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All bi-unitary perfect polynomials over F 2 with at most four irreducible factors

We give, in this paper, all bi-unitary perfect polynomials over the prime field F 2 , with at most four irreducible factors.

We consider the following polynomials over F 2 :

Theorem 1.2. Let A ∈ F 2 [x] be b.u.p. such that ω(A) = 4. Then A, A ∈ {C j : 8 ≤ j ≤ 13} ∪ {D 1 , D 2 }.

Introduction

Let S ∈ F 2 [x] be a nonzero polynomial. We say that S is odd if gcd(S, x(x + 1)) = 1, S is even if it is not odd. A Mersenne (prime) is a polynomial (irreducible) of the form 1 + x a (x + 1) b , with gcd(a, b) = 1. A divisor D of S is called unitary if gcd(D, S/D) = 1. We denote by gcd u (S, T ) the greatest common unitary divisor of S and T . A divisor D of S is called bi-unitary if gcd u (D, S/D) = 1. We denote by σ(S) (resp. σ * (S), σ * * (S)) the sum of all divisors (resp. unitary divisors, bi-unitary divisors) of S. The functions σ, σ * and σ * * are all multiplicative. We say that a polynomial S is perfect (resp. unitary perfect, bi-unitary perfect) if σ(S) = S (resp. σ * (S) = S, σ * * (S) = S). Finally, we say that S is indecomposable bi-unitary perfect (i.b.u.p.) if it is bi-unitary perfect but it is not a product of two coprime nonconstant biunitary perfect polynomials. As usual, ω(S) designates the number of distinct irreducible factors of S. Several studies are done about perfect and unitary perfect. In particular, we gave ( [START_REF] Gallardo | There is no odd perfect polynomial over F 2 with four prime factors[END_REF], [4], [START_REF] Gallardo | All unitary perfect polynomials over F 2 with at most four distinct irreducible factors[END_REF]) the list of all (unitary) perfect polynomials A over F 2 (even or not), with ω(A) ≤ 4.

In this paper, we are interested in bi-unitary perfect polynomials (b.u.p. polynomials) A with ω(A) ≤ 4. If A ∈ F 2 [x] is nonconstant b.u.p., then x(x + 1) divides A so that ω(A) ≥ 2 (see Lemma 2.5). Moreover, the only b.u.p. polynomials over F 2 with exactly two prime factors are x 2 (x + 1) 2 and x 2 n -1 (x + 1) 2 n -1 , for any nonnegative integer n ([1], Theorem 5). We prove (Theorems 1.1 and 1.2) that the only b.u.p. polynomials A ∈ F 2 , with ω(A) ∈ {3, 4}, are those given in [START_REF] Beard | Bi-Unitary Perfect polynomials over GF (q), Annali di Mat[END_REF], plus four other ones. Note that all odd irreducible divisors of the C j 's are Mersenne primes (there is a misprint for C 6 , in [START_REF] Beard | Bi-Unitary Perfect polynomials over GF (q), Annali di Mat[END_REF]).

In the rest of the paper, for S ∈ F 2 [x], we denote by S the polynomial obtained from S with x replaced by x + 1: S(x) = S(x + 1). As usual, N (resp. N * ) denotes the set of nonnegative integers (resp. of positive integers). For S, T ∈ F 2 [x] and n ∈ N * , we write:

S n ∥T if S n |T but S n+1 T .
Finally, let M denotes the set of all Mersenne primes.

Preliminaries

We need the following results. Some of them are obvious or (well) known, so we omit their proofs.

