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Abstract
We give, in this paper, all bi-unitary perfect polynomials over the prime
field F2, with at most four irreducible factors.

1 Introduction

Let S ∈ F2[x] be a nonzero polynomial. We say that S is odd if
gcd(S, x(x + 1)) = 1, S is even if it is not odd. A Mersenne (prime) is
a polynomial (irreducible) of the form 1 + xa(x+ 1)b, with gcd(a, b) = 1. A
divisorD of S is called unitary if gcd(D,S/D) = 1. We denote by gcdu(S, T )
the greatest common unitary divisor of S and T . A divisor D of S is called
bi-unitary if gcdu(D,S/D) = 1.
We denote by σ(S) (resp. σ∗(S), σ∗∗(S)) the sum of all divisors (resp. uni-
tary divisors, bi-unitary divisors) of S. The functions σ, σ∗ and σ∗∗ are all
multiplicative. We say that a polynomial S is perfect (resp. unitary perfect,
bi-unitary perfect) if σ(S) = S (resp. σ∗(S) = S, σ∗∗(S) = S).
Finally, we say that S is indecomposable bi-unitary perfect (i.b.u.p.) if it is
bi-unitary perfect but it is not a product of two coprime nonconstant bi-
unitary perfect polynomials.
As usual, ω(S) designates the number of distinct irreducible factors of S.
Several studies are done about perfect and unitary perfect. In particular,
we gave ([3], [4], [5]) the list of all (unitary) perfect polynomials A over F2

(even or not), with ω(A) ≤ 4.
In this paper, we are interested in bi-unitary perfect polynomials (b.u.p.

polynomials) A with ω(A) ≤ 4. If A ∈ F2[x] is nonconstant b.u.p., then
x(x + 1) divides A so that ω(A) ≥ 2 (see Lemma 2.5). Moreover, the only
b.u.p. polynomials over F2 with exactly two prime factors are x2(x + 1)2

and x2
n−1(x + 1)2

n−1, for any nonnegative integer n ([1], Theorem 5). We
prove (Theorems 1.1 and 1.2) that the only b.u.p. polynomials A ∈ F2, with
ω(A) ∈ {3, 4}, are those given in [1], plus four other ones. Note that all odd
irreducible divisors of the Cj ’s are Mersenne primes (there is a misprint for
C6, in [1]).

In the rest of the paper, for S ∈ F2[x], we denote by S the polynomial
obtained from S with x replaced by x+ 1: S(x) = S(x+ 1).
As usual, N (resp. N∗) denotes the set of nonnegative integers (resp. of
positive integers).
For S, T ∈ F2[x] and n ∈ N∗, we write: Sn∥T if Sn|T but Sn+1 - T .
Finally, let M denotes the set of all Mersenne primes.
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We consider the following polynomials over F2:

M1 = 1 + x+ x2 = σ(x2), M2 = 1 + x+ x3, M3 = M2 = 1 + x2 + x3,

M4 = 1 + x+ x2 + x3 + x4 = σ(x4),M5 = M4 = 1 + x3 + x4,
S1 = 1 + x(x+ 1)M1 = 1 + x+ x4,
C1 = x3(x+ 1)4M1, C2 = x3(x+ 1)5M1

2, C3 = x4(x+ 1)4M1
2,

C4 = x6(x+ 1)6M1
2, C5 = x4(x+ 1)5M1

3, C6 = x7(x+ 1)8M5,
C7 = x7(x+ 1)9M5

2, C8 = x8(x+ 1)8M4M5, C9 = x8(x+ 1)9M4M5
2,

C10 = x7(x+ 1)10M1
2M5, C11 = x7(x+ 1)13M2

2M3
2,

C12 = x9(x+ 1)9M4
2M5

2, C13 = x14(x+ 1)14M2
2M3

2,
D1 = x4(x+ 1)5M1

4S1, D2 = x4(x+ 1)5M1
5S1

2.
The polynomials M1, . . . ,M5 ∈ M. We set U := {M1, . . . ,M5}.

Theorem 1.1. Let A ∈ F2[x] be b.u.p. such that ω(A) = 3. Then
A,A ∈ {Cj : j ≤ 7}.

Theorem 1.2. Let A ∈ F2[x] be b.u.p. such that ω(A) = 4. Then
A,A ∈ {Cj : 8 ≤ j ≤ 13} ∪ {D1, D2}.

2 Preliminaries

We need the following results. Some of them are obvious or (well) known,
so we omit their proofs.

Lemma 2.1. Let T be an irreducible polynomial over F2 and k, l ∈ N∗.
Then, gcdu(T

k, T l) = 1 (resp. T k) if k ̸= l (resp. k = l).
In particular, gcdu(T

k, T 2n−k) = 1 for k ̸= n, gcdu(T
k, T 2n+1−k) = 1 for

any 0 ≤ k ≤ 2n+ 1.

Lemma 2.2. Let T ∈ F2[x] be irreducible. Then
i) σ∗∗(T 2n) = (1 + T )σ(Tn)σ(Tn−1), σ∗∗(T 2n+1) = σ(T 2n+1).
ii) For any c ∈ N, T does not divide σ∗∗(T c).

