[35] Y. Liu, X. Li, W. Hu, Semi-supervised trajectory learning using a multi-830

scale key point based trajectory representation, in: Proceedings of the831

2010 20th International Conference on Pattern Recognition, 2010. doi:832

10.1109/ICPR.2010.860.833

[36] F. Shao, S. Cai, J. Gu, A modified Hausdorff distance based algorithm834

for 2-dimensional spatial trajectory matching, in: Proceedings of the 5th835

International Conference on Computer Science & Education, 2010, pp. 166–836

172. doi:10.1109/ICCSE.2010.5593666.837

[37] R. Laxhammer, G. Falkman, Sequential conformal anomaly detection in838

trajectories based on Hausdorff distance, in: Proceedings of the 14th Inter-839

national Conference on Information Fusion, 2011.840

40

https://doi.org/10.6119/JMST-012-0430-5
https://doi.org/10.1109/TKDE.2007.1054
https://doi.org/10.1109/CASE.2011.6042423
https://doi.org/10.1109/CASE.2011.6042423
https://doi.org/10.1109/CASE.2011.6042423
https://doi.org/10.1109/BigData.2017.8258106
https://doi.org/10.1007/978-3-319-22363-6_10
https://doi.org/10.1007/978-3-319-22363-6_10
https://doi.org/10.1007/978-3-319-22363-6_10
https://doi.org/10.1109/ICPR.2010.860
https://doi.org/10.1109/ICPR.2010.860
https://doi.org/10.1109/ICPR.2010.860
https://doi.org/10.1109/ICCSE.2010.5593666


[38] J. P. Bustos, F. Donoso, A. Guesalaga, M. Torres, Matching radar and841

satellite images for ship trajectory estimation using the Hausdorff distance,842

IST Radar Sonar Navigation 1 (1) (2007) 50–58. doi:10.1049/iet-rsn:843

20060025.844

[39] B. Guan, L. Liu, J. Chen, Using relative distance and Hausdorff distance845

to mine trajectory clusters, TELKOMNIKA 11 (1) (2013) 115–122. doi:846

10.11591/telkomnika.v11i1.1877.847

[40] M. Siljander, E. Venäläinen, F. Goerlandt, P. Pellikka, GIS-based cost848

distance modelling to support strategic maritime search and rescue plan-849

ning: A feasibility study, Applied Geography 57 (2015) 54–70. doi:850

10.1016/j.apgeog.2014.12.013.851

[41] C. Zhang, AIS data-driven general vessel destination prediction: A tra-852

jectory similarity-based approach, Ph.D. thesis, University of British853

Columbia (2019).854

[42] L. Etienne, T. Devogele, A. Bouju, Spatio-temporal trajectory analysis855

of mobile objects following the same itinerary, in: In Proceedings of the856

Joint International Conference on Theory, Data Handling and Modelling857

in GeoSpatial Information Science, 2010, pp. 86–91.858

[43] H. Rong, A. Teixeira, C. Guedes Soares, Ship trajectory uncertainty pre-859

diction based on a gaussian process model, Ocean Engineering 182 (2019)860

499–511. doi:10.1016/j.oceaneng.2019.04.024.861

[44] L. A. Zadeh, Fuzzy sets, Information and Control 8 (1965) 338–353.862

[45] L. A. Zadeh, Outline of a new approach to the analysis of complex systems863

and decision processes, IEEE Transactions on Systems, Man, and Cyber-864

netics SMC-3 (1) (1973) 28–44.865

[46] D. Dubois, H. Prade, A review of fuzzy set aggregation connectives, Infor-866

mation Sciences 36 (1-2) (1985) 85–121.867

[47] I. Bloch, Information combination operators for data fusion: A compara-868

tive review with classification, IEEE Transactions on Systems, Man and869

Cybernetics - Part A: Systems and Humans 26 (1) (1996) 52–67.870

41

https://doi.org/10.1049/iet-rsn:20060025
https://doi.org/10.1049/iet-rsn:20060025
https://doi.org/10.1049/iet-rsn:20060025
https://doi.org/10.11591/telkomnika.v11i1.1877
https://doi.org/10.11591/telkomnika.v11i1.1877
https://doi.org/10.11591/telkomnika.v11i1.1877
https://doi.org/10.1016/j.apgeog.2014.12.013
https://doi.org/10.1016/j.apgeog.2014.12.013
https://doi.org/10.1016/j.apgeog.2014.12.013
https://doi.org/10.1016/j.oceaneng.2019.04.024


[48] D. Dubois, H. Prade, Formal representations of uncertainty, Vol. Decision-871

making - Concepts and Methods, ISTE, London, UK & Wiley, Hoboken,872

N.J. USA, 2009, Ch. 3, pp. 85–156, invited paper.873

[49] A.-L. Jousselme, G. Pallotta, Dissecting uncertainty handling techniques:874

Illustration on maritime anomaly detection, Journal of Advances in Infor-875

mation Fusion 13 (2) (2018) 158–178.876

[50] C. Iphar, M. Zocholl, A.-L. Jousselme, Semantics of maritime routes: Con-877

ciliating complementary views, in: Proceedings of the OCEANS 2021 San878

Diego Conference, 2021. doi:10.23919/OCEANS44145.2021.9705934.879

[51] C. Iphar, A.-L. Jousselme, Maritime routes and vessel tracklet dataset for880

vessel-to-route association (version 1.0), data set. Licence CC-BY-NC-SA-881

4.0. Zenodo (2022). doi:10.5281/zenodo.6402160.882

[52] C. Iphar, A.-L. Jousselme, G. Pallotta, Maritime route and vessel tracklet883

dataset for vessel-to-route association, Data in Brief (2022). doi:10.1016/884

j.dib.2022.108513.885

[53] W. Ma, D. Ma, Y. Ma, J. Zhang, D. Wang, Green maritime: a routing and886

speed multi-objective optimization strategy, Journal of Cleaner Production887

(2021). doi:10.1016/j.jclepro.2021.127179.888

[54] H. Psaraftis, C. Kontovas, Green Maritime Transportation: Speed and889

Route Optimization, Springer, 2016, Ch. 9. doi:10.1007/978-3-319-890

17175-3_9.891

42

https://doi.org/10.23919/OCEANS44145.2021.9705934
https://doi.org/10.5281/zenodo.6402160
https://doi.org/10.1016/j.dib.2022.108513
https://doi.org/10.1016/j.dib.2022.108513
https://doi.org/10.1016/j.dib.2022.108513
https://doi.org/10.1016/j.jclepro.2021.127179
https://doi.org/10.1007/978-3-319-17175-3_9
https://doi.org/10.1007/978-3-319-17175-3_9
https://doi.org/10.1007/978-3-319-17175-3_9

	Introduction
	Background
	Geometrical considerations for maritime routes
	Approximations
	Distance from vessel to maritime trajectories

	Fuzzy logic

	Geometry of maritime routes
	Contribution of the whereabouts
	Contribution of the Course Over Ground

	Semantic framework for vessel to maritime route association
	A fuzzy logic approach to route association
	Fuzzy membership functions
	Inference and aggregation
	Vessels following a route or off-route

	Route association
	Top-k
	Threshold


	Illustration on real data
	Association quality dimensions
	Correctness
	Specificity
	Confidence

	Vessels travelling on maritime routes
	Route association: 18-class problem
	Association to reverse route
	Hand-crafted maritime route: Brest-Douarnenez example


	Conclusions