Lemma 2.1. Let T be an irreducible polynomial over

F 2 and k, l ∈ N * . Then, gcd u (T k , T l ) = 1 (resp. T k ) if k ̸ = l (resp. k = l). In particular, gcd u (T k , T 2n-k ) = 1 for k ̸ = n, gcd u (T k , T 2n+1-k ) = 1 for any 0 ≤ k ≤ 2n + 1. Lemma 2.2. Let T ∈ F 2 [x] be irreducible. Then i) σ * * (T 2n ) = (1 + T )σ(T n )σ(T n-1 ), σ * * (T 2n+1 ) = σ(T 2n+1 ). ii) For any c ∈ N, T does not divide σ * * (T c ). Proof. i): σ * * (T 2n ) = 1 + T + • • • + T n-1 + T n+1 + • • • + T 2n = (1 + T n+1 )σ(T n-1 ) = (1 + T )σ(T n )σ(T n-1 ), σ * * (T 2n+1 ) = 1 + T + • • • + T 2n+1 . ii) follows from i). Corollary 2.3. Let T ∈ F 2 [x] be irreducible. Then i) If a ∈ {4r, 4r + 2}, where 2r -1 or 2r + 1 is of the form 2 α u -1, u odd, then σ * * (T a ) = (1 + T ) 2 α • σ(T 2r ) • (σ(T u-1 )) 2 α , gcd(σ(T 2r ), σ(T u-1 )) = 1. ii) If a = 2 α u-1 is odd, with u odd, then σ * * (T a ) = (1+T ) 2 α -1 •(σ(T u-1 )) 2 α .
Corollary 2.4. i) The polynomial σ * * (x a ) splits over F 2 if and only if a = 2 or a = 2 α -1, for some α ∈ N * . ii) Let T ∈ F 2 [x] be odd and irreducible. Then σ * * (T c ) splits over F 2 if and only if (T is Mersenne, c = 2 or c = 2 γ -1 for some γ ∈ N * ). Lemma 2.5. If A is a nonconstant b.u.p. polynomial over F 2 , then x(x +1) divides A so that ω(A) ≥ 2. 

Lemma 2.6. If

A = A 1 A 2 is b.u.p. over F 2 and if gcd(A 1 , A 2 ) = 1, then A 1 is b.u.p. if
n, m ∈ N. i) If σ(P 2n ) = Q m , then m ∈ {0, 1}. ii) If σ(P 2n ) = Q m T , with m > 1 and T ∈ F 2 [x] is nonconstant, then deg(P ) > deg(Q). iii) If P is a Mersenne prime and if P = P * , then P ∈ {M 1 , M 4 }. iv) If σ(x 2n ) = P Q and P = σ((x + 1) 2m ), then 2n = 8, 2m = 2, P = M 1 and Q = P (x 3 ) = 1 + x 3 + x 6 . v) If any irreducible factor of σ(x 2n ) is a Mersenne prime, then 2n ≤ 6. vi) If σ(x 2n ) is a Mersenne prime, then 2n ∈ {2, 4}. vii) If σ(x n ) = σ((x + 1) n ), then n = 2 h -2, for some h ∈ N * .
Lemma 2.9. [see [START_REF] Gallardo | Characterization of Sporadic perfect polynomials over F 2[END_REF], Lemma 2.6] Let m ∈ N * and T be a Mersenne prime. Then, σ(x 2m ), σ((x + 1) 2m ) and σ(M 2m ) are all odd and squarefree.

The following equalities (obtained from Corollary 2.3) are useful.

                                                 σ * * (T 2 ) = (1 + T ) 2 , if T is irreducible For a, b ≥ 3, σ * * (x a ) = (1 + x) 2 α • σ(x 2r ) • (σ(x u-1 )) 2 α , with gcd(σ(x 2r ), σ(x u-1 )) = 1, if a = 4r, 2r -1 = 2 α u -1, (resp. a = 4r + 2, 2r + 1 = 2 α u -1), u odd σ * * ((x + 1) b ) = x 2 β • σ((x + 1) 2s ) • (σ((x + 1) v-1 )) 2 β , if b = 4s, 2s -1 = 2 β v -1, (resp. b = 4s + 2, 2s + 1 = 2 β v -1), v odd σ * * (x a ) = (1 + x) 2 α -1 • (σ(x u-1 )) 2 α , if a = 2 α u -1 is odd, with u odd σ * * ((x + 1) b ) = x 2 β -1 • (σ((x + 1) v-1 )) 2 β , if b = 2 β v -1 is odd, with v odd r, α, β ≥ 1.
(1) Moreover, we shall also (prove and) consider the following relations:

c ∈ {2, 2 γ -1 : γ ≥ 1}, σ * * (P c ) = (1 + P ) c (in Section 3). (2) 
In Section 4.1:

c, d ∈ {2, 2 γ -1 : γ ≥ 1}, σ * * (P c ) = (1 + P ) c , σ * * (Q d ) = (1 + Q) d (3)
and in Section 4.2:

