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Abstract: The Energy Management Strategy (EMS) in Fuel Cell Hybrid Electric Vehicles (FCHEVs) is
the key part to enhance optimal power distribution. Indeed, the most recent works are focusing on
optimizing hydrogen consumption, without taking into consideration the degradation of embedded
energy sources. In order to overcome this lack of knowledge, this paper describes a new health-
conscious EMS algorithm based on Model Predictive Control (MPC), which aims to minimize the
battery degradation to extend its lifetime. In this proposed algorithm, the health-conscious EMS
is normalized in order to address its multi-objective optimization. Then, weighting factors are
assigned in the objective function to minimize the selected criteria. Compared to most EMSs based
on optimization techniques, this proposed approach does not require any information about the
speed profile, which allows it to be used for real-time control of FCHEV. The achieved simulation
results show that the proposed approach reduces the economic cost up to 50% for some speed profile,
keeping the battery pack in a safe range and significantly reducing energy sources degradation. The
proposed health-conscious EMS has been validated experimentally and its online operation ability
clearly highlighted on a PEMFC delivery postal vehicle.

Keywords: energy management strategy; model predictive control; health conscious; multi-objective
optimization; fuel cell hybrid electric vehicles

1. Introduction

Nowadays, global warming is considered a major problem that can cause serious
environmental threat and may lead to social damage in the coming years. Therefore, en-
vironmental awareness must call for a reduction in both fuel consumption and emissions
from conventional vehicles with Internal Combustion Engines (ICEs) [1]. To cope with this
problem, new regulations must be taken, such as the restriction of unnecessary transporta-
tion activities and the development of Fuel Cell Hybrid Electric Vehicles (FCHEVs) [2].
Among all current solutions, FCHEVs are one of the most promising approaches to achieve
significant reductions in both fuel consumption and greenhouse gas emissions [3]. A
FCHEV uses a Proton-exchange Membrane Fuel Cell (PEMFC) as a primary source, an
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Energy Storage Source (ESS), such as lithium ion batteries, or Supercapacitors (SCs) as a
secondary source, an Electric Motor (EM) and inverter(s). Different types of FCHEVs have
been developed. They are divided into passive, semi active, and active configuration [4].
FCHEVs are multi-source systems where a complex power flow needs to be managed.
Thus, an improvement in the hydrogen economy needs to be considered. For this purpose,
advanced control algorithms, called Energy Management Strategies (EMSs) are designed to
control the power distribution [5]. The EMS decides how to share the demanded power
among the different power sources to maintain auxiliary source state of charge, optimize
powertrain efficiency, and reduce fuel consumption [6]. Over the past few decades, the
common-used EMSs for FCHEVs can be divided into two types, Rules-based Strategies
(RBSs) and Optimization-based Strategies (OBS) [7]. An RBS is a real-time control THAT
depends on the vehicle parameters, the power demanded by the EM, and the auxiliary
source State of Charge (SOC) [8]. These rules are divided into Deterministic Strategies
(DRs) and Fuzzy Logic strategies (FLs). DRs are based on certain FCHEV parameters,
such as the battery power threshold, the SOC, the nominal PEMFC power, and the SCs
reference voltage [9]. Conversely, FRs are defined according to engineer experience. The
variables should be fuzzified and defuzzified during several tests [10,11]. However, FRs
is more adaptable to different operating modes compared to DRs. For instance, the RBS
performance is affected by the set rules parameters and will be far from the optimal op-
erating conditions. For example, after several cycles, the calculation of PEMFC hydrogen
consumption will become increasingly inaccurate over time due to the parametric variation
of the fuel cell. Therefore, the EMS is established on the basis of fixed parameters, which
will lead to a mismatch between the calculation result and actual results [12]. For this
purpose, a new RBS combined with Dynamic Programming (DP) is proposed in [13], where
a maximum power demand determines the power required by each source based on the
estimation of the real parameters of the PEMFC, and it effectively reduces fuel consumption.
The EMS based on the OBS are divided into Global Optimization Rules (GORs) or offline
rules and Instantaneous Optimization Rules (IORs). The IORs are also called real-time
