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Abstract

This paper addresses a multi-objective optimization problem for marine monitor-
ing using USV. The objectives are to cover the maximum area with the lowest
energy cost while avoiding collisions. The problem is solved using an exact
and heuristic methods. First, a multi-objective Mixed Integer Programming for-
mulation is proposed to model the USV monitoring problem. It consists of a
combination of the Covering Salesman Problem (CSP) and Travelling Sales-
man Problem with Profit (TSPP). Then, we use CPLEX software to provide
exact solutions. On the other hand, a customized chromosome-size algorithm
is used to find heuristic solution. The latter is a multi-objective evolutionary
algorithm known as Pareto Archived Evolution Strategy (PAES). The obtained
results showed that the exact solving of the USV monitoring mission problem
with mixed-integer programming (MIP) methods needs extensive computa-
tional costs. However, the customized PAES was able to provide Near-optimal
solutions for large-size graphs in much faster time as compared to the exact one.
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1 Introduction

Nowadays, unmanned Surface Vehicles (USVs) are more and more used in both
military and civil fields to replace humans in performing ocean and marine tasks,
especially in hostile and dangerous environments [1, 2]. The main advantages of
USVs are that they do not have restrictions imposed by a human crew member, such
as temperature, space, or environment disturbances, as well as their ability to evolve
in environments where humans are not able to intervene safely, in addition to their
cost and continuous activity.

There is several applications of USVs such as environmental monitoring [3],
ocean resource exploration [4], maritime search and rescue [5], ocean weather
forecasting [6] and defense.

In this paper, we address the general problem of marine monitoring using an USV
equipped with on-board LiDAR (Light Detection and Ranging) allowing the remote
covering of distant points. In fact, optical sensors such as LiDAR and cameras have
been successfully used for many robotic applications, with the aim of providing infor-
mation about the navigation environment located within their visibility range [7] For
example, Fig- 1 represents the USV monitoring mission of Brest city port, in which
the USV moves from the starting point to visit all the selected way-points (green
point) then comes back to the departure point. The red lines represent the USV tour
where all the points located within the LiDAR range are considered as covered. The
objectives assigned to the USV mission are first to maximize the covered area and
second minimize the consumed energy (distance covered). To reflect real operating
conditions, we consider that the USV operates in an environment with tidal current
effects and should ensure obstacle avoidance along its mission.

Basically, this kind of problems are modeled using the well known Covering
Salesman Problem (CSP) which is the generalisation if the Traveling Salesman Prob-
lem (TSP). For example, several CSP variants have been proposed in [8—12], and
most of them are published in TSPLIB [13], data base which stores a set of pre-solved
use cases of (TSP, CSP, TSPP, etc.) and used as reference solutions. However, these
studies do not consider LiDAR-based coverage which is more realistic than standard
CSPs. Moreover, they are exclusively mono-objective and are not able to deal with
multiple conflicting objectives.

To solve USV the above described mission monitoring problem, two approaches
are proposed : The first one is an exact solution based on Mixed Integer Program-
ming (MIP) modeling [14] of the combination of two well-known operation research
problem formulations : Traveling Salesman Problem with Profit (TSPP) [15] and
Covering Salesman Problem (CSP) [8]. Actually, LiDAR coverage is modeled using
the concept of CSP customers. Then, the CSP is used in a non-Hamiltonian TSPP
tour with two conflicting objectives. The MIP model is then solved using CPLEX
optimizer tool to provide the optimal USV tour. We found that while the solution
found is optimal, the computational time is extremely high.

The second one is a heuristic method based Pareto Archived Evolution Strategy
(PAES) [16] which is a multi-objective algorithm inspired from genetic algorithms
(GA). First, the adaptation of the standard PAES to the USV covering problem is
called S-PAES. Then, in order to enhance the performance and the solution quality,
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Fig. 1 Brest city harbor monitoring mission

a customized PAES (C-PAES) is proposed. It improves the efficiency of the direct
approach of S-PAES by the calculation of an optimal chromosome size allowing
avoiding way-points covering redundancy.