Proof. i): σ∗∗(T 2n) = 1 + T + · · · + Tn−1 + Tn+1 + · · · + T 2n = (1 +
Tn+1)σ(Tn−1) = (1 + T )σ(Tn)σ(Tn−1), σ∗∗(T 2n+1) = 1 + T + · · ·+ T 2n+1.
ii) follows from i).

Corollary 2.3. Let T ∈ F2[x] be irreducible. Then
i) If a ∈ {4r, 4r + 2}, where 2r − 1 or 2r + 1 is of the form 2αu− 1, u odd,
then σ∗∗(T a) = (1 + T )2

α · σ(T 2r) · (σ(T u−1))2
α
, gcd(σ(T 2r), σ(T u−1)) = 1.

ii) If a = 2αu−1 is odd, with u odd, then σ∗∗(T a) = (1+T )2
α−1·(σ(T u−1))2

α
.
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Corollary 2.4. i) The polynomial σ∗∗(xa) splits over F2 if and only if a = 2
or a = 2α − 1, for some α ∈ N∗.
ii) Let T ∈ F2[x] be odd and irreducible. Then σ∗∗(T c) splits over F2 if and
only if (T is Mersenne, c = 2 or c = 2γ − 1 for some γ ∈ N∗).

Lemma 2.5. If A is a nonconstant b.u.p. polynomial over F2, then x(x+1)
divides A so that ω(A) ≥ 2.

Lemma 2.6. If A = A1A2 is b.u.p. over F2 and if gcd(A1, A2) = 1, then
A1 is b.u.p. if and only if A2 is b.u.p.

Lemma 2.7. If A is b.u.p. over F2, then the polynomial A is also b.u.p.
over F2.

Lemma 2.8 below gives some useful results from Canaday’s paper ([2],
Lemmas 4, 5, 6, Theorem 8 and Corollary on page 728).

Lemma 2.8. Let P,Q ∈ F2[x] be such that P is irreducible and let n,m ∈ N.
i) If σ(P 2n) = Qm, then m ∈ {0, 1}.
ii) If σ(P 2n) = QmT , with m > 1 and T ∈ F2[x] is nonconstant, then
deg(P ) > deg(Q).
iii) If P is a Mersenne prime and if P = P ∗, then P ∈ {M1,M4}.
iv) If σ(x2n) = PQ and P = σ((x + 1)2m), then 2n = 8, 2m = 2, P = M1

and Q = P (x3) = 1 + x3 + x6.
v) If any irreducible factor of σ(x2n) is a Mersenne prime, then 2n ≤ 6.
vi) If σ(x2n) is a Mersenne prime, then 2n ∈ {2, 4}.
vii) If σ(xn) = σ((x+ 1)n), then n = 2h − 2, for some h ∈ N∗.

Lemma 2.9. [see [6], Lemma 2.6] Let m ∈ N∗ and T be a Mersenne prime.
Then, σ(x2m), σ((x+ 1)2m) and σ(M2m) are all odd and squarefree.

4



The following equalities (obtained from Corollary 2.3) are useful.

σ∗∗(T 2) = (1 + T )2, if T is irreducible

For a, b ≥ 3,

σ∗∗(xa) = (1 + x)2
α · σ(x2r) · (σ(xu−1))2

α
, with gcd(σ(x2r), σ(xu−1)) = 1,

if a = 4r, 2r − 1 = 2αu− 1, (resp. a = 4r + 2, 2r + 1 = 2αu− 1), u odd

σ∗∗((x+ 1)b) = x2
β · σ((x+ 1)2s) · (σ((x+ 1)v−1))2

β
,

if b = 4s, 2s− 1 = 2βv − 1, (resp. b = 4s+ 2, 2s+ 1 = 2βv − 1), v odd

σ∗∗(xa) = (1 + x)2
α−1 · (σ(xu−1))2

α
, if a = 2αu− 1 is odd, with u odd

σ∗∗((x+ 1)b) = x2
β−1 · (σ((x+ 1)v−1))2

β
, if b = 2βv − 1 is odd, with v odd

r, α, β ≥ 1.
(1)

Moreover, we shall also (prove and) consider the following relations:

c ∈ {2, 2γ − 1 : γ ≥ 1}, σ∗∗(P c) = (1 + P )c (in Section 3). (2)

In Section 4.1:

c, d ∈ {2, 2γ − 1 : γ ≥ 1}, σ∗∗(P c) = (1 + P )c, σ∗∗(Qd) = (1 +Q)d (3)

and in Section 4.2:

σ∗∗(P c) = (1 + P )2
γ · σ(P 2t) · (σ(Pw−1))2

γ
, with gcd(σ(P 2t), σ(Pw−1)) = 1,

if c ∈ {4t, 4t+ 2}, where 2t− 1 or 2t+ 1 is of the form 2γw − 1, w odd

σ∗∗(P c) = (1 + P )2
γ−1 · (σ(Pw−1))2

γ
, if c = 2γw − 1 is odd, with w odd

d ∈ {2, 2γ − 1 : γ ≥ 1}, σ∗∗(Qd) = (1 +Q)d = xu2d(x+ 1)v2dPw2d

r, α, β, u2, v2, w2 ≥ 1, ε1 = min(1, u− 1), ε2 = min(1, v − 1), ε1, ε2 ∈ {0, 1}.
(4)

3 Proof of Theorem 1.1

We set A = xa(x+ 1)bP c, with a, b, c ∈ N∗ and P odd irreducible.
We suppose that A is b.u.p.:

σ∗∗(xa) · σ∗∗((x+ 1)b) · σ∗∗(P c) = σ∗∗(A) = A = xa(x+ 1)bP c.
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We show that P is a Mersenne prime. By direct (Maple) computations, we
get our result from Lemma 3.4.

