Effects of the toxic dinoflagellates Prorocentrum lima and Ostreopsis cf. ovata on immune responses of cultured oysters Crassostrea gasar
Abstract
Oyster production in Brazil has been highlighted as an important economic activity and is directly impacted by
the quality of the environment, which is largely the result of human interference and climate change. Harmful
algal blooms occur in aquatic ecosystems worldwide, including coastal marine environments which have been
increasing over the last decades as a result of global change and anthropogenic activities. In this study, the native
oysters Crassostrea gasar from Northeast of Brazil were exposed to two toxic benthic dinoflagellate species,
Prorocentrum lima and Ostreopsis cf. ovata. Their respective effects on C. gasar physiology and defense mechanisms
were investigated. Oyster hemocytes were first exposed in vitro to different concentrations of both dinoflagellate
species to assess their effects on hemocyte functions, such as phagocytosis, production of reactive
oxygen species, as well as mortality. Results highlighted an alteration of hemocyte phagocytosis and viability in
presence of O. cf. ovata, whereas P. lima did not affect the measured hemocyte functions. In a second experiment,
oysters were exposed for 4 days in vivo to toxic culture of O. cf. ovata to assess its effects on hemocyte parameters,
tissues damages and pathogenic Perkinsus spp. infection. An increase in hemocyte mortality was also observed in
vivo, associated with a decrease of ROS production. Histopathological analyses demonstrated a thinning of the
epithelium of the digestive tubules of the digestive gland, inflammatory reaction and a significant increase in the
level of infection by Perkinsus spp. in oysters exposed to O. cf. ovata. These results indicate that oysters C. gasar
seem to be pretty resilient to an exposure to P. lima and may be more susceptible to O. cf. ovata. Furthermore, the
latter clearly impaired oyster physiology and defense mechanisms, thus highlighting that harmful algal blooms of
O. cf. ovata could potentially lead to increased susceptibility of C. gasar oysters to parasite infections.
Origin | Files produced by the author(s) |
---|