
HAL Id: hal-03777799
https://hal.univ-brest.fr/hal-03777799v1

Submitted on 15 Sep 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Observing the Impact of Multicore Execution Platform
for TSP Systems Under Schedulability, Security and

Safety Constraints
Ill-Ham Atchadam, L Lemarchand, Frank Singhoff, Hai Nam Tran

To cite this version:
Ill-Ham Atchadam, L Lemarchand, Frank Singhoff, Hai Nam Tran. Observing the Impact of Multicore
Execution Platform for TSP Systems Under Schedulability, Security and Safety Constraints. DECSOS,
Sep 2022, Munich, Germany. pp.83–96, �10.1007/978-3-031-14862-0_5�. �hal-03777799�

https://hal.univ-brest.fr/hal-03777799v1
https://hal.archives-ouvertes.fr

Observing the impact of multicore execution
platform for TSP systems under schedulability,

security and safety constraints

Ill-ham Atchadam1, Laurent Lemarchand1,
Frank Singhoff1, and Hai Nam Tran1

Univ. Brest, Lab-STICC, CNRS, UMR 6285, F-29200 Brest, France
{firstname.lastname}@univ-brest.fr

Abstract. Avionic systems are integrating more and more functions to
cope with the increasing number of features on modern aircrafts. These
systems are subject to many requirements that have to be considered
during their design. Time and Space Partitioning (TSP), which consists of
isolating applications within partitions, is a well-known means to assign
avionic applications to computing units according to security, schedulabil-
ity, and safety constraints. Multicore execution platforms are becoming
popular in avionic systems. In this paper, we propose to investigate the
partitioning of avionic applications over such execution platforms while
considering schedulability, security, and safety constraints. We propose a
design space exploration approach using a multi-objective meta-heuristic,
that provides trade-offs between schedulability and security while consid-
ering safety and multicore platforms with different numbers of cores. We
illustrate how this meta-heuristic can investigate key parameters such as
hardware shared resource overhead.

Keywords: Time and Space Partitioning · Scheduling · Safety · Security
· Architecture Exploration · Multi-Objective Optimization · Multicore.

1 Introduction

SWaP (size, weight, and power) are great challenges in the avionic domain.
Avionics systems were designed based on a federated approach [10] where each
function had its own dedicated computing system [2]. To cope with the increasing
number of functions embedded in an aircraft, the integrated avionic modular
(IMA) [9] approach has been proposed to provide a pool of shared computing,
communications, and I/O resources that is partitioned for use by multiple avionics
functions [25]. IMA considers time and space partitioning (TSP) which guarantees
time and space isolation between functions on the shared hardware resources.
Space isolation is obtained by memory protection between partitions while time
isolation is enforced by offline partitioned scheduling.

Avionic functions implemented as real-time tasks in TSP systems have strin-
gent constraints on safety, security, and schedulability. Safety is enforced by both
the isolation through partitioning to prevent fault propagation and by the active

2 I. Atchadam et al.

redundancy, i.e. replications of tasks and partitions. Security requires that mali-
cious entities cannot compromise the confidentiality of data exchanged between
tasks. This can be achieved through encryption mechanisms. Implementation of
safety and security measures must not affect system’s schedulability as timing
constraints must be respected to ensure the correct functionality of the system.

[Problem statement] A safe and secure TSP system implies additional tasks,
partitions, and communications for safety, and additional overheads for encryption.
This leads to a non-negligible increase in computation need, which may lead some
tasks to miss their deadlines. Therefore it is important to propose approaches that
can overcome the overheads due to security and safety requirements. This can
be achieved by increasing the computing capacity of the system with multicore
execution platforms. In this paper, we investigate how the use of multicore
platforms may help in improving the safety and security of TSP systems while
not jeopardizing their schedulability.

[Contributions] In this paper, we propose a Design Space Exploration
(DSE) approach based on the Pareto Archived Evolutionary Strategy (PAES)
meta-heuristic that provides trade-offs for multi-objective optimization problems
(MOOP) between safety, security, and schedulability for TSP systems on multicore
platforms. We explore the tasks to partitions assignment in TSP systems when
communications are secured and tasks are replicated. We show that our approach
allows designers to explore the gain in terms of schedulability while considering
security and safety. To validate the approach, we conduct two experiments. We
analyze the search space by varying the number of cores. A first experiment
provides consistent results showing schedulability improvements when the number
of cores is increased, which assesses the relevance of our DSE. A second experiment
illustrates the interest of our DSE, the experiments investigate the impact of
multicore hardware shared resources on schedulability.