                       σ * * (P c ) = (1 + P ) 2 γ • σ(P 2t ) • (σ(P w-1
)) 2 γ , with gcd(σ(P 2t ), σ(P w-1 )) = 1, if c ∈ {4t, 4t + 2}, where 2t -1 or 2t + 1 is of the form 2 γ w -1, w odd

σ * * (P c ) = (1 + P ) 2 γ -1 • (σ(P w-1 )) 2 γ , if c = 2 γ w -1 is odd, with w odd d ∈ {2, 2 γ -1 : γ ≥ 1}, σ * * (Q d ) = (1 + Q) d = x u 2 d (x + 1) v 2 d P w 2 d r, α, β, u 2 , v 2 , w 2 ≥ 1, ε 1 = min(1, u -1), ε 2 = min(1, v -1), ε 1 , ε 2 ∈ {0, 1}. ( 4 
)
3 Proof of Theorem 1.1

We set A = x a (x + 1) b P c , with a, b, c ∈ N * and P odd irreducible. We suppose that A is b.u.p.:

σ * * (x a ) • σ * * ((x + 1) b ) • σ * * (P c ) = σ * * (A) = A = x a (x + 1) b P c .
We show that P is a Mersenne prime. By direct (Maple) computations, we get our result from Lemma 3.4. Proof.

Put P = 1 + x u 1 (x + 1) v 1 . If a = 2, then b ≥ 3, σ * * (x a ) = (1 + x) 2 , x 2 ∥A = σ * * (A)
. By comparing a with the exponent of x in σ * * (A), we get

a = 2 β +u 1 c > 2 if b is even, a = 2 β -1+u 1 c if b is odd, with b = 2 β v -1. So, b is odd, β = u 1 = c = 1.
We also have: P = σ((x + 1) v-1 ) and c = 2 β ≥ 2, which is impossible. 

b = 2 β v-1, where v is odd. Since σ((x+1) v-1 ) divides σ * * (A) = A, v ∈ {1, 3, 5} and 2 β -1 ≤ a ≤ 10. iii): Write a = 2 α u -1 and b = 2 β v -1, where u, v are odd. As above, u, v ∈ {1, 3, 5}. σ * * (x a (x + 1) b ) does not split, so u ≥ 3 or v ≥ 3. Moreover, α = 1 (resp. β = 1) if u ≥ 3 (resp. v ≥ 3). We also get: 2 β -1 ≤ a, 2 α -1 ≤ b. If α = 1 = β, then a, b ≤ 9. If α = 1 and v = 1, then b = 2 β -1 ≤ a ≤ 9 so that b ≤ 7. If u = 1 and β = 1, then a = 2 α -1 ≤ 7 and b ≤ 9.

Proof of Theorem 1.2

In this section, we set A = x a (x + 1) b P c Q d , with a, b, c, d ∈ N * , P, Q odd irreducible, and deg(P ) ≤ deg(Q). We suppose that A is b.u.p.:

σ * * (x a ) • σ * * ((x + 1) b ) • σ * * (P c ) • σ * * (Q d ) = σ * * (A) = A = x a (x + 1) b P c Q d .
We prove that P ∈ M (Lemma 4.1). Moreover, Q ∈ M or it is of the form 1 + x u 2 (x + 1) 

): From ii), σ * * (Q d ) = (1 + Q) d so that (1 + Q) d divides A.
We may put: From the proof of iii), x du 2 and (x+1) 

1 + Q = x u 2 (x + 1) v 2 P w 2 , for some u 2 , v 2 , w 2 ∈ N, u 2 , v 2 ≥ 1.
Q lie in U = {M 1 , M 2 , M 3 , M 4 , M 5 }. Proof. First, if m ≥ 1 and if σ(x 2m ) divides σ * * (A), then 2m ≤ 6 and σ(x 2m ) ∈ {M 1 , M 4 , M 2 M 3 }. If P, Q ̸ ∈ U, then neither P nor Q divides σ * * (x a )σ * * ((x + 1) b ). So, P | σ * * (Q d ), P = σ(Q 2m ) with m ≥ 1. It is impossible since deg(P ) ≤ deg(Q). If P ∈ U but Q ̸ ∈ U, then Q does not divide σ * * (x a )σ * * ((x + 1) b
). Hence, it must divide σ(P 2m ), for some m ≥ 1. Thus, Q = σ(P 2m ). We get the contradiction:

x u 2 (x + 1) v 2 = 1 + Q = 1 + σ(P 2m
) is divisible by P . If c is odd, then put c = 2 γ u -1, with u odd and γ ≥ 1. We also get a contradiction if u ≥ 3, since σ(P u-1 ) divides σ * * (A). The proof is similar for d.