Then, the exact and heuristic solutions are compared. The obtained results show
that, for small size problems (graph with total vertex equal to or less than 74 ver-
tices), C-PAES is able to provide an optimal solution in a much shorter time than the
exact method. Beyond that size, the exact solver is not able to provide a solution in
an acceptable time, whereas C-PAES can converge to satisfactory solutions for rel-
atively large graph sizes. As example, when solving the monitoring problem with a
graph of 2596 vertices, the obtained solution for the entire coverage area has only
7% additional energy consumption as compared to that of a 74-vertex graph. How-
ever, the computational time required by PAES to solve the 2596-vertex problem
(120 second) is about 400 time less than the computational time required to solve the
74-vertex problem with the exact approach ( 51333 second).

The rest of the paper is organized as follows: Section 2 lists the most relevant
related work. Section 3 describes the developed methodology in this study. The
problem formulation is described in detail in Section 4. The problem modeling and
solving is given in Section 5. Solver’s implementations are described in section 6. The
obtained simulation results are analyzed and discussed in Section 7. A conclusion
and some perspective works are presented in Section 8.

2 Related Work

2.1 Covering Salesman Problem

The first CSP formulation was developed by Current and Schilling [17] in 1989. to
solve, they proposed a two step composed heuristic algorithm. First, a set of ver-
tices (SCP) that allows to cover all the vertices is defined. then, the optimal TSP tour
over the pre-defined SCP should be calculated in the second step. [8] proposed two
local search algorithms denoted named LS1 and LS2. LS1 applies removal and re-
assignment of moves where some cities are removed from the tour and other ones will
be reinserted to obtain a new optimal solution. LS2 uses suppression-reassignment
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as well as perturbation procedures to improve the solution quality. It employs the
suppression-reassignment heuristic to find a subset of cities, and then applies the
Lin-Kernighan heuristic proposed by [18] on this subset to find a TSP tour passing
through its constituent cities. [9] provide integer linear programming (ILP) based
solution for the CSP. Starting from an initial feasible solution, the algorithm applies
the destroy-repair paradigm to optimize the tour length. For this purpose, some ver-
tices are removed and reallocated forming a new feasible solution resulting from
solving an ILP-based model to optimally. On 2015, [10] developed an hybrid ant
colony optimization (ACO) algorithm with dynamic programming to solve the CSP
problem. On the other hand, this study provides also a MIP formulation which is
further solved with CPLEX for the small instances. [11] developed two hybrid meta-
heuristic for CSP solving which are: Artificial Bee Colony algorithm (ABC) and
Genetic Algorithm (GA) with using new local search based operators. In addition
to specific knowledge during crossover and mutation in GA. The comparison shows
that GA is able to improve the best known solutions for most large instances.

Most CSP works consider single objective that is the minimization of the travel
cost required to cover all vertices. [12] developed a new CSP formulation called ’A
multi-objective Covering Salesman Problem with k-coverage’. The proposed CSP
considers two conflicting objectives that are tour length minimization and coverage
rate maximization. the prefix k consists on the number of nodes that can be cov-
ered by one vertex. The problem is solved using the Non-dominated Sorting Genetic
Algorithm (NSGA-II). Computational experiments are performed on ten numerical
examples taken from TSPLIB by setting k=2. Authors confirm that the higher is the
k-coverage value, higher is the robustness of the system. However, the tour cost (tour
length) increases, and beyond a certain value of k, the tour cost becomes unrealistic.

2.2 USV covering path planning

Most of existing studies about USVs mission planning focus on path planning [19],
[20], [21], [22], [23], [24], [25], [26], [27], [28], [29]. However, the objective in these
works is to find an optimal route from a starting point to an arrival point which is not
suitable for monitoring mission where the main objective is to cover the maximum
navigation area.

There are only few studies which consider on the covering tour problem for
USVs. For example, in [30], authors developed a mission planning for USV when
operating in a non-obstructed sea environment. The proposed solution allows to visit
a set of points in a limited time starting from and returning back to the same points.
Each point is associated with a profit named mission profit and the Euclidean inter-
points distances are calculated and transformed into time cost at the beginning by
assuming a constant USV speed. The problem is given by the Traveling salesman
Problem (TSP) without considering the constraint of visiting all nodes, as it causes
a conflict with the limited operating time assumed in their study. The authors pro-
posed a Genetic algorithm to solve this problem where the objective function aims to
optimise the ratio of the sum of performed missions profit and the sum of all profits
under constraint of limited operating time.
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[31] proposed a solution for covering reservoir in order to monitor water quality
by collecting samples. The problem is modeled as a TSPP (TSP with profits), in
which a minimum number of nodes must be visited by assuming that each nodes
represents a certain coverage of water area. Actually, TSPP [15] is a bi-objective TSP
where it is not necessary to visit all vertices. Considering that a profit is associated to
each vertex, the objective is to monitor a maximum of the coverage area in one tour
under constraints of limited operating time and maximum volume of water samples
that can be loaded by the USV.