The rest of this paper is structured as follows. Section 2 presents the back-
ground together with the system model and assumptions taken in our work.
Section 3 describes our DSE approach. Section 4 shows the experiments con-
ducted to evaluate the DSE approach. Section 5 discusses related work and
positions our contribution. Finally, Section 6 concludes the paper.

2 Background and assumptions

In this section, we present system model and assumptions taken in our work.
Then, we also present the context of security and safety that we consider.

2.1 System model and assumptions

In this paper, we consider a multicore TSP systems of m applications (A1, ..., Am)
where each application is a set of tasks. Systems considered are composed of a set
n periodic tasks (τ1, ..., τn). We assume a multi-core architecture of d identical
cores (CO1, ..., COd).

Title Suppressed Due to Excessive Length 3

Each task τi is defined by a set of parameters (Ci, Ti, Di, CIi, CLi, Ai, Pi,
COi). Ci, called the capacity of the task τi, represents its worst-case execution
time. A task is released every Ti unit of time and has a deadline at Di. We assume
that the initial request of all the tasks is at time 0. A task is characterized by a
tolerance level CIi (hard or soft) to meet its deadline. A task is classified based
on a confidentiality level CLi (Top-secret, Secret, Unclassified). Ai represents
the application to which the task τi belongs. Pi characterizes the partition to
which the task τi is assigned. A partition is characterized by an execution time
duration. We assume that all the partitions have the same properties and are
executed based on an offline cyclic scheduling with a fixed interval called major
time frame (MAF). Finally, a task is assigned to a core COi and core migration
is not allowed at runtime.

We assumed that tasks communicate with each other through intra-partitions,
or inter-partition communications depending on their assigned partitions. Intra-
partition communications are communications between tasks in the same partition
while inter-partition communications are about tasks assigned to different parti-
tions. These communication services are provided by an application programming
interface (API) such as the one proposed by the ARINC653 standard [5]. Both
intra and inter-communications introduce overheads on the tasks concerned by
the communications (i.e. sending and receiving tasks). As shown in [17], these
overheads depend on the size of the exchanged data.

An offline cyclic scheduling is fixed for the partitions. Partitions are executed
cyclically on an interval time called major time frame (MAF). Tasks inside
partitions are executed concurrently based on a given scheduling policy (i.e.
fixed-priority scheduling).

Fig 1 shows an example of scheduling of a multicore system with four tasks,
assigned to two partitions and two cores. We note that τ1, τ3 and τ2 are respec-
tively assigned to core CO1 and CO2. For tasks to partitions assignment, τ1,
τ2, τ3, τ4 are respectively assigned to partitions P1, and P2. The same MAF
is assumed for all cores. Then when a partition is activated, only its tasks are
executed concurrently on the cores depending on the tasks to cores assignment.
Cores that have no task in the activated partition are in idle mode. They are
not used till the activation of a partition with tasks assigned to them. In this
example, we assumed that there is a communication from τ1 to τ2 and another
from τ1 to τ3. Then τ2 has to wait for τ1 completion time before being starting
its execution. This explains why even if τ1 and τ2 are on different cores, and
τ2 is the only task on CO2, τ2 could not start at time 0. It has to wait for the
completion of τ1.

Finally, we also consider overheads introduced by the hardware shared re-
sources (level-2 cache, bus, memory, etc) when multiple cores execute simulta-
neously [3]. In [14], it has been proven that they are non-negligible and have
to be considered when performing the schedulability analysis of a multicore
real-time system. This issue is part of the key point addressed by the CAST-32A.
CAST-32A is a guidance for Avionics Multi-Core Processing that highlights some

4 I. Atchadam et al.

idle

idle idle

idleidleidle

Major time frame

Duration (partition1)

2

1

3

4

2

1 3 4

: Task execution : Task release: Core in idle mode : Task completion

time

𝑃1 𝑃2

𝐶𝑂1

𝐶𝑂2

0 2412

Fig. 1: Example of a multicore TSP system scheduling

parameters that may impact safety, security and performance. It considers that
contention for shared resources has an impact on the execution time of tasks.