Lemma 4.5. The exponents a, b, c and d satisfy: 

a ∈ {4, 6, 8, 10, 12, 14}, c, d ∈ {1, 2, 3, 7}, if a is even b ∈ {2 β v -1 : β ∈ {1, 2, 3}, v ∈ {1, 3, 5, 7}}, if a is even and b odd a, b ∈ {1, 3 , 5, 7, 9, 11, 

Case where Q ̸ ∈ M

We prove Proposition 4.6.

Proposition 4.6. If A is b.u.p., where

P ∈ M but Q ̸ ∈ M, then A, A ∈ {D 1 , D 2 }.

Useful facts

As in Lemma 3.1, one has: a ≥ 3 or b ≥ 3. Lemma 4.1 allows to write: iii): The polynomial U = 1 + x(x + 1) 2 ν -1 must be irreducible, so ν ∈ {1, 2} by Lemma 4.8. Thus, U ∈ {M 1 , M 4 }.

P = 1 + x u 1 (x + 1) v 1 and Q = 1 + x u 2 (x + 1) v 2 P w 2 , with u i , v j ,
If P = U = M 1 , then Q = 1 + x + x 4 = 1 + x(x + 1)P is irreducible. If P = M 1 and U = M 4 , then Q = 1 + x 3 (x + 1) 3 P is irreducible. If P = M 4 and U = M 1 , then Q = 1+x(x+1) 3 P = (x 6 +x 5 +x 4 +x 2 +1)M 1 is reducible. If P = U = M 4 , then Q = 1 + x 3 (x + 1) 9 P = (x 12 + x 9 + x 8 + x 7 + x 6 + x 4 + x 2 + x + 1)(1 + x + x 4 ) is reducible. Lemma 4.11. If P Q = σ(x 2n ), then (2n = 8, P = M 1 , Q = 1 + x 3 + x 6 ) or (2n = 24, P = M 4 , Q = 1 + x 5 (x 5 + 1) 3 ). Moreover, Q, Q ̸ ∈ {σ(x 2g ), σ(P 2g ) : g ≥ 1} and P Q ̸ ∈ {σ(x 2g ), σ((x + 1) 2g ) : g ≥ 1}.
Proof. Since P Q = σ(x 2n ), we get P = P * or P = Q * . But, here, deg(P ) < deg(Q). So, P = P * and Q = Q * . Since P is a Mersenne prime and P = P * , one has P = M 1 or P = M 4 . If P = M 1 , then by Lemma 2.8-iv), Q = 1 + x 3 (x + 1)P = 1 + x 3 + x 6 . If P = M 4 , then direct computations give

Q = 1 + x 5 (x + 1) 2 ν -1 P 2 ν -1 . Since Q is irreducible, we get from Lemma 4.10-i), ν = 2 and Q = 1 + x 5 (x 5 + 1) 3 . Thus, Q ̸ ∈ {σ(x 6 ), σ((x + 1) 6 )} (resp. Q ̸ ∈ {σ(x 20 ), σ((x + 1) 20 )} if P = M 1 (resp. if P = M 4 ). We also remark that deg(Q) deg(P ) ∈ {3, 5}. So, Q, Q ̸ ∈ {σ(P 2g ) : g ≥ 1}.
Lemma 4.12.

If Q = σ(x 2n ) with n ≥ 1, then for some ν ≥ 1, Q = 1 + x(x + 1) 2 ν -1 M 1 2 ν or Q = 1 + x(x + 1) 2 ν -1 M 4 2 ν . Moreover, Q, Q ̸ ∈ {σ(P 2g ) : g ≥ 1} and P Q ̸ ∈ {σ(x 2g ), σ((x + 1) 2g ) : g ≥ 1}.
Proof. By direct computations, one has, for some ν ≥ 1: 2n = 2 ν t, t ∈ {3, 5}, P = σ(x t-1 ) and Q