optimization rules [14]. OBSs are used to minimize a cost function, which usually reflects
the fuel consumption over a fixed driving cycle. Usually, they are based on the knowledge
of past or future power demands, such as the Pontryagin Minimum Principle (PMP) [15],
metaheuristic approaches [16], and Genetic Algorithm (GA) [17]. Many studies on OBS
have been proposed by using a weighted sum of a multi-objective function [18], which
can be used to solve the problem offline. However, the computation burden remains an
inconvenience. In addition, most EMS algorithms focus on a specific optimization objective,
such as minimizing fuel consumption or improving efficiency. In order to achieve the
overall optimal solution, a stochastic predictive algorithm based on fast rolling optimiza-
tion has been developed in [19]. In combination with a large amount of data, the torque
of the EM and EMS are modeled using Markov chains. However, the energy must be
calculated off-line and the driving cycle must be known in advance. Nevertheless, this
strategy requires considerable fine-tuning to achieve the best control gains. A hierarchical
control based on the equivalent fitting circle method is adopted in [20] to achieve optimal
power sharing. The power of each PEMFC is determined using a mathematical model
to solve the power output. Nevertheless, for different PEMFCs with different models
and parameters, this method is clearly not sufficient, particularly with the increase in the
number of FC. DP is a model-based technique that seeks all control states in order to have
an optimal control strategy [21,22]. However, this technique is not suitable for real-time
problems since the exact information about the future driving is unknown. The lifetime of
the ESS in a FCHEV is very sensitive to their operation, knowing how to coordinate the
two energy units to reduce the fuel consumption, as well as preserving their degradations
presents another challenge [23]. Several improved EMSs can be found in the literature,
such as the Extreme Seeking (ES) method [24], Q-Learning and Neuro-Dynamic Program-
ming [25], robust control [26], or Reinforcement Learning (RL) method [27]. By analyzing
the previous limited literature, it can be noted that offline optimization algorithms are
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difficult to operate in real time applications and are time consuming. Most of the existing
works on FCHEVs examine the minimization of hydrogen consumption, without implying
the performance degradation of energy sources, thus the economic potential of FCHEVs
is not really assessed. In [28], the authors introduced a battery SOH-sensitive technique
applied to the powertrain. The authors have shown that this work reduced overall battery
degradation while limiting the impact on the fuel economy, leading to a reduction in total
vehicle price. In [29], an ES conducted on a FCHEV showed that it significantly extended
the battery life for the US06 cycle. Another EMS was successfully performed in [30], where
it saved about 15,000 Euros using the same battery pack for the entire life of the bus. Other
examples of online EMSs, which are sensitive to battery ageing, have included convex
optimization [31], and model-based predictive control [32–34]. These efforts have shown
that perceptive EMSs based on battery State of Health (SOH) can offer significant economic
benefits. However, most of recent works have made the SOC to fluctuate freely. In this
work, battery SOC regulation is a key point in tracking where the costs associated with
the sources represent a significant rate of the total vehicle cost. Depending on the type of
hybrid sources, this cost can reach 70% of the vehicle price [35,36]. In this sense, it makes
sense to include health awareness in the EMSs. The MPC rules have been widely used for
EMS in the automotive control because of its ability to deal with real time optimization
applications. Several EMSs based on MPC have been developed, however none discuss the
sources degradation. In order to fill this gap, this article presents an original contribution
that will improve the lithium-ion battery lifetime and preserve the PEMFC dynamics in a
cost-healthy manner; the main contributions of this article consist of the following points:

• A proposed objective function formulated within the MPC framework that mini-
mizes the hydrogen cost, preserves FC dynamics, and extends the lithium-ion battery
lifespan;

• A semi-active topology is proposed where the MPC deal with the severe nonlinearities
and the time-varying property of a FCHEV;

• A comparative study between the proposed method and a Fuzzy Logic (FL) method is
conducted using three different driving cycles in simulation, followed by experimental
validation using a test protocol.