2.2 Security and safety

Security We assumed that attacks can be operated on intra-partition and inter-
partition communications through attacks such as eavesdropping [26] and code
injection [19] (e.g. a code injected by a malicious employee). They violate the
confidentiality of a system, which normally restricts the access of data only to
authorized entities.

A communication is said to be vulnerable if it violates security rules defined
by a security model. In this work, we assume the Bell-La Padulla (BLP) [1]
security model with regard to confidentiality vulnerabilities. It is based on the
No read-up/no write-down principle. A communication from task τi to τj is
considered as a confidentiality violation if CLi > CLj . In this communication, τi
performs a write down and τj performs a read up, which violates the rules.

When a communication from task τi to τj is vulnerable, functions of a library
implementing encryption and decryption are called. Then an encryption (resp.
decryption) call is added to task τi (resp. τj) source code. Assuming the worst-case
situation where the encryption key is set up at each release of a task, we also added
a key set up function to both source code tasks. This process changes the capacities
of tasks τi and τj as follows where C ′

i and C ′
j represent their new capacities.

Cencryption_function, Cdecryption_function, and Cencryption_key_function represent
respectively the execution times of the encryption, decryption, and key set up
functions.

C ′
i ← Ci + Cencryption_function + Cencryption_key_function

C ′
j ← Cj + Cdecryption_function + Cencryption_key_function

(a)

Title Suppressed Due to Excessive Length 5

Safety We consider safety problems induced by arbitrary failures [15]. It includes
the detection that some messages are not sent or received, the detection of
incorrect messages sent with errors, and the detection of extra sent messages.
We assume the worst-case situation where the replication is applied to all the
software components (tasks and partitions). Then with such safety constraints,
each task and partition is implemented by three instances. We impose that two
instances of the same task are not allowed to be placed on the same partition.
This paper is not an answer to multicore plaforms with hardware single point
failure; e.g. when cores are interconnected by a bus, the bus is a single point of
failure, while it is not the case if cores are interconnected with a crossbar.

2.3 Multi-objective optimization

Multi-objective optimization problems (MOOP) [4] are characterized by multiple
conflicting objectives to optimize: the optimization of one objective can deteriorate
other objectives. Then it becomes difficult or sometimes impossible to build
solutions that optimize simultaneously all the objectives. Thus, design space
exploration is an alternative that helps to explore the space of solutions and
propose a set of trade-offs between the objectives. The designer can then choose,
between the trade-offs, the most appropriate solution to the specifications needed
for his system.

The simplest approach is to investigate all the possible solutions in order
to find the best trade-offs. However, for a large-scale problem, we can face a
combinatorial explosion of the design space and the exhaustive search can become
very time-consuming. Thus a multi-objective evolutionary algorithm (MOEA) [4]
such as PAES [13] is an alternative to compute in fewer time solutions close to
the best trade-offs. During the exploration, solutions are compared to each other
using the Pareto dominance principle [13]. A solution s1 dominates a solution s2,
if for all the objectives s1 is not worse than s2 and s1 is better than s2 for one
objective at least. s2 is not a good trade-off and is discarded. Non dominated
solutions found during the exploration constitute the Pareto set of solutions.

3 Design space exploration (DSE) approach for multicore
TSP systems

In this section, we present a DSE approach that computes trade-offs between
security and schedulability while considering safety constraints and resources
constraints such as the number of cores and partitions. Since security, schedu-
lability, and safety are conflicting requirements that lead to a multi-objective
optimization problem, we adopt the PAES algorithm in our approach.

PAES is a meta heuristic framework. It starts with random solution(s) and
transforms them using exploration operators, keeping the most interesting ones
generation after generation. In order to customize PAES framework for isolving
efficiently our problem, we need to identify (1) specific initial solutions, (2)
constraints to perform the feasibility tests, (3) objective functions to optimize,

6 I. Atchadam et al.

(4) mutation operators to generate new solutions. These components are detailed
in the next section.