= 1 + x(x + 1) 2 ν -1 P 2 ν . Hence, P 2 ν ∥1 + Q. If P Q is of the form σ(x 2g ), then P ∥1 + Q or P 3 ∥1 + Q (Lemma 4.11), which is impossible. Since Q = σ(x 2m ), Lemma 4.14-i) implies that Q ̸ ∈ {σ(P 2m ), σ(P 2m )}. Lemma 4.13. If Q = σ(P 2n ), then 2n ≤ 4, P = M 1 , so that Q ∈ {1+x(x+ 1)M 1 , 1 + x 3 (x + 1) 3 M 1 }. Moreover, Q, P Q ̸ ∈ {σ(x 2g ), σ((x + 1) 2g ) : g ≥ 1}.
Proof. By direct computations, one has: 2n 

= 2 ν , Q = 1 + P (1 + P ) 2 ν -1 , for some ν ≥ 1. Since Q is irreducible, we get ν ∈ {1, 2} and P = M 1 . Again, by direct computations, Q, P Q ̸ ∈ {σ(x 2g ), σ((x + 1) 2g ) : g ≥ 1}.

Maple Computations

The function σ * * is defined as Sigm2star, for the Maple code. 

Case where ω(A) = 3

We have proved that P ∈ {M 1 , M 4 , M 5 }. By means of Lemma 3.4. We obtain C 1 , . . . , C 7 .

Lemma 3 . 1 .Corollary 3 . 2 .Lemma 3 . 3 .

 313233 The polynomial σ * * (x a (x + 1) b ) does not split, so that (a ≥ 3 or b ≥ 3) and(a ̸ = 2 n -1 or b ̸ = 2 m -1 for any n, m ≥ 1). Proof. If σ * * (x a (x + 1) b ) splits, then σ * * (x a (x + 1) b ) = x b (x + 1) a . Thus, a = b and σ * * (P c ) = P c . It contradicts Lemma 2.2-ii). If a, b ≤ 2 or (a = 2 n -1, b = 2 m -1 for some n, m ≥ 1), then σ * * (x a) and σ * * ((x + 1) b ) split. The polynomial P is a Mersenne prime, P ∈ {M 1 , M 4 , M 5 }. Moreover, c = 2 or c = 2 γ -1, for some γ ≥ 1 and c ≤ min(a, b).Proof. By Lemma 3.1, there exists m ≥ 1 such that σ(x 2m ) or σ((x + 1) 2m ) divides σ * * (A) = A. Moreover, P does not divide σ * * (P c ). We conclude that P ∈ {σ(x 2m ), σ((x + 1) 2m )}. Thus, 2m ≤ 4 by Lemma 2.8-vi). By Corollary 2.4, σ * * (P c ) must split. So, c takes the expected value. Furthermore, x c and (x + 1) c both divide σ * * (A) = A, because they divide (1 + P ) c = σ * * (P c ). So, c ≤ min(a, b). If a (resp. b) is even, then a ≥ 4 (resp. b ≥ 4).

Lemma 3 . 4 .

 34 i) If a is even, then a ∈ {4, 6, 8, 10} and c ∈ {1, 2, 3, 7}. ii) If a is even and b odd, then b ∈ {2 β v -1 : v ∈ {1, 3, 5}, β ∈ {1, 2, 3}}.iii) If a and b are both odd, then a, b ∈ {1, 3, 5, 7, 9} and c ∈ {1, 2, 3, 7}.Proof. i): Since a ≥ 4 (Lemma 3.3), put a = 4r or a = 4r + 2, with r ≥ 1. Then, σ(x 2r ) divides σ * * (A). So, 2r ≤ 4 and c ≤ a ≤ 10. ii): Write

  iv): a, b ≥ 3 because 1+x divide σ * * (x a ), x divides σ * * ((x+1) b ) and x(x+1) divides both σ * * (P c ) and σ * * (Q d ).

Lemma 4 . 4 .

 44 i) For T ∈ {P, Q} and m ≥ 1, σ(T 2m ) does not divide σ * * (A).ii) The exponents c and d lie in {2, 2 γ -1 : γ ≥ 1}.Proof. i): For example, if T = P and if σ(T 2m ) | σ * * (A) = A, then we must have: σ(T 2m ) = Q, which is impossible (see the proof of Lemma 4.3). ii): If c is even and c ̸ = 2, then put c = 4r or c = 4r + 2, with r ≥ 1. σ(P 2r ) divides σ * * (A), which contradicts i).

