
HAL Id: hal-03718161
https://hal.univ-brest.fr/hal-03718161v1

Submitted on 8 Jul 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Multi-objective optimization at the EDge for Online and
Real-time self-Adaptation of Autonomous vehicles

Evan Flecheau, Laurent Lemarchand, Catherine Dezan

To cite this version:
Evan Flecheau, Laurent Lemarchand, Catherine Dezan. Multi-objective optimization at the EDge for
Online and Real-time self-Adaptation of Autonomous vehicles. Colloque du GDR SOC2, Jun 2022,
Strasbourg, France. �hal-03718161�

https://hal.univ-brest.fr/hal-03718161v1
https://hal.archives-ouvertes.fr


Multi-objective optimization at the EDge for Online
and Real-time self-Adaptation of Autonomous

vehicles
Flecheau Evan

Lab-STICC
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I. INTRODUCTION

Autonomous vehicles are well-known for automatized tasks
that are difficult or dangerous to be performed by humans.
However, the environments in which those autonomous ve-
hicles are evolving are generally dynamic environments that
are hardly predictable. Thus, the challenge is for these to
be following a predefined mission while adapting to their
shifting environment in real time as efficiently as possible.
Their mission often implies path planning problems, where
self-adaptation of terrain modifications is required to finish a
mission; and optimization of contradictory objectives, such as
safety, risk assessment, travelling time or distance, consumed
energy, etc. We choose to focus on supervision/monitoring
missions (covering area with a lidar, with pictures, searching,
etc) with two objectives : travelled distance (that could later be
modeled into time or energy consumption) and covered area.
We propose a multi-objective optimization (MOO) framework
for a self adaptation of autonomous vehicles, with an of-
fline/online approach, in order to solve covering/monitoring
missions of autonomous vehicles. The offline process will pre-
dict a path that the autonomous vehicle will be initialized with,
and the online process will be useful for the dynamic path re-
planning when obstacles will be detected. Our results show
the interest to pre-compute routes offline. Such an approach
has already been introduced and promises to be effective. For
instance, Hu et al. [3] applied this strategy to another MOO
and real-time path planning problem for Autonomous Surface
Vehicles (AV). MOO approaches contrast with single objective
ones as Niu et al. [6]. They focused on a path planning
approach aiming at improving the endurance of an USV by
optimizing its energy consumption. In [7], Zhang et al. also
deal with USV path planning, proposing an hybrid genetic
algorithm.

II. APPROACH

In our model, the autonomous vehicle (AV) will be con-
ducting the covering/monitoring missions in simulated maps
of ports, represented as connected graphs. Obstacle detection
is possible due to the simulated on-board lidar, and trajectory

way-points describing the AV’s path are generated with the
Pareto Archived Evolution Strategy (PAES) algorithm [5],
a popular Multi-Objective Evolutionary Algorithm (MOEA),
one of the simplest algorithm capable of generating a Pareto
set. Covered points are those in the range of the lidar during
the tour. Trade-offs are to be found with the length of the tour,
our second objective.

Our approach for solving a multi-objective optimization
path planning problem is based on the hypothesis that, since
MOEA are costly in resources, we may have the possibility
to relieve the AV from some computational time by exploiting
known environment data. Also, the PAES approach to MOO
leads to a potentially re-usable archive of the best solutions cal-
culated offline. Our idea for the embedded collision avoidance
process is that we could re-use this archive to maintain a fully
optimized intermediary path until the mission is completed.
We would then have a bi-phase offline/online approach to this
problem, where a first path would be generated offline, while
the online part would be used to correct the path when dynamic
obstacles were to intersect with the AV’s initial tour.

Fig. 1. Illustration of a path planning mission for the AV. All 5 way-points
have to be followed in a specific order. Obstacle events could occur and
intermediary routes would be calculated to avoid collisions, while visiting
initial way-points if possible.