The entry point of the PAES being the initial solution, we proposed an
initial solution adapted to our problem. During the design space exploration,
new solutions are generated through mutation operations that consider tasks to
partitions and cores assignments and communications security. Feasibility tests
are performed according to the respect of security, schedulability, and safety
constraints. Feasible solutions are evaluated according to objective functions
based on schedulability and security analysis.

Initial solution We design the initial solution by resolving all confidentiality
vulnerabilities in the system (as described in section 2.2) , placing all the initial
tasks in the same partition running on a single core. Then we triplicate the
tasks, the communications between tasks, and the partitions to ensure safety.
We proceed with a schedulability analysis of this solution. If it is schedulable,
there is no need to continue with the exploration: we consider this solution as an
optimal solution since it is fully secured, schedulable and safe with the minimal
number of cores. Otherwise, we add this initial solution to the archive.

Instead of starting the exploration with an archive containing one solution
as specified in the original PAES algorithm, we fill the archive with several
solutions. We made this choice to improve solution diversity and exploration of
the design space. We fill the archive with solutions modeling various tasks to
cores assignment and communications security. Then we added solutions with all
tasks assigned to a single core and with all tasks of a partition assigned per core.
For these solutions, we decided to resolve all or no security vulnerabilities.

Objective functions and constraints In the PAES meta-heuristic, the con-
straints are conditions that should always be respected. Otherwise, the concerned
solutions are considered not valid. Objective functions are defined to tolerate
some violations and should be optimized in order to propose the best trade-offs
between conflicting objectives. We defined the constraints and the objective
functions based on schedulability, safety, and security issues. In our model, tasks
can be either hard deadline tasks or soft deadline tasks. As a constraint, a solution
is considered invalid and is rejected if a hard deadline task misses its deadline.
Missed deadlines are tolerated for soft deadline tasks.

– C1: No missed_deadlines for hard deadline tasks

Our first objective function is defined by the number of soft deadline tasks
that missed their deadlines. This number is computed through a scheduling
simulation of the solution. The function is noted below:

– F1: Minimize (number of missed soft deadlines)

Since we decide to investigate tasks to core assignment to evaluate their
impact on the considered systems, our second objective function represents the
number of cores used in a given solution:

– F2: Minimize (number of cores)

Title Suppressed Due to Excessive Length 7

The problem depicted in this paper addresses the confidentiality of communica-
tions between tasks. We defined the constraints below for security vulnerabilities
based on BLP rules for communicating tasks:

– C2: No data received by Unclassified task from Secret or Top-secret task

Each model that compromises one of these constraints is rejected. Otherwise,
any communication violating the other BLP rules is tolerated. This allows the
definition of the security objective function:

– F3: Minimize (number of tolerated confidentiality violations)

The equation F3 represents the number of tolerated communications that
violate BLP rules.

Since we address safety issues by applying active redundancy, each task of our
model is triplicated. By definition, this redundancy imposes that two instances of
the same task should never be placed on the same partition. Then we assumed
as safety constraints that every solution with two instances of a task placed on
the same partition should be automatically rejected.

– C4: Two instances of the same task cannot be placed in the same partition

In order to find trade-offs for our MOOP, all the defined objective functions
have to be minimized. Constraints and objective functions are computed with
the Cheddar tool in which our DSE heuristic has been implemented [24].

Mutation operator Since PAES works with a neighborhood-based search,
the design space is explored by mutating a solution to another nearby. We are
interested in tasks to partitions assignment, tasks to cores assignment, and the
security of communications between tasks.

The first mutation operator changes the tasks to partitions assignment of
a solution. It is defined with two different options. The first option consists of
moving all tasks of a randomly chosen application to a randomly chosen partition.
The second option consists of moving a randomly chosen task to a randomly
chosen partition.

The second operator is similar to the first one but changes tasks to cores
assignment. Thus, the first option consists of moving all the tasks of a randomly
chosen application to be executed on a randomly chosen core. The second option
is operated by moving a randomly chosen task to be executed on a randomly
chosen core.

Notice that the change of tasks to partitions or tasks to cores assignment has
an impact on the schedulability of the solution.

The third operator concerns communications of the solution. It is realized
by a random choice of a communication. If the communication presents security
vulnerabilities, then we secure it by adding security functions. Otherwise, we
remove the security functions and the communication becomes unsecure.