The remaining part of the paper is organized as follows. The FCHEV powertrain
model is presented in Section 2. In Section 3, the health-conscious EMS based on the MPC
framework is presented in detail. The simulation results under various driving cycles
are presented in Section 4, followed by the implication of power-source pricing. The
Experimental results and analysis are introduced in Section 5. Finally, Section 6 presents
the conclusion.

2. FCHEV Modeling

The investigation presented in this paper is based on an electrical vehicle Moby Post,
which has been developed by the European project Moby Post. Its semi-active architecture
of the Moby Post vehicle is shown in Figure 1. The PEMFC is the main power source that
provides the steady-state power. It is powered by an integrated hydrogen tank and is
connected to a DC/DC unidirectional boost converter that continuously feeds the DC bus
link while, the battery is directly connected to the DC link to maintain its voltage. The
DC link is connected to two inverters controlling the two-wheel motors. For the system
supervision, an Electronic Control Unit (ECU) is used so that it communicates with all the
dedicated controllers of the different subsystems via a CAN bus network. The addition of
the battery as an auxiliary power source is intended to protect the PEMFC and improve the
performance of FCHEV.
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Figure 1. Synoptic diagram of the Moby Post vehicle.

The power needed from the vehicle to meet the speed requirements of the driving
cycle can be calculated using the dynamic model of the vehicle. All the parameters of the
vehicle are presented in the Appendix. This power is supplied by the PEMFC and the
lithium-ion battery according to the following equations:

M
dv
dt

= ∑ Ft −∑ Fr (1)

Pdem(w) = PPEMFC·ηDC/DC + PBatt. (2)

V represents the vehicle speed, Ft represents the sum of the vehicle’s traction forces,
Ft represents the total resistive forces, M represents the vehicle mass, Pdem represents
the demanded power, and ηDC/DC represents the efficiency of the unidirectional Boost
converter.

2.1. PEMFC Model

The voltage of a single cell is very low (between 0.4 and 1 V), far from sufficient
voltage to power the vehicle. This is why the PEMFC is designed in a stack to provide
continuous power with a reasonable voltage [37]. The stack voltage can be calculated by
simply multiplying the number of cells and the voltage of a single cell according to the
following equation:

VPEMFC = Ncell ·Vcell (3)

where VPEMFC is the PEMFC voltage, Ncell is the number of cells in the stack, and Vcell is
the voltage of a single cell. The electrochemical process within the PEMFC is associated
with many losses, and these losses are activation losses, ohmic losses, and concentration
losses. The voltage produced by the PEMFC cell is calculated by subtracting those losses
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from the reversible thermodynamic voltage Erev [38]. The output voltage can be expressed
as follows:

Vcell = Erev −Virrev (4)

Virrev = Vact −Vohm −Vcon. (5)

Vact are the activation losses due to the activation reactions of the anode and cathode,
Vohm are the ohmic losses related to the conduction of protons through the solid electrolyte
and electrons through the internal resistance, and Vcon are the concentration losses due
to the mass transport of the reacted gases [39]. The reversible thermodynamic potential
is the voltage that would be obtained if all the energy of the electrochemical reaction
was converted into electricity without any loss. It can be calculated from the following
equation [40].

Erev = E0 +
R·T
n·F ln

(
∏i areactant_i

∏j aproduct_j

)
(6)

where I and j are the numbers of reactant types and products; areactant_i and aproduct_j are
the reactant and partial pressure of the product [atm], R is the universal gas constant, F is
the Faraday constant, n is the number of electrons transferred for each molecule of the fuel
participating in the reaction, and T is the temperature in Kelvin [K]. The PEMFC adopted
in this vehicle is the H-3000 with a nominal power of 1 kW, its parameters are presented
in the Appendix. The hydrogen consumption is the amount of hydrogen that is actually
consumed in the PEMFC reaction and can be calculated as follows [41]:

.
mh2 =

Ncell ·Mh2
s·F Istack·λ (7)

where
.

mh2 is the hydrogen mass flow rate (g/s), Ncell is the number of cells, Mh2 is the
molar mass of hydrogen (g/mol), s is the active surface of each cell, F is the Faraday
constant, and λ is the ratio of excess hydrogen.