The offline process is split into three sub-processes :
1) Data and graph initialization for all shortest paths using

Floyd-Warshall’s algorithm.
2) Non-dominated solutions generation using PAES algo-

rithm.



3) Best solution selection using TOPSIS algorithm.
The two first steps are realized with the same approach

as [1], using PAES. TOPSIS [4] is a famous Multi-Criteria
Decision Making algorithm that has been used in many fields
[2]. Its execution time (shown in Table 1) and algorithmic
complexity justify our choice for the decision making and we
use it in our offline process to select the best optimized route
for the AV.

The online process uses Dijkstra’s algorithm and is exe-
cuted every time an obstacle must be avoided (modeled as
invalidated points in the graph). It recomputes shortest paths
in the updated graph from current node to next way-point.
This method ensures the validation of the mission, but doesn’t
take directly into account the trade-off to be found between
distance and covering for the tour.

Fig. 2. 2-phases path planning strategy

III. EXPERIMENTS

This section is about scenario experiments that we have
conducted to justify the relevance of the previous system (Fig.
1). A simulation of the first path planning version for a full
mission is composed as following :

1) grid parameters and the lidar range of the AV are used
to generate a connected graph on the map and visibility
between points.

2) PAES produces a set of routes for a given starting node
(Pareto non-dominated solutions).

3) The TOPSIS algorithm is used to choose a route and
initialize the AV mission.

4) Random obstacles are then generated, and Dijkstra’s
algorithm corrects compromised way-points.

We performed multiple simulations with different grid
grains (shown in Table 1). The main purpose of these tests
are to show the interest of an offline/online approach to path
planning in terms of trade-offs exploration (not shown here,
but assessed in [1] for the offline phase) and in terms of
computational effort saved for the online process. It is also
a first attempt at verifying the impact of a trajectory update
on distance and covering metrics.

As shown in Table 1, execution times for PAES and Dijk-
stra’s algorithms depend on the graph’s parameters : the more
complex the graph is, the more time is required for these two
algorithms to finish processing. However, TOPSIS has fairly
constant execution times, whatever the map it is tested on. It
is due to the fact that this algorithm is always applied to the
archive, i.e. a fixed amount of solutions. There are 3 orders of

TABLE I
MEANS OF EXECUTION TIMES OF 20 TESTS CONDUCTED ON THE BREST

PORT MAP, WITH A 100 TO 25 METERS DISTANCE BETWEEN POINTS AND A
150-METER RANGE LIDAR. PROCESSOR USED FOR EXECUTION : INTEL(R)

CORE(TM) I7-8700K CPU @ 3.70GHZ, 4 GB RAM

Map : BREST port
Rows Columns PAES (sec) TOPSIS (ms) Dijkstra (ms)

50 50 7.32 0,030 1.4
55 55 9.91 0,028 2.6
60 60 14.17 0,027 2.3
65 65 16.75 0,033 4.7
70 70 23.06 0,031 5.1
75 75 26.71 0,031 10.3
80 80 33.44 0,029 10.4

magnitude between the offline (PAES) and online (Dijkstra)
computations, justifying the offline phase.

However, resulting tours (not presented here) present de-
ceptive characteristics: despite having decent results on small
obstacles, large obstacles often force the AV to take non
optimized routes in order to complete its mission. This is
explained by route updates through already explored zones,
resulting in both a worse distance for the tour and worse
covering rates. A second version of the algorithm is then
considered : we would adapt our PAES algorithm in an online
scenario, updating online the alternative tours in the embedded
archive instead of running PAES again from scratch, allowing
to efficiently and rapidly reroute when obstacles arise.

IV. CONCLUSION

This study deals with an MOO and dynamic path re-
planning problem, in the context of an AV assigned with a cov-
ering/monitoring mission while avoiding collisions with un-
predictable obstacles. We adopted a bi-processes offline/online
approach, with computational effort on the offline phase. This
allows to decrease the response time when avoiding obstacles
online. As future works, we plan to target an embedded
platform for the selected online phase implementation.
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