Lemma 3.1. The polynomial σ∗∗(xa(x+ 1)b) does not split, so that (a ≥ 3
or b ≥ 3) and (a ̸= 2n − 1 or b ̸= 2m − 1 for any n,m ≥ 1).

Proof. If σ∗∗(xa(x + 1)b) splits, then σ∗∗(xa(x + 1)b) = xb(x + 1)a. Thus,
a = b and σ∗∗(P c) = P c. It contradicts Lemma 2.2-ii).
If a, b ≤ 2 or (a = 2n − 1, b = 2m − 1 for some n,m ≥ 1), then σ∗∗(xa) and
σ∗∗((x+ 1)b) split.

Corollary 3.2. The polynomial P is a Mersenne prime, P ∈ {M1,M4,M5}.
Moreover, c = 2 or c = 2γ − 1, for some γ ≥ 1 and c ≤ min(a, b).

Proof. By Lemma 3.1, there exists m ≥ 1 such that σ(x2m) or σ((x+1)2m)
divides σ∗∗(A) = A. Moreover, P does not divide σ∗∗(P c). We conclude that
P ∈ {σ(x2m), σ((x+1)2m)}. Thus, 2m ≤ 4 by Lemma 2.8-vi). By Corollary
2.4, σ∗∗(P c) must split. So, c takes the expected value. Furthermore, xc and
(x + 1)c both divide σ∗∗(A) = A, because they divide (1 + P )c = σ∗∗(P c).
So, c ≤ min(a, b).

Lemma 3.3. If a (resp. b) is even, then a ≥ 4 (resp. b ≥ 4).

Proof. Put P = 1 + xu1(x+ 1)v1 . If a = 2, then b ≥ 3, σ∗∗(xa) = (1 + x)2,
x2∥A = σ∗∗(A). By comparing a with the exponent of x in σ∗∗(A), we get
a = 2β+u1c > 2 if b is even, a = 2β−1+u1c if b is odd, with b = 2βv−1. So,
b is odd, β = u1 = c = 1. We also have: P = σ((x+ 1)v−1) and c = 2β ≥ 2,
which is impossible.

Lemma 3.4. i) If a is even, then a ∈ {4, 6, 8, 10} and c ∈ {1, 2, 3, 7}.
ii) If a is even and b odd, then b ∈ {2βv − 1 : v ∈ {1, 3, 5}, β ∈ {1, 2, 3}}.
iii) If a and b are both odd, then a, b ∈ {1, 3, 5, 7, 9} and c ∈ {1, 2, 3, 7}.

Proof. i): Since a ≥ 4 (Lemma 3.3), put a = 4r or a = 4r + 2, with r ≥ 1.
Then, σ(x2r) divides σ∗∗(A). So, 2r ≤ 4 and c ≤ a ≤ 10.
ii): Write b = 2βv−1, where v is odd. Since σ((x+1)v−1) divides σ∗∗(A) = A,
v ∈ {1, 3, 5} and 2β − 1 ≤ a ≤ 10.
iii): Write a = 2αu−1 and b = 2βv−1, where u, v are odd. As above, u, v ∈
{1, 3, 5}. σ∗∗(xa(x+1)b) does not split, so u ≥ 3 or v ≥ 3. Moreover, α = 1
(resp. β = 1) if u ≥ 3 (resp. v ≥ 3). We also get: 2β − 1 ≤ a, 2α − 1 ≤ b.
If α = 1 = β, then a, b ≤ 9. If α = 1 and v = 1, then b = 2β − 1 ≤ a ≤ 9 so
that b ≤ 7. If u = 1 and β = 1, then a = 2α − 1 ≤ 7 and b ≤ 9.
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4 Proof of Theorem 1.2

In this section, we set A = xa(x + 1)bP cQd, with a, b, c, d ∈ N∗, P,Q odd
irreducible, and deg(P ) ≤ deg(Q). We suppose that A is b.u.p.:

σ∗∗(xa) · σ∗∗((x+ 1)b) · σ∗∗(P c) · σ∗∗(Qd) = σ∗∗(A) = A = xa(x+ 1)bP cQd.

We prove that P ∈ M (Lemma 4.1). Moreover, Q ∈ M or it is of the form
1 + xu2(x+ 1)v2Pw2 , where u2, v2, w2 ≥ 1.

Lemma 4.1. i) The polynomial P is a Mersenne prime.
ii) The integer d equals 2 or it is of the form d = 2δ − 1, with δ ∈ N∗.
iii) The polynomial Q is of the form 1+xu2(x+1)v2Pw2, where w2 ∈ {0, 1}.
iv) One has: a, b ≥ 3 and d ≤ min(a, b).
v) If σ∗∗(P c) does not split, then Q is its unique odd divisor.