After each mutation operation, we conduct feasibility tests to check the
respect of schedulability and security constraints. If the new solution generated
by the mutation does not respect one of the constraints, it is rejected and another
mutation operation is performed. Otherwise, if the solution respects all the

8 I. Atchadam et al.

constraints, then schedulability and security analysis are performed to evaluate
the objective functions of the solution.

In the next section, we propose to validate and illustrate our DSE approach
through experiments.

4 Test cases and Evaluation

In these experiments, we evaluate our DSE approach with a case study with the
objective of proposing a set of solutions representing good trade-offs between
security and schedulability while considering safety and multicore executing
platforms with different numbers of cores.

We highlight that our choices of tasks model, considered faults, and encryption
algorithms are classic and from known benchmarks, but can be adapted.

Case study We use a case study composed of a set of two applications: a flight
controller application ROSACE (Research Open-Source Avionics and Control
Engineering) [20] and a digital signal processing application CFAR (Constant
False Alarm Rate detection) [22]. ROSACE is a real-time benchmark composed
of fifteen dependent and periodic tasks with the WCETs of tasks and their
period taken from [20]. CFAR is a target detection application composed of four
dependent tasks with the WCETs taken from the StreamIT benchmark profiled
in [22]. We assume for ROSACE and CFAR, an average data size of 8 bytes.

We assumed that cores are identical and have the same predefined MAF. The
partitions are identical with a duration of 1250 us. We also supposed that the
tasks are periodic and their deadlines (soft or hard) and security levels are fixed
independently by the designer as inputs.

Results of the experiment Considering the two applications, the initial system
model is made of 19 tasks. With our safety assumptions, we triplicated partitions,
tasks, and communications. This implies 57 tasks with at least 3 partitions for
the DSE. By considering one of the additional initial solutions defined in 3 that
runs each application per partition, we assume a DSE with a maximal number of
6 partitions. Then, we explore multiple solutions with 3, 4, 5, and 6 partitions
since the safety imposes a minimum of 3 partitions.

We assumed that intra-partition (resp. inter-partition) communications are
performed through blackboards (sampling ports). For their cost, we consider
the execution times of the APEX calls SFPBench Benchmark proposed in [16].
Considering the data size of our case study, for blackboards (resp. sampling
ports), it gives a cost of 0.76 us/0.32 us (resp. 4.24 us/5.04us) for read/write.

For confidentiality vulnerabilities securing, we used the blowfish encryption
algorithm [23]. With a frequency of 1.2 GHz, we computed the time execution
of security functions based on values provided by the crypto++ benchmark [8]
and the data size of our applications. Then for both applications, the execution
times of encryption, and encryption key refreshment are respectively 0.166 us,

Title Suppressed Due to Excessive Length 9

and 88.83 us. We consider the decryption execution time equal to the encryption
execution time.

About the shared hardware resource overheads, we only consider the inter-
connection overhead. We conduct the DSE first by considering the best case
with negligible interconnection overhead. Second, we conduct another DSE by
assuming the overhead percentage provided in [14]. It depends on the number of
cores of the considered system. Then for a system with only one core, there is no
interconnection overhead. For a system netween 2 and 4 cores (resp. between 5
and 8), the interconnection overhead on each task corresponds to 10% (resp. 13%)
of its capacity. For systems with more than 8 cores, we assume a 26% overhead.
Each DSE was performed for 20000 iterations which takes 12 hours.

The solution with minimum cores corresponds to the solution with all tasks
assigned to a single core. It has a high number of missed deadlines (45 over 57
tasks). By increasing the number of cores to 57 cores (i.e. number of tasks), more
tasks are able to meet their deadlines (e.g. from 45 to 0 missed deadlines when
inter-core communication is considered negligible). This confirms the impact of
multicore platforms on safe and secure TSP systems. This is explained by the
fact that using more cores increases the computation capacity of the system.