2.3 Scope of the study

These mentioned studies did not consider the covering objective in the context of
monitoring mission, in which the vertices to be visited are predefined and associated
with an abstract and fixed profit to be maximized. However, in case of a monitoring
mission, the USV can select any vertex while achieving the mission. Moreover, the
covering objective dynamically depends on different parameters such as the maps
topography (borders, obstacles, ... etc) and LiDAR range.

In this paper, we considered the USV monitoring mission as a mix of CSP and
TSPP, which has not been considered yet, as far as we know for the CSP part [17],
the idea is to find the lowest cost Hamiltonian tour by visiting a subset of vertices
(facilities) that allow to cover the non-visited one (customers) included in the pre-
determined coverage distance. The selected vertex to visit should be a facility and
the other ones included in LiDAR coverage rate will be the customers. Moreover,
we propose a combination of the mono-objective CSP with the TSPP which leads
to a generation of new problem formulation that makes the concept of the CSP to
be considered as a profit in the bi-objective non-Hamiltonian TSPP. This leads to a
multi-objective optimization problem, which will be solved by exact and heuristic
approaches. The exact method consists in solving the generated MIP model of the
bi-objective CSP using CPLEX optimization tool. The proposed heuristic method
is a multi-objective evolutionary algorithm called Pareto archived evolution strategy
(PAES) [32]. The exact method will be used as a reference in the benchmark.

3 Methodology

In this section, we present our methodology which is subdivided into three phases as
described in Fig- 2

3.1 Problem formulation

The objective of this phase is to provide formal descriptions of the environment where
the USV is evolving including : Navigation area, LiDAR, tidal currents and con-
sumed energy as shown in Fig- 2.a. All these formulations are used by both exact and
heuristic solutions as described hereafter. The area to monitor is described as a grid
of points (vertices) and edges associated to movements between neighbour nodes. In
this study, the USV speed is considered as constant for both exact model and heuristic
approach. Thus, the arrival time from one point to another is not controlled.
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Fig. 2 Methodology

3.2 Problem modeling and solving

The USV covering tour problem is modeled and solved using two methods exact and
heuristic methods.

3.2.1 Exact method

The problem is modeled as a combination of CSP and TSPP. Actually, CSP is used
to model the LiDAR coverage using the concept of CSP customers. To consider the
energy and covering conflicting objectives, CSP is integrated into a non-Hamiltonian
TSPP. In fact, TSPP is a generalization of TSP considering a profit when visiting a
given vertex. In our case, the profit serves to represent the coverage rate.

Then, as shown in Fig- 2.b the problem is formalized using MIP and solved using
a MIP solver. We use the cutting plane scheme adapted from TSP techniques for
eliminating sub-tours during MIP solving [33]. The objective is to find rapidly a pri-
mary solution, which may not fulfill all constraints. Then, the remaining constraints
are integrated in a second step to refine the founded solution [34].

3.2.2 Heuristic method

In the heuristic method, we use the PAES algorithm. As shown in Fig- 2.c, the algo-
rithm begins by generating initial solutions as sequences of way-points that define the
complete trajectories, in which each two successive way-points are connected by the
lowest energy cost path. After that, it will be evaluated according to the energy and
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covering objective functions. Therefore, their fitness values will be enhanced using
the mutation operator with four modes.

It is obvious that the larger is the number of vertices representing the environment
to be monitored, the more precise is the trajectory. Conversely, the larger the number
of vertices, the greater the complexity of the problem, which affects the computation
time. For this purpose, we have implemented a methodology to enhance the above
cited standard PAES (S-PAES). The idea is to calculate the optimal chromosome size
parameter by exploiting the fact that the vertices covered by the LiDAR do not need
to be visited, which allows to enhance both solution quality and computation time.
We note this customized PAES as C-PAES.

3.3 Experimentation

In this phase, we generate, first, the data set which are all the global configuration
input parameters including navigation area, LiDAR coverage and tidal currents. They
are shared between both exact and heuristic solvers and should be provided to them
according to the predefined format. Secondly, two solvers are implemented for both
exact and heuristic methods to process the generated data set and to provide the
solutions (See Fig- 2.d).