2.2. Lithium Ion Battery Model

The battery is the vehicle auxiliary ESS where a first-order model is adopted in this
paper. Compared to the multi-physical and empirical model, this model cannot only ensure
a reduced computation time but also meet high accuracy requirements. This model is
shown in Figure 2 [42,43]. In addition, the voltage drop is related to the current and ohmic
resistance Rs. The voltages VS and V1 refer, respectively, to the series resistance and the
concentration polarization voltage C1, and finally, the voltage at the terminals of the battery
VB is expressed as follows [44]:

VB = E0 − Rs·IB −V1. (8)

The state of charge can be defined as follows:

SOC (k) = SOC (k)− i(k)dt
Q

(9)

where SOC, Q, and dt are respectively the cell state of charge, the nominal capacity of the
cell, and the sampling interval.
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Figure 2. Equivalent lithium-ion circuit model.

2.3. Battery Degradation Model

In the literature, several models have been presented to describe the degradation
phenomena of lithium-ion batteries [45–48]. The most significant model for evaluating the
capacity loss of lithium-ion batteries is the exponential one. It is described as follows:

Qloss = B(c)·exp(
−Ea(c)

RT )· A (c)z (10)

where Qloss is the loss percentage (%) of the battery capacity, c is the capacity in (Ah), B is
the exponential factor, T is the absolute temperature in K, and R is the gas constant (8.31
J/mol·K). The other parameters of the capacity loss model were obtained experimentally
from a large set of test data. The activation energy Ea in (J/mol) and the power-law factor
z are given as follows: {

Ea(c) = 31700− 370·c
z = 0.55

. (11)

A drop in capacity of up to 20% of rated capacity is considered to be the end-of-life
capacity of the lithium-ion batteries, so that the total Ah over the set of A is expressed as
follows:

A =

 20

B(c)exp
(
−Ea(c)

RT

)
 1

z

. (12)

Assuming a symmetrical capacity during the charging and discharging process, the
battery charge can be determined as follows:

N =
3600·A

Qcell
(13)

where Qcell indicates the nominal capacity of the battery in As. The health model can be
calculated as follows:

SOH(t) = 1−
∫ t

0 |IBatt(t)|dt
2N·Qcell .

(14)

where IBatt is the charging current of the battery. Note that the initial value of SOH is
assumed to be 1. The rate of change of SOH can be derived as:

SOH(k + 1) = SOH(k)− |IBatt(t)|dt
2N·Qcell .

. (15)

In the case where the actual conditions do not correspond to those given by the current
manufacturer, several methods have been proposed for hybrid vehicles to estimate the
battery life [49,50]. They are based on the concept of Ah charge quantity, which assumes
that there is an amount of accumulated charge that can flow through the battery (in a charge
or discharge situation) before it reaches its End of Life (EOL).

3. Health Conscious-Based EMS for FCHEV

In this hybrid system, the average power is given by the PEMFC because of its
slow dynamics, while the higher power limit is given by the battery pack to recover
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kinetic energy during deceleration and to ensure rapid acceleration. The health-conscious
predictive supervisor has to adjust the power dynamics according to the PEMFC reference
current and maintains the battery SOC at its initial value. It has been proven in [51] that
the ON/OFF operation has a negative impact on the PEMFC lifetime. To take this effect
into account, we therefore prefer that the PEMFC remains active during the entire delivery
period. Since the required energy is supported by the battery pack and the PEMFC, the
predictive supervisor used for this study is designed to meet several objectives:

• Minimize fuel consumption,
• Preserve the PEMFC dynamic,
• Keep the SOC of the lithium-ion battery at the same level as the initial value,
• Preserve the lithium-ion battery pack.