 0

 10

 20

 30

 40

 50

 0 5 10 15 20 25 30 35

M
is

se
d

 d
e
a
d

lin
e
s

Confidentiality rules violations

(a) no overhead

nbcores = 1
nbcores = 2
nbcores = 3
nbcores = 4
nbcores = 5
nbcores = 6
nbcores = 7

nbcores = 8
nbcores = 9

nbcores = 11

 0

 10

 20

 30

 40

 50

 0 5 10 15 20 25 30 35

M
is

se
d

 d
e
a
d

lin
e
s

Confidentiality rules violations

(b) variable overhead

nbcores = 1
nbcores = 2
nbcores = 3
nbcores = 4
nbcores = 5
nbcores = 6

nbcores = 11

Fig. 2: Schedulability vs. confidentiality with inter-core communication overhead
variation

Since these solutions are extreme, we propose to investigate the design search
space, in order to find interesting trade-offs. The DSE proposes a set of 52 (resp.
40) different trade-offs with no interconnection overhead (with interconnection
overhead). Fig. 2 shows the set of non-dominated solutions.

10 I. Atchadam et al.

For the system model with negligible interconnection overhead, our DSE
tool was able to decrease from 45 to 11 the number of cores required for a fully
secured, safe, and no missed deadlines solution (Fig 2(a)). Our DSE is able to
detect a minimal number of cores that corresponds to a fully secured, safe, and
no missed deadlines solution. This solution considers a better grouping of tasks
on the cores in order to propose a reduced number of cores while not allowing
any task to miss its deadline. The tasks to cores assignment of this solution is
so irregular that it will be very time-consuming and almost impossible to get
manually such an assignment considering 57 tasks to assign to 11 cores. This
shows the effectiveness of our DSE in proposing good trade-offs while considering
schedulability, security, safety, and different numbers of cores.

The DSE with non-negligible interconnection overhead also proposes a solution
that reduces to 11 the number of cores for a fully secured, safe, and no missed
deadlines solution(Fig 2(b)). Contrary to the above-mentioned solution, it has a
different tasks to cores assignment and used 4 partitions instead of 3 partitions.
This can be explained by the fact that the above-mentioned solution updated
with interconnection overhead was not able to keep no missed deadline. Then
the DSE was able to explore different tasks to partitions and tasks to cores
assignments to avoid missed deadlines without using more cores. Those solutions
are not intuitive and motivate the use of our DSE approach.

As expected, we observe in the figures that the more the number of cores
increases, the easier it becomes to ensure the security of safe TSP systems while
minimizing the number of missed deadlines. This confirms the relevance of the
proposed DSE.

The speedup relates to the number of cores can be compromised by a high
shared hardware resource overhead. As shown on the graphs, trade-offs with no
security vulnerabilities proposed by the DSE with non-negligible interconnec-
tion overhead have a number of missed deadlines greater than or equal to the
equivalent in the DSE with negligible interconnection overhead. Let us consider
the fully secure solutions with 5 cores. With no interconnection overhead, there
are 7 missed deadlines (Fig 2(a)) while there are 13 missed deadlines when
considering interconnection overhead (Fig 2(b)). This can also explain that with
interconnection overhead, solutions with 6, 7, 8, and 9 cores are dominated by
the other solutions and then rejected by the PAES. This illustrates that overhead
related to shared hardware resources is a key parameter in the design of safe and
secure multicore TSP systems.

No optimal result is known, since the search space size is in the order of 10146.
Thus an exhaustive search should be no tractable. Comparison could be made
with other heuristic approaches only, without a guarantee on optimality.

5 Related work

In this section, we position our work by presenting different approaches that
addressed the design of multicore platforms for TSP systems with schedulability,
safety, and/or security constraints/objectives.

Title Suppressed Due to Excessive Length 11

Many researchers have investigated TSP systems on multicore platforms.
In [21], the authors depicted that multicore platforms can intervene in ensuring
high-performance requirements. For this purpose, they identified some conditions
such as privileging the intra-partition parallelism, which assumes the possibility
of running parallel tasks of the same partition on different cores. In [7], the
authors proposed the evolution of a TSP unicore system to a TSP multicore
system while considering inter and intra-partition parallelism mechanisms. The
former consists of activating simultaneously many partitions on different cores.
The work in [12] proposed a similar idea towards the design and analysis of TSP
multicore systems. The authors specifically focused on symmetric multiprocessing
(SMP) architectures where each core has access to a common shared memory
and I/O resources with a single operating system for all the cores. They defined
patterns for SMP/TSP multicore systems with which they extended the Ocarina
code generation tool.