4 Problem formulation

4.1 Navigation area

The targeted area is represented by the binary grid map using black and white colors
that indicate obstacles and free spaces respectively. The map is used to produce a
graph G(V, A) where, V is the set of vertices and A is the set of arcs. The white area
is divided into a grid of cells where each cell represents one vertex v;. The adjacent
vertices considering cardinal and diagonal neighbourhood will be connected by
weighted arcs e € A such that the distance is considered as the arc’s weight w..

4.2 LiDAR covered points

In order to determine the LiDAR coverage area for the USV location, a list of viewed-
points C; is associated to each vertex v; € V depending on the LiDAR sensor radius.
This is shown in Fig- 3, where the viewed points from the visited vertex v; are the
green points pertaining to the LiDAR coverage radius represented by red circle. On
the other hand, the blue points are the vertices obstructed by an obstacle. Finally, the
black points are those outside of the LiDAR coverage radius.

4.3 Tidal Current model

Without loss of generality but for simplicity, we suppose that the tidal currents vary
under sinusoidal function, over a period of 12 hours. We have also considered that the
currents vary only as function of time which means that at a given time t, the currents
have the same intensity and direction over the navigation surface. Figure 4 shows the
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Fig. 3 Viewed points under LiDAR coverage and obstacles intersection

current variation function from the low to the high tide. Eq. 1 gives the current speed
variation on the Ox axis.
Ver (t) = Vinax sin(wt) (1)

Where V4. is the maximum current speed and w is the pulsation over a period of
12 hours.

If we consider « the angle between USV displacement and Ox axis, then the
current speed is given by Eq. 2.
Ve(t) = Vep sin(a) 2)

Sinusoidal tide
Current velocity

Amplitude

Time (hours)

Fig. 4 Sinusoidal tide and current velocity variation

4.4 Energy consumption model

Basically, the USV’s total consumed energy is the sum of elementary consumption
associated to a moving between two vertices. w; ; is the distance between vertices
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v; and v;, while Vi, is the relative USV speed. The required travel time ¢; ; is
calculated according to Eq. 3 .

wi,j
ti)j - Vu sV (3)

If we consider that V, is the tidal current speed, then the actual USV speed V,, is
given by Eq. 4 .

Va = Viso + Ve 4)
Referring to the energy model given by [24], the USV energy expression considering
the linear hydrodynamic drag, ship speed and travel time is given by Eq. 5.
Wi, j

Va

Eij = BVys® Q)

Where E; ; is the energy consumed by the USV when moving from vertex V; to
vertex Vj, (3 is a constant value that combines water density value, reference area,
and drag coefficient. Speed square times [ represent hydrodynamic drag. Assuming
that the consumed energy is null at the starting location, then Eq. 6 is used to update
the consumption when moving from point v; to point V;.

E; =FEi+ E;; (6)

Where Ej; is the total energy consumed to reach the vertex v;, and E; is the con-
sumed energy to reach the selected vertex v;.

5 Problem modeling and solving

In this section, we describe the exact and heuristic methods for the covering problem.

5.1 Exact method

In the exact method, the MIP model is presented based on the combination of CSP
and TSPP formulations. The resolution is based on the CPS method combined with
a MIP solver.

5.1.1 CSP and TSPP combination

The covering salesman problem (CSP) is a generalization of the TSP in which we
have to construct a minimum length tour (minimum energy) satisfying all the cus-
tomers’ demand by visiting or covering them [17]. As described in Fig- 5.a, for each
facility (way-point) it is given a covering radius (USV LiDAR range) within all the
located customers (vertices pertaining to the monitored area) that will be covered.
In CSP, the solution should achieve the complete converting of all the vertices. To
transform the coverage rate to an additional objective, we use the concept of profit
introduced in TSPP. Actually, in TSPP, as given in Fig- 5.b in TSPP, it is not neces-
sary to visit all vertices. A profit is associated with each vertex. The overall goal is to
collect a maximum of profit with minimum travel costs.
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Fig. 5 Combination of CSP and TSPP

The combination of CSP and TSPP allows us to model the coverage problem
by considering both energy and coverage objectives. Figure- 5.c shows the sum of
vertices covered by the LiDAR range (customers) which represents the TSP profits
associated to each visited way-point (facility).