The proposed objective function is based on the finite horizon iterative optimization,
whereas, the prediction horizon must cover the control sequences that represent here the
PEMFC current values (1–50 A). After having the optimal PEMFC current value, which is
the only degree of freedom in this control algorithm, the model will be predicted again and
the control sequences evaluated according to this objective function:

j = α1
T−1
∑

i=0
ζH2·Pf c(i)dt + α2

T−1
∑

i=0
mh2dt + α3

T−1
∑

i=0
(SOCBatt(i)− SOCint(i))dt+

α4
T−1
∑

i=0
(SOHBatt(i)− SOHBatt(i + T))dt.

(16)

T is the interval of the prediction/control horizon, ζH2 is the price of hydrogen per
Joule, Pf c is the PEMFC power, mh2 is the hydrogen consumption, and SOCBatt and SOHBatt
are the state of charge and battery state of the health, respectively. The constraints to be
satisfied to solve this optimization process over T can be mathematically formulated as
follows:

SOC (i + 1) = SOC(i)− IBatt(i) ∆t
Q

(17)

IBatt_min ≤ IBatt(i) ≤ IBatt_max (18)

SOCmin ≤ SOC (i) ≤ SOCmax (19)

SOH (i + 1) = SOH (i)− |IBatt(i)| ∆t
2·N·Q (20)

SOHmin ≤ SOH (i) ≤ SOHmax (21)

Pf c_min ≤ Pf c (i) ≤ Pf c_max (22)

where the output of the predictive supervisor is the PEMFC reference current. It is worth
noting that the choice of the appropriate horizon size is an essential step that must involve
a compromise between optimality and computational efficiency. As the size of the horizon
becomes larger, the total cost of operation decreases, while the computing load increases.

The minimization process of the objective function was made by the Sequential
Quadratic Programming (SQP) algorithm; the interest of using this algorithm is its ef-
fectiveness in several previous works on MPC-based EMS. SQP is a nonlinear iterative
optimization method with constraints. It is usually used for mathematical problems for
which the objective function and the constraints are continuously differentiable. This ap-
proach solves a sequence of optimization subsets, each of these subsets are optimizing a
quadratic model of the objective function under constraints. The weighting factors were
selected by giving the same importance to the four terms to be optimized, which leads to
set the four factors equal to 0.25. As a result, all the weighting factors are equalized, elimi-
nating the need to adjust them online. The equal-weighted cost function not only provides
simplicity in the MPC design, but also guarantees the desired controller performance.
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4. Simulation Results and Discussions

A speed profile is a series of data representing the speed of a vehicle as a function
of time. Speed profiles are produced by different countries and organizations to evaluate
vehicle performance in a variety of ways, such as fuel consumption and pollutant emissions.
The speed profile used in this study are shown in Figure 3.

Figure 3. Speed profiles.

4.1. Driving Cycles

The three speed profiles adopted are the World wide harmonized Light vehicles Test
Procedures (WLTP), the Urban Dynamometer Driving Program (UDDS), and the New
European Driving Cycle (NEDC), in order to analyze the performance of the proposed
healthy EMS. All speed profiles take place on a flat track.

4.2. Comparison Results

This paper aims to compare the proposed algorithm with a baseline technique, which
is the Fuzzy Logic method [21]. In the latter, Alexander et al. focused on maintaining
the SOC of the battery in an optimal zone (around 0.7). Conversely, to reduce hydrogen
consumption, the membership function defining the PEMFC current is trapezoidal and
each has four variables (zero, low optimal, and high). The simulation results are presented
to evaluate the effectiveness of the proposed healthy EMS. In detail, the simulations are
performed in the MATLAB/Simulink environment for 3 speed profiles. The baseline
method does not take into account the degradation of lithium-ion batteries, while the
proposed method implements a healthy EMS that respect the battery degradation and
PEMFC dynamics. The distribution of the power between the PEMFC and battery is
illustrated in Figures 4–6. It is clear that for the predictive supervisor, the PEMFC is used to
provide the permanent part of the required power in a stable manner, while the battery
is mainly responsible for absorbing and providing fast transitions. It can also be seen
that the PEMFC powers are efficiently smoothed by the battery during the whole driving
cycle, in this case the negative values of the battery power, which means that the recovered
braking energy can recharge the battery. It also appears from these figures that the proposed
strategy is capable of limiting the operation of the fuel cell to the nominal power where the
maximum efficiency is reached, i.e., about 50 A, most of the time.
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Figure 4. PEMFC and battery power for the UDDS cycle.