Proof. i): We remark that 1+P divides σ∗∗(P c). If 1+P does not split over
F2, then Q is an odd irreducible divisor of 1+P and we get the contradiction:
deg(Q) < deg(P ) ≤ deg(Q).
ii): If d is even and if d ≥ 4, then d is of the form 4r or 4r + 2. Thus, the
odd polynomial σ(Q2r) divides σ∗∗(A) = A, so we must have P = σ(Q2r),
which contradicts the fact: deg(P ) ≤ deg(Q).
If d = 2δw − 1 is odd (with w odd) and if w ≥ 3, then P = σ(Qw−1) and
deg(P ) > deg(Q), which is impossible.
iii): From ii), σ∗∗(Qd) = (1 +Q)d so that (1 +Q)d divides A. We may put:
1 +Q = xu2(x+ 1)v2Pw2 , for some u2, v2, w2 ∈ N, u2, v2 ≥ 1.
iv): a, b ≥ 3 because 1+x divide σ∗∗(xa), x divides σ∗∗((x+1)b) and x(x+1)
divides both σ∗∗(P c) and σ∗∗(Qd).
From the proof of iii), xdu2 and (x+1)dv2 both divide A. Thus, d ≤ min(a, b).
v) is immediate.

4.1 Case where Q ∈ M

We get Proposition 4.2 from Lemma 4.5, by direct computations.

Proposition 4.2. If A is b.u.p., where P,Q ∈ M, then A,A ∈ {C8, . . . , C13}.

Lemma 4.3. The polynomials P and Q lie in U = {M1,M2,M3,M4,M5}.

Proof. First, if m ≥ 1 and if σ(x2m) divides σ∗∗(A), then 2m ≤ 6 and
σ(x2m) ∈ {M1,M4,M2M3}.
If P,Q ̸∈ U , then neither P nor Q divides σ∗∗(xa)σ∗∗((x + 1)b). So, P |
σ∗∗(Qd), P = σ(Q2m) with m ≥ 1. It is impossible since deg(P ) ≤ deg(Q).
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If P ∈ U but Q ̸∈ U , then Q does not divide σ∗∗(xa)σ∗∗((x + 1)b). Hence,
it must divide σ(P 2m), for some m ≥ 1. Thus, Q = σ(P 2m). We get the
contradiction: xu2(x+ 1)v2 = 1 +Q = 1 + σ(P 2m) is divisible by P .

Lemma 4.4. i) For T ∈ {P,Q} and m ≥ 1, σ(T 2m) does not divide σ∗∗(A).
ii) The exponents c and d lie in {2, 2γ − 1 : γ ≥ 1}.

Proof. i): For example, if T = P and if σ(T 2m) | σ∗∗(A) = A, then we must
have: σ(T 2m) = Q, which is impossible (see the proof of Lemma 4.3).
ii): If c is even and c ̸= 2, then put c = 4r or c = 4r+2, with r ≥ 1. σ(P 2r)
divides σ∗∗(A), which contradicts i).
If c is odd, then put c = 2γu − 1, with u odd and γ ≥ 1. We also get a
contradiction if u ≥ 3, since σ(P u−1) divides σ∗∗(A).
The proof is similar for d.

Lemma 4.5. The exponents a, b, c and d satisfy:
a ∈ {4, 6, 8, 10, 12, 14}, c, d ∈ {1, 2, 3, 7}, if a is even
b ∈ {2βv − 1 : β ∈ {1, 2, 3}, v ∈ {1, 3, 5, 7}}, if a is even and b odd
a, b ∈ {1, 3, 5, 7, 9, 11, 13}, c, d ∈ {1, 2, 3, 7}, if a and b are both odd.

Proof. We refer to Relations in (1) and in (3).
- If a is even, then a ≥ 4, a = 4r or a = 4r + 2 and σ(x2r) divides σ∗∗(A).
So, 2r ≤ 6 and c, d ≤ a ≤ 14.
- If a is even and b odd, then 2β − 1 ≤ a ≤ 14 and v ≤ 7.
- If a and b are both odd, then u ≥ 3 or v ≥ 3, u, v ≤ 7. As in the proof of
Lemma 3.4, if u, v ≥ 3, then α = 1 = β, then a, b ≤ 13. If u ≥ 3 and v = 1,
then b = 2β − 1 ≤ a ≤ 13 so that b ≤ 7. If u = 1 and v ≥ 3, then β = 1,
then a = 2α − 1 ≤ 7 and b ≤ 13.

4.2 Case where Q ̸∈ M

We prove Proposition 4.6.

Proposition 4.6. If A is b.u.p., where P ∈ M but Q ̸∈ M, then A,A ∈
{D1, D2}.

4.2.1 Useful facts

As in Lemma 3.1, one has: a ≥ 3 or b ≥ 3. Lemma 4.1 allows to write:
P = 1+ xu1(x+ 1)v1 and Q = 1+ xu2(x+ 1)v2Pw2 , with ui, vj , w2 ≥ 1. We
obtain Corollaries 4.20, 4.25 and 4.27. Only, the last of them gives b.u.p.
polynomials, namely D1, D2, D1 and D2 (see Section 5).
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For any g ≥ 1, PQ is not of the form σ(P 2g), because P does not divide
σ(P 2g). We shall see that it suffices to consider three cases (replace A by
A, if necessary): PQ = σ(x2m), Q = σ(x2m), Q = σ(P 2m), for some m ≥ 1.