5.1.2 MIP modeling

In this section, we will use the MIP to model the above described CSP and TSPP
formulations. For the given graph G(V, A), where V' and A represent the graph’s
vertices and their edges sets respectively as determined in section 4.1. Ve € A, w,
is the distance cost of the arc e. Let v1 € V be the starting vertex, according to the
LiDAR visibility, we assume that Vv € V| y(v) is the set of vertices v/ € V allowing
to cover the vertex v. The developed MIP model is given according to the following
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equations:

min Y 5V 3 e )
ecA
minn — Z Zy (®)
veV

Subject to:

Y we=,WeEVuin ©)
e€d(v)
Z Te > 2yp,VweESCV,S#Dv ¢85 (10)
e€d(S)
W< Y g, eV (1)
v’ €7(v)

TeyYu, 20 € {0,1} Vv € V Ve € E (12)

Such that, x., y,, and z, are the binary decision variables (Eq.( 12)). z. indicates if
the edge e is a part of the tour or not. y,, and z, represent the visited and covered
states of the given vertex v respectively.

Equation ( 7) represents the first objective function which minimize the energy costs
(subsection 4.4). The profit maximization objective is performed according to Eq. 8
by minimizing the total of non-covered vertices.

Like the classical TSP, Ed.( 9) ensures that each visited point is connected to two
edges except the starting vertex. However, this is valid only in case the point is visited,
i.e. those for which y, = 1. Equation ( 10) is adapted from the one that allows
avoiding sub-tours in TSP (with notation 6(S C V) = e, e = (v — '), v € S,
v’ ¢ S . For each sub-set S of vertices, we need an edge e to come to the set, and
another one to leave it. Unlike TSP, this is true if and only if one vertex of the subset
is visited. Finally, Eq.( 11) allows to check the covered points by the visited ones.
With this formulation, the problem associated to a graph G = (V, E) with a LIDAR
range allowing a point to cover on average w neighbours contents 3.V + A decision
variables, and (V—1) + (w.V) + (QV*U) constraints (for equation families (9), (11),
and (10)). Obviously, sub-tours elimination constraints can not be generated directly
for large graphs.

5.1.3 MIP solving

The developed MIP model is solved with MIP solver combined with Cutting Plane
method. The two objectives are aggregated in a single objective function with the
weights « and (1 — «) where « € [0; 1]. When solving the MIP, if any sub-tour
appears, the corresponding sub-tour elimination constraint (cutting plane) is added
to the MIP model [33], then we restart the calculation until getting a valid optimal
solution for this « value. in order to find another optimal non-dominated solution, «
will be increased by 0.1, then we restart the calculation until o = 1, as described in
algorithm. 5.1.3.
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Algorithm 1 Plane scheme and MIP solver algorithm

create MIP with:
obj1 = eq.(7)
obja = €q.(8)
Sols =)

for a < 0.0to 1.0 by 0.1 do
generate MIP with:

obj = a*xobj1 + (1 — ) * obja
subject to: Eq.(9), (11), (12)
solution = solve MIP (with CPLEX)
while TherelsSubTour (S) do

Eliminate S by adding corresponding eq.(10) to MIP
solution = solve MIP

L add solution to Sols
Result: Sols

5.2 Heuristic method

The heuristic method consists on specific adaptations of the PAES algorithm for
solving the covering problem. As shown in the pseudo-code 5.2,the PAES start with
generating only one solution (current solution). then using mutation operator, another
mutated solution (m) will be created at each generation. Pareto dominance concept
will be also used to examine the new solution m, If m dominate c, ¢ will be updated
with m. else the dominance will be examined between m and other ones stored in the
PAES archive. Finally, an update of the PAES archive will be done. This mechanism
will be repeated until reaching the determined number of generation.
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Algorithm 2 PAES algorithm

Set Algorithm parameter

Create current solution (c) randomly
Evaluate and add to archive

for 1 <— 1 to maz4eneration o
Mutate (c) and generate new candidate (m)

if ¢ dominates m then
m < c

Update PAES archive

else
Compare (c) with archive member

Update PAES archive

Select new current solution

Present results

In order to improve the performance of the PAES algorithm, the methodology for
computing the optimal number of way-points is adopted. In this methodology, we
introduce an additional parameter NV that represents the new size of the chromosome.
It is supposed to enhance the PAES solution quality. The new chromosome size
corresponds to the maximal number of way-points to visit required to cover the whole
existed points. Equation 13 corresponds to the new chromosome size /N, where n
is the total number of vertex and avrp;s. represents the average number of covered
points for each vertex while eliminating the redundant ones. To determine avrp;sc,
an offline scanning of the Map is done, while considering both LiDAR range, Map
topology and inter-vertex distance.