Since safety and security are important requirements for TSP systems, several
researchers showed interest in these domains. In [6], the authors proposed a
survey for validation and certification of TSP multicore systems deployed on the
Xtratum hypervisor [18]. For example, it highlights fault tolerance for safety and
data protection for security. The authors of [11] addressed multicore platforms
not specifically for TSP systems, but for real-time systems in general. They also
addressed the systems’ security vulnerabilities. Then the authors added security
mechanisms such as a hash algorithm to their systems and then proposed a
DSE to optimize their schedulability while exploring the security tasks to cores
assignment possibilities.

The potential schedulability benefits of deploying TSP systems on multicore
platforms have led to multiple researches on the design and analysis of such
systems. Some have addressed their security and safety vulnerabilities. Few have
studied the assignment of tasks to cores through a DSE for real-time systems in
general. We propose a DSE approach for multicore TSP systems that investigates
not only tasks to cores assignment but also tasks to partitions assignment and
securing communications alternatives in order to find trade-offs. We also integrate
safety constraints into our proposal. As far as we know, no work has proposed
such a set of combinations.

6 Conclusion

In this paper, we investigate the impact of multicore platforms on safe and secure
TSP systems by proposing an approach to explore their design space. Our DSE
approach covers the different possibilities of tasks to partitions assignment, tasks
to cores assignment, and securing communications, which is a combinatorial
problem. Our approach is based on a meta-heuristic which proposes trade-offs
between schedulability and security for a safe TSP system while considering
different numbers of cores.

As expected, our approach shows that for a safe and secure TSP system
with some missed deadlines, increasing the number of cores effectively helps to

12 I. Atchadam et al.

optimize the system schedulability. Better solutions can also be obtained by
moving some tasks from one partition to another or from a core to another. This
first result confirms the relevance of our DSE.

To illustrate the interest of our approach, we test the DSE by considering
shared hardware resources overhead existing in multicore platform. This overhead
results from tasks on different cores accessing simultaneously the same hardware
resources. It may increase considerably the required number of cores to keep a
certain level of schedulability. Our experiments show that the shared hardware
resources overhead, the number of cores, the number of partitions, tasks to
partitions and cores assignments are key parameters in the design of multicore
safe and secure TSP systems.

In this paper, the multicore hardware resource overheads introduced in the
DSE was limited while it exists various sources and types of such overhead in
multicore platforms (from the cache, interconnection or memory systems). In the
future, we want to integrate in the DSE some of these overheads. We also intend
to consider other security vulnerabilities such as those related to integrity or/and
availability since we only consider confidentiality vulnerabilities.

Artefact All experiment data presented in this paper are available at http:
//beru.univ-brest.fr/svn/CHEDDAR/trunk/artefacts/DECSOS22/.
Programs and scripts written to produce these experimental data are available at
http://beru.univ-brest.fr/svn/CHEDDAR/trunk/src/framework_examples/
architecture_exploration_tools/.

References

1. Bell, D.E., La Padula, L.J.: Secure computer system: Unified exposition and multics
interpretation. Tech. rep., MITRE CORP BEDFORD MA (1976)

2. Bieber, P., Boniol, F., Boyer, M., Noulard, E., Pagetti, C.: New challenges for future
avionic architectures. AerospaceLab (4), p–1 (2012)

3. Chai, L., Gao, Q., Panda, D.K.: Understanding the impact of multi-core architecture
in cluster computing: A case study with intel dual-core system. In: Seventh IEEE
international symposium on cluster computing and the grid (CCGrid’07). pp.
471–478. IEEE (2007)

4. Coello, C.A.C., Lamont, G.B., Van Veldhuizen, D.A., et al.: Evolutionary algorithms
for solving multi-objective problems, vol. 5. Springer (2007)

5. Committee, A.E.E.: Arinc 653: Avionics application software standard interface,
supplement 1 (2003)

6. Coronel, J., Tsagkaropoulos, M., Mylonas, D., Balbastre, P., Kollias, V., Crespo,
A.: Validation of securely partitioned systems over multicore architectures based
on xtratum. In: Data systems in aerospace (DASIA), Proceedings on (2013)

7. Craveiro, J., Rufino, J., Singhoff, F.: Architecture, mechanisms and scheduling
analysis tool for multicore time-and space-partitioned systems. ACM SIGBED
Review 8(3), 23–27 (2011)