Lemma 4.7. i) Let n ≥ 1 be such that σ(x2n) (resp. σ((x+ 1)2n), σ(P 2n))
divides σ∗∗(A), then σ(x2n) ∈ {P,Q, PQ} (resp. σ((x+1)2n) ∈ {P,Q, PQ},
σ(P 2n) = Q).
ii) For any n ≥ 1, σ(Q2n) does not divide σ∗∗(A).

Proof. Recall that we suppose: σ∗∗(A) = A.
i): σ(x2n), σ((x + 1)2n) and σ(P 2n) are all odd and squarefree (Lemma
2.9). Hence, they belong to {P,Q, PQ} whenever they divide σ∗∗(A), with
σ(P 2n) ̸∈ {P, PQ}.
ii): If σ(Q2n) | σ∗∗(A), then Pm = σ(Q2n), with m = 1, by Lemma 2.8-i).
So, we get the contradiction: deg(Q) ≥ deg(P ) = 2ndeg(Q) > deg(Q).

Lemma 4.8 ([2], Lemma 4, page 726).
The polynomial 1 + x(x+ 1)2

ν−1 is irreducible if and only if ν ∈ {1, 2}.

Lemma 4.9. If σ(P 2n) divides A for some n ≥ 1, then 2n = 2γ, 2n− 1 ≤
min(a, b).

Proof. Since σ(P 2n) is odd and square-free, Q must divide it. So Q =
σ(P 2n). Put: 2n = 2γh, with h odd.

We get: 1 + P + · · ·+ P 2n−1 =
1 + σ(P 2n)

P
=

1 +Q

P
= xu2(x+ 1)v2Pw2−1.

Thus, w2 = 1 and (1 + P )2
γ−1(1 + P + · · · + P h−1)2

γ
= 1 + P + · · · +

P 2n−1 = xu2(x + 1)v2 . Hence, h = 1, 2n − 1 ≤ (2γ − 1)u1 = u2 ≤ a and
2n− 1 ≤ (2γ − 1)v1 = v2 ≤ b.

Lemma 4.10. i) Let P = M4 and Q = 1+x5(x+1)2
ν−1P 2ν−1, with ν ≥ 1.

Then, Q is irreducible if and only if ν = 2.
ii) Let P ∈ {M1,M4} and Q = 1 + x(x+ 1)2

ν−1P 2ν , with ν ≤ 10. Then, Q
is irreducible if and only if (ν = 2, P = M1) or (ν = 1, P = M4).
iii) Let P ∈ {M1,M4} and Q = 1+ P (1 + P )2

ν−1. Then, Q is irreducible if
and only if P = M1 and ν ∈ {1, 2}.

Proof. i): One has Q = 1 + x5(x+ 1)2
ν−1P 2ν−1 = 1 + x5(x5 + 1)2

ν−1. The
irreducibility of Q implies that 1+x(x+1)2

ν−1 is irreducible. So, ν ∈ {1, 2}
by Lemma 4.8.
If ν = 1, then Q = 1 + x5 + x10 = (x4 + x+ 1)M1M5 is reducible.
If ν = 2, then Q = 1 + x5 + x10 + x15 + x20 which is irreducible.
ii): by direct (Maple) computations.
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iii): The polynomial U = 1+x(x+1)2
ν−1 must be irreducible, so ν ∈ {1, 2}

by Lemma 4.8. Thus, U ∈ {M1,M4}.
If P = U = M1, then Q = 1 + x+ x4 = 1 + x(x+ 1)P is irreducible.
If P = M1 and U = M4, then Q = 1 + x3(x+ 1)3P is irreducible.
If P = M4 and U = M1, then Q = 1+x(x+1)3P = (x6+x5+x4+x2+1)M1

is reducible.
If P = U = M4, then Q = 1+x3(x+1)9P = (x12+x9+x8+x7+x6+x4+
x2 + x+ 1)(1 + x+ x4) is reducible.

Lemma 4.11. If PQ = σ(x2n), then (2n = 8, P = M1, Q = 1+ x3 + x6) or
(2n = 24, P = M4, Q = 1+x5(x5+1)3). Moreover, Q,Q ̸∈ {σ(x2g), σ(P 2g) :
g ≥ 1} and PQ ̸∈ {σ(x2g), σ((x+ 1)2g) : g ≥ 1}.

Proof. Since PQ = σ(x2n), we get P = P ∗ or P = Q∗. But, here, deg(P ) <
deg(Q). So, P = P ∗ and Q = Q∗. Since P is a Mersenne prime and
P = P ∗, one has P = M1 or P = M4. If P = M1, then by Lemma 2.8-iv),
Q = 1+x3(x+1)P = 1+x3+x6. If P = M4, then direct computations give
Q = 1 + x5(x + 1)2

ν−1P 2ν−1. Since Q is irreducible, we get from Lemma
4.10-i), ν = 2 and Q = 1 + x5(x5 + 1)3. Thus, Q ̸∈ {σ(x6), σ((x + 1)6)}
(resp. Q ̸∈ {σ(x20), σ((x + 1)20)} if P = M1 (resp. if P = M4). We also

remark that
deg(Q)

deg(P )
∈ {3, 5}. So, Q,Q ̸∈ {σ(P 2g) : g ≥ 1}.

Lemma 4.12. If Q = σ(x2n) with n ≥ 1, then for some ν ≥ 1, Q =
1 + x(x + 1)2

ν−1M1
2ν or Q = 1 + x(x + 1)2

ν−1M4
2ν . Moreover, Q,Q ̸∈

{σ(P 2g) : g ≥ 1} and PQ ̸∈ {σ(x2g), σ((x+ 1)2g) : g ≥ 1}.