(13)

For further details refer to [16].

6 Experimentation

6.1 Data set generation

To be processed by the exact and heuristic solvers, the considered problem should
be transformed to a predefined format. Figure- 6.a illustrates the procedure. Firstly,
the binary grid map image where land and sea are represented with black and white
colors is generated from a Google-Map image of the area to be monitored. Secondly,
given the distance between each two adjacent vertices, the graph G(V, A) (1) is gen-
erated where V' and A represent the vertices and edges sets respectively. The LiDAR
radius parameter (2) serves to set the covered points {C'} associated to each vertex.
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Fig. 6 Exact and heuristic solvers

Finally, (3) the tidal current velocities and orientations specific to each vertex are set
for each vertex in V..

Here, we propose a simple test environment, illustrated in Fig- 7, on which we
will run our solvers. It represents an area with a 2km?(2 x 1km) total surface. The
black and white colors represent obstacles and free area respectively. The LiDAR
coverage radius (LCR) is set to 200m which is representative of the LiDAR capabil-
ities used is real USVs. This test environment is then transformed to G, G, G3 and
G4 graphs depending on the chosen inter-vertex distances d listed in Table 1. The
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objective is to evaluate the solvers performance when increasing the number of ver-
tices n. In each graph, the first vertex V; is set as a departure point where the USV
should start and ends its tour.

1km

Test environment

(Gy) (G2)

(G2) (Gs)

Fig. 7 Different graphs representation for environment test

Table1 G1, G2, G3 and G4 graphs data

Graph G Go G3 Gy
d(m) 200 180 150 125
n 47 53 74 110

6.2 Exact method solver implementation

The exact method’s solver is implemented using Optimization Programming Lan-
guage (OPL) within CPLEX, software optimization tool developed by IBM and
integrating exact solvers for various optimisation problem including MIP [35].
Figure- 6.b shows the MIP model defined in .mod file to processes the data set files
describing G(V, A) graph, the LiDAR covering sets and the USV speed then appeals
the CPLEX optimizer.
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6.3 Heuristic method solver implementation

In addition to the above processed parameters, the PAES solver consider the tidal
current velocity V. as described in Fig- 6.c. First, we implemented, using C language,
the S-PAES algorithm including the following functions :

* (Random) generation of initial way-point sequences.

* Evaluation of the obtained solution fitness value based on the objective function
(energy/coverage).

* Improvement of the solution quality using the mutation operator.

* Update the PAES archive to improve the non-dominated Pareto front.

Thereafter, the C-PAES is implemented by adding the function to compute the max-
imum number of way-points which is used as an additional parameter to tune the
chromosome size.

7 Results and Comparison

In this study, we have described the obtained simulation results in detail. We, firstly,
start by comparing between exact and heuristics approaches in terms of performance
and solution quality. Secondly, we evaluate the convergence of the proposed PAES
solver. Finally, we use the heuristic approach to find the efficient tour to monitor the
Brest city harbor. For this study case, we show how PAES solver can be used to select
the best departure time to save energy by leveraging tidal currents effects.

The developed programs of simulations are executed on a PC running Linux
(ubuntu 16.04) OS and equipped with 4 GB of RAM and quad-core intel i5-3320/1.9
GHz processor.

the table bellow (table.2 represents the values of the constants considered in this
study

Table 2 Table of constants

Symbol Signification value unit
LCR LiDAR coverage radius 200 m
‘/usv USV Speed 2 IT]/S
Vimaz maximal tidal current speed 1 m/s

w tidal current pulsation 2.11/3600 1/s

B.V3.. hydrodynamic darg 8 kg.m/s

7.1 Exact vs heuristic method

Table 3 shows the obtained consumed energy and the computation time while solving
the covering problem of Gy, G2, G5 and G4 graphs described in Table 1 and illus-
trated in Fig-7. For both S-PAES, and C-PAES, the number of executed iterations is
10000.