8. Dai, W.: Crypto++ 5.6. 0 benchmarks. http://www. cryptopp. com/benchmarks.
html (2009)

Title Suppressed Due to Excessive Length 13

9. (Firme), R.: Integrated Modular Avionics (IMA) Development Guidance and Certi-
fication Considerations. RTCA (2005)

10. Garside, R., Pighetti, F.J.: Integrating modular avionics: A new role emerges. IEEE
Aerospace and Electronic Systems Magazine 24(3), 31–34 (2009)

11. Hasan, M., Mohan, S., Pellizzoni, R., Bobba, R.B.: A design-space exploration for
allocating security tasks in multicore real-time systems. In: 2018 Design, Automation
& Test in Europe Conference (DATE). pp. 225–230. IEEE (2018)

12. Hugues, J., Honvault, C., Pagetti, C.: Model-based design, analysis and synthesis
for multi-core and tsp avionics targets (2018)

13. Knowles, J., Corne, D.: The pareto archived evolution strategy: A new baseline
algorithm for pareto multiobjective optimisation. In: Proceedings of the 1999
Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406). vol. 1, pp.
98–105. IEEE (1999)

14. Kumar, R., Zyuban, V., Tullsen, D.M.: Interconnections in multi-core architec-
tures: Understanding mechanisms, overheads and scaling. In: 32nd International
Symposium on Computer Architecture (ISCA’05). pp. 408–419. IEEE (2005)

15. Lala, J.H., Harper, R.E.: Architectural principles for safety-critical real-time appli-
cations. Proceedings of the IEEE 82(1), 25–40 (1994)

16. Gohring de Magalhaes, F., Torres Aurora Dugo, A., Lefoul, J.B., Nicolescu, G.: On
the benchmarking of partitioned real-time systems. arXiv e-prints pp. arXiv–2007
(2020)

17. de Magalhaes, F.G., Dugo, A.T.A., Lefoul, J.B., Nicolescu, G.: On the benchmarking
of partitioned real-time systems. arXiv preprint arXiv:2007.10794 (2020)

18. Masmano, M., Ripoll, I., Crespo, A., Metge, J.: Xtratum: a hypervisor for safety
critical embedded systems. In: 11th Real-Time Linux Workshop. pp. 263–272.
Citeseer (2009)

19. Mo, Y., Garone, E., Casavola, A., Sinopoli, B.: False data injection attacks against
state estimation in wireless sensor networks. In: 49th IEEE Conference on Decision
and Control (CDC). pp. 5967–5972. IEEE (2010)

20. Pagetti, C., Saussié, D., Gratia, R., Noulard, E., Siron, P.: The rosace case study:
From simulink specification to multi/many-core execution. In: 2014 IEEE 19th
Real-Time and Embedded Technology and Applications Symposium (RTAS). pp.
309–318. IEEE (2014)

21. Patte, M., Lefftz, V., Zulianello, M., Crespo, A., Masmano, M., Coronel, J.: System
impact of distributed multi core systems. Technical Report ESTEC Contract
4200023100 (2011)

22. Rouxel, B., Puaut, I.: Str2rts: Refactored streamit benchmarks into statically
analyzable parallel benchmarks for wcet estimation & real-time scheduling. In: 17th
International Workshop on Worst-Case Execution Time Analysis (WCET 2017).
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2017)

23. Schneier, B.: Description of a new variable-length key, 64-bit block cipher (blowfish).
In: International Workshop on Fast Software Encryption. pp. 191–204. Springer
(1993)

24. Singhoff, F., Legrand, J., Nana, L., Marcé, L.: Cheddar: a flexible real time schedul-
ing framework. In: ACM SIGAda Ada Letters. vol. 24, pp. 1–8. ACM (2004)

25. Watkins, C.B., Walter, R.: Transitioning from federated avionics architectures to
integrated modular avionics. In: 2007 IEEE/AIAA 26th Digital Avionics Systems
Conference. pp. 2–A. IEEE (2007)

26. Zou, Y., Wang, G.: Intercept behavior analysis of industrial wireless sensor networks
in the presence of eavesdropping attack. IEEE Transactions on Industrial Informatics
12(2), 780–787 (2015)