Proof. By direct computations, one has, for some ν ≥ 1: 2n = 2νt, t ∈
{3, 5}, P = σ(xt−1) and Q = 1 + x(x+ 1)2

ν−1P 2ν . Hence, P 2ν∥1 +Q.
If PQ is of the form σ(x2g), then P∥1+Q or P 3∥1+Q (Lemma 4.11), which
is impossible.

Since Q = σ(x2m), Lemma 4.14-i) implies that Q ̸∈ {σ(P 2m), σ(P
2m

)}.

Lemma 4.13. If Q = σ(P 2n), then 2n ≤ 4, P = M1, so that Q ∈ {1+x(x+
1)M1, 1+x3(x+1)3M1}. Moreover, Q,PQ ̸∈ {σ(x2g), σ((x+1)2g) : g ≥ 1}.

Proof. By direct computations, one has: 2n = 2ν , Q = 1+P (1+P )2
ν−1, for

some ν ≥ 1. Since Q is irreducible, we get ν ∈ {1, 2} and P = M1. Again,
by direct computations, Q,PQ ̸∈ {σ(x2g), σ((x+ 1)2g) : g ≥ 1}.

Lemma 4.14. i) For any m,n ∈ N∗, σ(P 2m) ̸= σ(x2n), σ((x+ 1)2n).
ii) If σ(x2n) = σ((x+ 1)2n), then σ(x2n) ̸∈ {Q,PQ}.
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Proof. i): Put 2n− 1 = 2αu− 1 and 2m− 1 = 2βv − 1, with α, β ≥ 1.
If σ(P 2m) = σ(x2n), then P (1 + P + · · ·+ P 2m−1) = x(1 + x+ · · ·+ x2n−1).

Thus, P (P+1)2
β−1(1+P+· · ·+P v−1)2

β
= x(x+1)2

α−1(1+x+· · ·+xu−1)2
α
.

Hence, u ≥ 3 and 2α = 1, which is impossible.
ii): One has 2n = 2h − 2, for some h ≥ 1 (Lemma 2.8-vii)). If Q = σ(x2n),
then by Lemma 4.12, 2h − 2 = 2n = 2νt, with t ∈ {3, 5}. Therefore, ν = 1,
t = 2h−1 − 1, h = 3 = t, 2n = 6 and Q = M2M3 is reducible.
If PQ = σ(x2n), then by Lemma 4.11, one has: (2n = 8, P = M1 and
Q = 1+x3+x6) or (2n = 5·2ν+4, P = M4 and Q = 1+x5(x+1)2

ν−1P 2ν−1).
Thus, 2h − 2 = 2n = 5 · 2ν + 4, ν = 1, h = 4 and Q = 1 + x5(x + 1)P =
(x4 + x+ 1)M1M5 is reducible.

Without loss of generality, by Lemmas 4.11, 4.12 and 4.13, it suffices to
consider the following three cases:

PQ = σ(x2m), Q = σ(x2m), Q = σ(P 2m), for some m ≥ 1.

In each case, we distinguish: (a, b both even), (a even, b odd), (a, b both odd).
We shall compare a, b, c or d with all possible values of the exponents of x,
x+ 1, of P or of Q, in σ∗∗(A).

According to Corollary 2.3 and Lemma 4.1, we get Lemma 4.15 from
Relations in (1) and in (4).

Lemma 4.15.
i) The polynomial P does not divide σ∗∗(P c), but it may divide σ∗∗(Qd).
ii) One has: u2d ≤ a, v2d ≤ b, w2d ≤ c, so that d ≤ min(a, b, c).

4.2.2 Case where PQ = σ(x2m), for some m ≥ 1

We get, from Lemma 4.11, Q,Q ̸∈ {σ(x2g), σ(P 2g) : g ≥ 1}, (2m = 8, P =
M1 and Q = 1 + x3 + x6 = 1 + x3(x + 1)P ) or (2m = 24, P = M4 and
Q = 1 + x5(x5 + 1)3 = 1 + x5(x+ 1)3P 3).
We refer to Relations in (1) and in (4).

Lemma 4.16. On has: c = 2 or c = 2γ − 1, c ≤ min(a, b) and d = 1.

Proof. Since Q ̸= σ(P 2g) for any g, σ∗∗(P c) must split, so c = 2 or c = 2γ−1.
In this case, σ∗∗(P c) = (1 + P )c, where P is a Mersenne prime. So, xc and
(x + 1)c both divide σ∗∗(A) = A. Hence, c ≤ min(a, b). Finally, Q∥σ∗∗(A)
because Q,Q ̸∈ {σ(x2g), σ(P 2g) : g ≥ 1}. Thus, d = 1.

Lemma 4.17. At least, one of a and b is even.
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Proof. If a and b are both odd, then PQ = σ(xu−1), σ((x+1)v−1) ∈ {1, P},
d = 2α, c = w2d + 2α + ε22

β. It follows that c is even and c ≥ 4, which
contradicts Lemma 4.16.

Lemma 4.18. If a and b are both even, then a = 16, b ∈ {4, 6}, c ≤ 3,
P = M1 and Q = 1 + x3(x3 + 1).