The results shows that for graphs with way-point number lower than 74 (G3), both
heuristics and exact solvers are able to find the same solutions. However, the com-
putation time of the exact solver is much higher than the heuristic one. For example,
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Table 3 Exact and heuristic solution for G1, G2, G3 and G4 graphs and their computation time

Graph o Energy (joule) Computation time (s)

Exact S-PAES  C-PAES Exact S-PAES  C-PAES
0.2 8000 8000 8000
04 9600 9600 9600

G1 0.6 14400 14400 14400 1357.68 0.38 0.37
0.8 17600 17600 17600
1.0 24800 24800 24800
02 5760 5760 5760
04 1080 1080 1080
G2 0.6 15840 15840 15840 2242.27 0.52 0.38

0.8 17280 17280 17280
1.0 21600 21600 21600
0.2 6000 6000 6000
0.4 9600 9600 9600
G 0.6 1 1500 1500 51333.71 0.72 0.67
0.8 16800 16800 16800
1.0 20600 20600 20600

0.2 /A 6000 6000
04 1 12000 12000

Ga 0.6 /A 15000 15000 oo 1.16 0.96
0.8 /" 19000 19000

1.0 /A 24000 24000

for i3 graph the exact solver needs more than 14 hours while S-PAES and C-PAES
require 0.72 and 0.67 seconds respectively. We can observe that for low complexity
problems, the number of iteration executed is sufficient to explore all possible cover-
ing tours which explain that the solution found by PAES is the same of the optimal
one”.

Starting from G4 graph, we were not able to get any solution with the limit of 24
hours. This case is denoted by oo symbol. On the other hand, the energy required to
fully (o = 1) cover G1, G2 and G5 are 24800, 21600 and 20600 joules respectively.
These slight variations are due the changes in graph geometry caused by the variation
in vertex distances. We note E,,, = 22366 the average consumed energy provided
by the exact method. We use this reference value hereafter to evaluate the quality of
the solutions provided by S-PAES and C-PAES for graph size beyond 110 vertices.

7.2 PAES evaluation
7.2.1 S-PAES vs C-PAES

In Table 4, we consider the coverage of graphs with a higher number of way-points
starting from 172 to 4564. Since the exact solver is not able to provide solution within
acceptable delay, we only analyse the solution provided by PAES. Notice is that listed
solutions correspond to o = 1 which means that the coverage objective is 100% met.

In Table 4, we can observe that within the same number of iteration, the execution
of C-PAES is faster than that of S-PAES while providing a better solution in term of
energy consumption. In fact, as explained in section ??, the reduction of chromosome
size reduces the size of the considered vertices in each iteration leading to lower
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Table 4 S-PAES vs C-PAES (« = 1, iteration number = 100000)

Graph Energy (joule) Computation time (s)
d (m) n S-PAES C-PAES S-PAES  C-PAES
100 172 23600 20300 2.11 1.87
90 205 24120 20520 2.88 25
80 250 24480 22080 3.95 3.58
70 323 25200 22520 5.71 5.36
60 466 26160 23000 9.83 8.84
50 641 26600 23520 13.87 13.37

40 989 28320 25240 30.36 25.96
30 2029 33500 28200 109.17 75.80
25 2596 34780 29600 158.6 95.85
20 4564 36160 30400 271.17 120.73

computation time. Moreover, it allows reducing the probability of covering a vertex
more than once, and consequently, reduces the consumed energy.

On the other hand, we can notice that when the number of vertices is higher (more
complex graph), the founded solution tends to diverge from that provided by the
exact method (E,,4). For example, in case of vertices number n = 2595, the solution
provided by C-PAES is 30% greater than F,,,. One can suppose that increasing the
number of iteration may help converging to desired solution. In what follows, we will
analyse the impact of iteration number on the solution quality.

7.2.2 C-PAES convergence

Figure- 8 shows the C-PAES results for different iteration numbers. We notice that
increasing the number of iterations reduces the gap between the heuristic solution
and the reference value (&,,4). For example, the solution provided after 10% and 107
iterations in case of vertices size when n=2595 is 25% and 7% respectively. Actually,
depending on the constraints of the considered problem, the iteration number can be
used as a parameter to a achieve the trade-off between the computation time and the
solution quality.

x10*

100.000
1.000.000
= 10.000.000

—-==E
avg

ol L . . I I L I L J
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Vertex number

Fig. 8 C-PAES results from different iteration numbers (100% of covered area)
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7.3 Study case: Brest city harbor monitoring

Our approach is experimented based on realistic scenario by applying the C-PAES
method to monitor Brest port.Figure 9 shows Brest’s port map represented with a
binary map where land and sea are represented with black and white colors respec-
tively. The approximate harbor surface is 3km? (3x1km). The free navigation surface
is graphed with a grid of 1886 vertices marked by red points. The considered distance
between two points is fixed by 24.3m for horizontal and 22.2m for vertical axes. The
blue point is chosen as the starting location of the USV. In this case, the USV speed
Vausv 1s fixed to 2m/s and LiDAR radius is fixed to 200m.