Figure 5. PEMFC and battery power for the WLTP cycle.

Figure 6. PEMFC and battery power for the NEDC cycle.
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Figures 7–9 shows the curves of the battery states of charge and health states according
to the two strategies, in which the SOC varies from 0.6 to 0.5852 for the baseline technique,
and it remains constant at 0.6 for the proposed technique. The FL technique does not
take into account the SOC’s maintenance capacity, which results in a decrease in the SOC,
however, since the SOC is included in the objective function, the SOC can return to its
initial state. It can be seen that the proposed healthy EMS works well to ensure that the
battery’s state of charge is maintained with a slight decrease in SOH of less than 0.005%.
On the other hand, the PEMFC is used too aggressively in the baseline technique, which
lead to reaching the EOL much earlier than the proposed method. By plotting the battery
degradation graph at (Figure 10), it can be seen that the healthy EMS reduced battery
degradation and extended battery life by about 40%. Therefore, it can be concluded that
there is a need to consider the health of the system. It should also be noted that when
the sources reach a high level of degradation, the predictive supervisor must readjust the
PEMFC reference current adequately to avoid further degradation.

Figure 7. Battery SOC, SOH, and degradation for the UDDS cycle.

Figure 8. Battery SOC, SOH, and degradation for the WLTP cycle.
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Figure 9. Battery SOC, SOH, and degradation for the NEDC cycle.

The healthy EMS shows better fuel economy performance than the baseline technique.
We can observe an average 20% reduction in fuel consumption over the three cycles. In
the above discussion, we examine the impact of cost on the two EMSs, considering that
the price of hydrogen is 3.57 $/Kg [35]. The global hydrogen consumption after repeating
the cycles 8 times for the two strategies are shown in Table 1, which are 1.36 Kg, 2.07 Kg,
and 1.78 Kg, respectively for the baseline strategy and 1.09 Kg, 1.56 Kg, and 1.34 Kg for the
health-conscious strategy. The increase of hydrogen consumption is estimated to change
from 20% to 25%, due to the PEMFC power variation for the baseline technique. This means
a significant benefit while using the proposed method in terms of hydrogen price. These
prices are decreased by 26%, 50%, and 43% for WLTP, UDDS, and NEDC, respectively.

Table 1. Performance comparison.

Cycles Fuel Consumption
(Kg/8 Cycles)

Cost
(3.75 €/Kg)

Baseline MPC Improvement Baseline MPC Benefit

WLTP 1.36 1.09 20.01% 4.85 3.89 0.96
UDDS 2.07 1.56 24.50% 7.38 5.56 1.82
NEDC 1.78 1.34 25% 6.35 4.78 1.57

The results of the proposed technique for the three cycles show clearly that hydrogen
costs are significantly reduced. These results clearly showed that, without taking into
account the degradation criteria, the baseline technique will be very expansive for the post
delivery. The results could be considered as an excellent optimal solution for other types of
FCHEVS.
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Figure 10. Degradation comparison.