Proof. Lemma 4.1-iv) implies that a, b ≥ 4. Moreover, PQ ∈ {σ(x2r), σ(xu−1)}.
If PQ = σ(x2r), then P = σ((x+1)2s), u = v = 1 because gcd(σ(x2r), σ(xu−1)) =
1 = gcd(σ((x+ 1)2s), σ((x+ 1)v−1)). Therefore, 2r = 8, a ̸= 4r + 2, 2s = 2,
a = 16, b ∈ {4, 6}. Furthermore, c ≤ b ≤ 6, so that c ∈ {1, 2, 3}.
If PQ = σ(xu−1), then σ(x2r) = P (by Lemma 4.7), which is impossible
since gcd(σ(x2r), σ(xu−1)) = 1.

Lemma 4.19. If a is even and b odd, then a = 16, b ∈ {1, 3, 7}, c = 2,
P = M1 and Q = 1 + x3(x3 + 1).

Proof. As above, a even implies that a = 4r = 16 and P = M1. One has:
σ((x+1)v−1) ∈ {1, P}. So, v ∈ {1, 3}, c = 1+w2d+ε2 2

β, where w2 = 1 = d.
Thus, c = 2, v = 1, 2β − 1 + 3 + 2 ≤ a = 16, β ≤ 3 and b ∈ {1, 3, 7}.

Corollary 4.20. If A is b.u.p., with PQ of the form σ(x2m), then P = M1,
Q = 1 + x3(x3 + 1), a, b ∈ {1, 3, 4, 6, 7, 16}, c ≤ 3 and d = 1.

4.2.3 Case where Q = σ(x2m), for some m ≥ 1

One has (Lemma 4.12): Q,Q ̸∈ {σ(P 2g) : g ≥ 1}, PQ ̸∈ {σ(x2g), σ((x +
1)2g) : g ≥ 1}, 2m ≥ 10, P ∈ {M1,M4} and Q = 1 + x(x + 1)2

ν−1P 2ν , for
some ν ∈ N∗. So, u1 = u2 = 1, v1 ∈ {1, 3}, v2 = 2ν − 1 and w2 = 2ν .
Moreover, Q ̸= σ((x+ 1)2m) (Lemma 4.14).
We consider Relations in (1) and in (4).

Lemma 4.21. One has: (c = 2 or c = 2γ − 1) and d ≤ 3.

Proof. If σ∗∗(P c) does not split, then Q is the unique odd irreducible divisor
of σ∗∗(P c). It contradicts the fact that Q is not of the form σ(P 2g). So,
σ∗∗(P c) splits and (c = 2 or c = 2γ − 1). The exponent of Q in σ∗∗(A) lies
in {1, 2, 2α, 2β, 1 + 2α, 1 + 2β, 2α + 2β}. So, by Lemma 4.1-ii), d ≤ 3.

Lemma 4.22. At least, one of a and b is even.
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Proof. If a and b are both odd, then Q = σ(xu−1), Q ̸= σ((x + 1)v−1) (by
Lemma 4.14-ii)) and σ((x+1)v−1) ∈ {1, P}. Thus, v ∈ {1, 3, 5}, 2α = d ≤ 3,
α = 1, d = 2, c = 2 · 2ν + ε22

β. So, c is even and c ≥ 4. It contradicts
Lemma 4.21.

Lemma 4.23. If a and b are even, then ν ≤ 2, 20 ≤ a ≤ 26, b ≤ 10, d = 1,
c ∈ {1, 2, 3, 7}, and (P,Q) ∈ {(M1, 1 + x(x+ 1)3P 4), (M4, 1 + x(x+ 1)P 2)}.

Proof. One has: Q ∈ {σ(x2r), σ(xu−1)}.
- If Q = σ(x2r), then Q ̸= σ((x + 1)2s) (by Lemma 4.14-ii)), Q does not
divide σ(xu−1) since gcd(σ(x2r), σ(xu−1)) = 1. So, Q∥σ∗∗(A). Therefore,
d = 1, P = σ((x + 1)2s), σ(xu−1) ∈ {1, P}, u ∈ {1, 3, 5}, v = 1, 2s ≤ 4,
b ≤ 10, c = 2ν + ε12

α+1 ≥ 3. Since 2α+ c ≤ b ≤ 10, we get: c ∈ {1, 2, 3, 7},
α ≤ 2, ν ≤ 2.
Here, Q = 1+ x(x+ 1)2

ν−1P 2ν , with P ∈ {M1,M4} and ν ≤ 2. By Lemma
4.10-ii), one has: (P = M1, ν = 2 and 2r = 12) or (P = M4, ν = 1 and
2r = 10). So, 20 ≤ a ≤ 26.
- If Q = σ(xu−1), then 2α = d ≤ 3 and P = σ(x2r) = σ((x + 1)2s). Thus,
d = 2, 2r = 2s = 2, a, b ∈ {4, 6}, c = 2 + w2d = 2 + 2w2 ≥ 4. It contradicts
Lemma 4.21.

Lemma 4.24. The case where a is even and b odd does not happen.

Proof. If a is even and b odd, then Q ∈ {σ(x2r), σ(xu−1)}.
- If Q = σ(x2r), then d = 1, σ(xu−1), σ((x+1)v−1) ∈ {1, P}, u, v ∈ {1, 3, 5},
w2d = 2ν , c = 2ν + ε12

α + ε22
β is even.