Figure- 10 shows the archive of initial and final C-PAES results represented as

Fig. 9 Binary map representation of the Brest harbor

the Pareto front.The non-dominated Pareto set of solutions acquired by the C-PAES
algorithm is shown in red points which represents 100 non-dominated solutions (the
archive size fixed for PAES). The green points show the initial PAES archive with 17
non-dominated solutions determined randomly (among 100 generated ones).

100

front' +

90 |- init
80 -
70 | I
60
50
40 -
30 L

% not viewed

20
10 -

. T . . ; . {
0 20000 40000 60000 80000 100000 120000 140000 16000C
Energy (j)

Fig. 10 Initial and final PAES solutions archives

7.3.1 Covering vs consumed energy

Based on the obtained results given in Fig- 10, we extract four solutions that allow
USV to cover 25%, 50%, 75% and 100% of the harbor respectively. The obtained



Springer Nature 2021 IEXTgX template

20 7.3 Study case: Brest city harbor monitoring

paths are illustrated through Fig- 11.a) to Fig- 11.d). The covered area rates and
consumed energies are listed in Table 5.

Table 5 Consumed energies for different covered space rates

Scenario  Covered area (%)  Energy (5)

@ 25% 7485

(b) 50% 12889
© 75% 20572
(d) 100% 36942

(c) (d)

Fig. 11 USV tours with different coverage rates (a.100%, b.75%, ¢.50%, d.25%)

7.3.2 Impact of USV departure time on the consumed energy for
covering the whole harbor

Variations in tidal current velocities over time result in fluctuations on the USV
energy consumption during navigation. Table 6 lists 12 USV missions that allow
covering the full port with different departure times. It illustrates the tidal currents
effects modelled in the given section 5.1.2. ¢ — start is the hour number after the
high tide, Energy is the required energy to make the tour that covers the whole
harbor, and V. is the tidal current velocity at starting time. According to Table 6, this
approach makes it feasible to choose the best moment to start the USV monitoring.
Therefore, in this simulation, the tenth hour after the high tide must be the best instant
to start USV monitoring mission, which enables to reduce the energy consumption
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by a factor of 42% compared to the worst case. Figure 12 shows the USV followed
path allowing to cover the whole space starting at the 10** hour after high tide.

Table 6 Consumed energies for full port coverage versus starting times

t-start(hrs) Ve (m/s)  Energy (j)

0 0,00 36447
1 0,49 48367
2 0,36 41758
3 1,00 41449
4 0,86 48402
5 0,50 41084
6 0,00 46937
7 —0,49 59232
8 —0,86 39513
9 —0,99 51243
10(%) ~0,86 34031
11 —0,50 52580

Fig. 12 USV tour starting at 10t hour after the high tide to cover the entire harbor

8 Conclusion

In this paper, we addressed the marine monitoring problem with two conflicting
objectives : maximization of the covered area and minimization of the consumed
energy. We have shown that this kind of problem cannot be exactly solved within an
acceptable delay. This is particularly true in the case of marine monitoring where
the environment conditions such as tidal currents may change rapidly. Thus, we
have proposed a heuristic approach which provide a good trade-off between solution
quality and computation time.

In the heuristic solver, we have considered realistic conditions such as tidal currents
which is a very important parameter to be considered when planning a monitoring
mission. For example, we have demonstrated that a considerable energy can be saved
if we select the USV mission departure time according to the tidal currents effects.
However, one may expect to achieve additional energy saving if we consider the
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USV speed as an additional parameter of the objective function. Actually, since
the energy model is a cubic function of the USV speed (See Eq.5), the USV may
decrease its speed in case of counter-current and increase it in case of co-current
[36]. In this case, the tour covering time (depending on the USV speed) will be a
new objective which conflicts with the consumed energy and the covered area.
Finally, the proposed solver can be extended to support multi-USV harbour monitor-
ing. In this case, the challenge is to partition optimally the monitored area so it can
be covered in parallel with multiple USVs.
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