5. Real-Time Assessment

In order to verify the effectiveness of the proposed EMS, the experiment is carried
out on the Moby Post vehicle as shown in Figure 11. The PEMFC used in this work
is AIRCELL1000 ACS, which is fed by an embedded hydrogen tank and connected to
a DC/DC boost converter, which provides a permanent supply to the vehicle. For the
Energy Storage System (ESS), four lithium-ion battery modules have been used. Each
single module is able to deliver a power of 2 kW constantly with a nominal voltage of
13.4 V. These modules are connected directly to the DC bus link to maintain it at 50 V. A
Battery Management System (BMS) is connected to the battery pack, this latter provides
safety functions that protect the battery pack automatically by disconnecting it from the
high load current as well as balancing the voltages of each module. A classic DC/DC boost
converter has been used in order to interface the PEMFC and DC bus link due to the low
PEMFC stack voltage. This DC/DC is designed by Zahn Electronics with a nominal power
of 1.7 kW. For the supervision and energy management of the system, an Electronic Control
Unit (ECU) designed by “FAAR Industry” is used in such a way that it communicates
with all dedicated controllers of the different subsystems using a CAN bus network. The
data has been recorded using the DRU908 developed by “ISAAC Instruments”. This
communication bus allows access to the data of 130 vehicles such as speed, GPS position,
etc. A test protocol has been established in the UTBM parking lot. The test was carried out
not only to validate the proposed health-conscious EMS, but also to demonstrate its ability
to operate in real time on an embedded system. The data were recorded using the DRU908
developed by “ISAAC Instruments”. This communication bus allows access the data of 130
vehicles, regarding speed, GPS position, etc. The parameters of the Moby Post FCHEV are
summarized in the Appendix A.
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Figure 11. Moby Post FCHEV.

The test protocol of the Moby Post vehicle working condition is shown in Figure 12,
with the speed profile containing high acceleration and deceleration as well as many
stops, which is similar to the postal delivery mission. Figure 12 shows that the real-
time experimental results have the same shape as the simulation results. Thus, it can be
concluded that after the driving cycle, the SOC converts to the initial value in order to
start a new delivery mission. It can be concluded from Figure 13 that the proposed health-
conscious predictive EMS has a strong capability to limit the PEMFC power dynamics
and ensure that this latter provides power around its optimal point. In order to protect
the PEMFC, the high-frequency components of the demanded power are provided by the
battery pack, which give a good overview of the power fluctuation of PEMFC and highlight
the advantages of the proposed technique. Moreover, it can be observed that when the
vehicle accelerates, the battery pack reacts immediately and supplies the transient energy
demand in a short time as displayed in the power curve of Figure 13, whereas the PEMFC
slowly provides a power amount to adjust the battery SOC.

Figure 12. Real-time results of the speed profile and the battery SOC.
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Figure 13. Real-time results of the PEMFC power and the battery power.

It can be also observed that the real-time experimental results show an exact conformity
with the simulation results which validate the proposed technique. From the curve above
(see Figure 14), it can be seen that the real-time experimental results of the hydrogen flow
are similar to the simulation results, with the exception of some fluctuation in real-time
due to the sensor sensitivity.

Figure 14. Hydrogen flow.

6. Conclusions

This paper proposed a health-conscious EMS for FCHEV. The proposed approach
took into account the lithium-ion degradation, preserved the PEMFC dynamic, minimized
the hydrogen consumption, and regulated the lithium-ion SOC. Simulation and real-time
experimental results proved that the proposal is an alternative choice to developing cost-
effective EMSs. Indeed, up to 25% of fuel consumption was achieved compared to baseline
EMSs. Finally, the lithium-ion battery lifetime was extended, with its degradation reduced
to 50%. It can be concluded that the proposed health-conscious EMS could be a promising
solution for FCHEV confronting real constraints to enhance its performances in terms of
reducing the degradations of its internal sources and increasing their lifespan, and therefore
decreasing the overall costs of using FCHEV so as to be more competitive to conventional
vehicles.
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Appendix A

Total mass of the vehicle (kg) 530.
Coefficient of rolling resistance 0.02.
Aerodynamic drag coefficient 0.8.
Frontal area of vehicle (m2) 2.56.
Gravitational force (m/s2) 9.8.
Air density (Kg/m3) 1.25.
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