Therefore, c = 2, ν = 1, ε1 = ε2 = 0 and u = v = 1.
By Lemma 4.10-ii), since ν = 1, one has: P = M4 and thus v1 = 3, v2 =
1, w2 = 2, 2r = deg(Q) = 2ν(1 + deg(P )) = 2ν · 5 = 10. We get the
contradiction: a ∈ {20, 22} and a = 2β−1+2u1+u2 = 2β−1+2+1 = 2β+2.
- If Q = σ(xu−1), then a > u−1 = 2m ≥ 10, P = σ(x2r), 2α = d ≤ 3. Hence,
d = 2, 2r ≤ 4, a ∈ {4, 6, 8, 10}. We get the contradiction: a > 10 ≥ a.

Corollary 4.25. If A is b.u.p., with Q of the form σ(x2m), then
(P,Q) = (M1, 1 + x(x+ 1)3M1

4) or (P,Q) = (M4, 1 + x(x+ 1)M4
2),

a, b ∈ {4, 6, 8, 10, 20, 22, 24, 26}, c ∈ {1, 2, 3, 7}, d = 1.

4.2.4 Case where Q = σ(P 2m), for some m ≥ 1

Lemma 4.13 implies that Q,PQ ̸∈ {σ(x2g), σ((x + 1)2g) : g ≥ 1}. P = M1

and (Q = σ(P 2) = 1 + x(x+ 1)P or Q = σ(P 4) = 1 + x3(x+ 1)3P ). Thus,
u1 = v1 = 1, u2 = v2 ∈ {1, 3}, w2 = 1.
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Lemma 4.26. The integer a+ b is odd, a, b ≤ 11, c ≤ 8 and d ≤ 3.

Proof. We refer to Relations in (1) and in (4). Lemma 4.7 is also useful.
If c is even, then 2m = 2t ≥ 2, σ(P 2t) = Q. So, w = 1, d = 1. If c is odd,
then Q = σ(Pw−1), w ∈ {3, 5}, d = 2γ .
- If a and b are even, then a, b ≥ 4 (by Lemma 4.1-iv)), P = σ(x2r) =
σ((x + 1)2s). Hence, u = v = 1, 2r = 2s = 2, a, b ≤ 6 and c = 2 + d (by
considering the exponents of P ). We get a contradiction on the value of c.
- If a and b are odd, then σ(xu−1), σ((x+ 1)v−1) ∈ {1, P}, so that u, v ≤ 3.
Moreover, if c is even, then σ(P 2t) = Q, w = 1, d = 1 and c ∈ {1, 1+2α, 1+
2β, 1+2α+2β}. It contradicts the parity of c. If c is odd, then Q = σ(Pw−1),
w ∈ {3, 5}, d = 2γ , so that d = 2 and c ∈ {2, 2 + 2α, 2 + 2β, 2 + 2α + 2β}.
We also get a contradiction on the value of c.
- If a is even and b odd, then a ≥ 4 (Lemma 4.1), σ(x2r) = P = M1,
u = 1, 2r = 2, a ≤ 6. Moreover, σ((x + 1)v−1) ∈ {1, P}, so v ≤ 3. We get
β ≤ 2, b ≤ 11, d ≤ 3 and c ≤ 8 because 2β − 1 ≤ a ≤ 6, d ≤ a ≤ 6 and
c ∈ {1 + d, 1 + 2β + d}.
The proof is similar if a is odd and b even.

Corollary 4.27. If A is b.u.p., with Q of the form σ(P 2m), then P = M1,
Q ∈ {1 + x(x+ 1)P, 1 + x3(x+ 1)3P}, a+ b is odd, a, b ≤ 11, c ≤ 8, d ≤ 3.

5 Maple Computations

The function σ∗∗ is defined as Sigm2star, for the Maple code.

> Sigm2star1:=proc(S,a) if a=0 then 1;else if a mod 2 = 0

then n:=a/2:sig1:=sum(S^l,l=0..n):sig2:=sum(S^l,l=0..n-1):

Factor((1+S)*sig1*sig2) mod 2:

else Factor(sum(S^l,l=0..a)) mod 2:fi:fi:end:

> Sigm2star:=proc(S) P:=1:L:=Factors(S) mod 2:k:=nops(L[2]):

for j to k do S1:=L[2][j][1]:h1:=L[2][j][2]:

P:=P*Sigm2star1(S1,h1):od:P:end:

We search all S = xa(x+1)bP c or S = xa(x+1)bP cQd such that σ∗∗(S) = S.

5.1 Case where ω(A) = 3

We have proved that P ∈ {M1,M4,M5}. By means of Lemma 3.4. We
obtain C1, . . . , C7.
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5.2 Case where ω(A) = 4 with P,Q ∈ M

We have shown that P,Q ∈ {M1,M2,M3,M4,M5}. From Lemma 4.5, we
obtain C8, . . . , C13.

5.3 Case where ω(A) = 4 with P ∈ M, Q ̸∈ M

We apply Corollaries 4.20, 4.25 and 4.27.
1) If Q or PQ is of the form σ(x2m), then we obtain no b.u.p. polynomials.
2) If Q is of the form σ(P 2m), then we get D1, D2, D1 and D2.
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