  13}, c, d ∈ {1, 2, 3, 7}, if a and b are both odd. Proof. We refer to Relations in (1) and in (3). -If a is even, then a ≥ 4, a = 4r or a = 4r + 2 and σ(x 2r ) divides σ * * (A). So, 2r ≤ 6 and c, d ≤ a ≤ 14. -If a is even and b odd, then 2 β -1 ≤ a ≤ 14 and v ≤ 7. -If a and b are both odd, then u ≥ 3 or v ≥ 3, u, v ≤ 7. As in the proof of Lemma 3.4, if u, v ≥ 3, then α = 1 = β, then a, b ≤ 13. If u ≥ 3 and v = 1, then b = 2 β -1 ≤ a ≤ 13 so that b ≤ 7. If u = 1 and v ≥ 3, then β = 1, then a = 2 α -1 ≤ 7 and b ≤ 13.

w 2 ≥

 2 1. We obtain Corollaries 4.20, 4.25 and 4.27. Only, the last of them gives b.u.p. polynomials, namely D 1 , D 2 , D 1 and D 2 (see Section 5).

Lemma 4 .

 4 14. i) For any m, n ∈ N * , σ(P 2m ) ̸ = σ(x 2n ), σ((x + 1) 2n ). ii) If σ(x 2n ) = σ((x + 1) 2n ), then σ(x 2n ) ̸ ∈ {Q, P Q}. Lemma 4.26. The integer a + b is odd, a, b ≤ 11, c ≤ 8 and d ≤ 3.Proof. We refer to Relations in[START_REF] Beard | Bi-Unitary Perfect polynomials over GF (q), Annali di Mat[END_REF] and in (4). Lemma 4.7 is also useful.If c is even, then 2m = 2t ≥ 2, σ(P 2t ) = Q. So, w = 1, d = 1. If c is odd, then Q = σ(P w-1 ), w ∈ {3, 5}, d = 2 γ . -Ifa and b are even, then a, b ≥ 4 (by Lemma 4.1-iv)), P = σ(x 2r ) = σ((x + 1) 2s ). Hence, u = v = 1, 2r = 2s = 2, a, b ≤ 6 and c = 2 + d (by considering the exponents of P ). We get a contradiction on the value of c. -If a and b are odd, then σ(x u-1 ), σ((x + 1) v-1 ) ∈ {1, P }, so that u, v ≤ 3. Moreover, if c is even, then σ(P 2t ) = Q, w = 1, d = 1 and c ∈ {1, 1 + 2 α , 1 + 2 β , 1+2 α +2 β }. It contradicts the parity of c. If c is odd, then Q = σ(P w-1 ), w ∈ {3, 5}, d = 2 γ , so that d = 2 and c ∈ {2, 2 + 2 α , 2 + 2 β , 2 + 2 α + 2 β }.We also get a contradiction on the value of c.-If a is even and b odd, then a ≥ 4 (Lemma 4.1), σ(x 2r ) = P = M 1 , u = 1, 2r = 2, a ≤ 6. Moreover, σ((x + 1) v-1 ) ∈ {1, P }, so v ≤ 3. We get β ≤ 2, b ≤ 11, d ≤ 3 and c ≤ 8 because 2 β -1 ≤ a ≤ 6, d ≤ a ≤ 6 and c ∈ {1 + d, 1 + 2 β + d}. The proof is similar if a is odd and b even.

Corollary 4 .

 4 27. If A is b.u.p., with Q of the form σ(P 2m ), then P = M 1 , Q ∈ {1 + x(x + 1)P, 1 + x 3 (x + 1) 3 P }, a + b is odd, a, b ≤ 11, c ≤ 8, d ≤ 3.

>

  Sigm2star1:=proc(S,a) if a=0 then 1;else if a mod 2 = 0 then n:=a/2:sig1:=sum(S^l,l=0..n):sig2:=sum(S^l,l=0..n-1): Factor((1+S)*sig1*sig2) mod 2: else Factor(sum(S^l,l=0..a)) mod 2:fi:fi:end: > Sigm2star:=proc(S) P:=1:L:=Factors(S) mod 2:k:=nops(L[2]): for j to k do S1:=L[2][j][1]:h1:=L[2][j][2]: P:=P*Sigm2star1(S1,h1):od:P:end: We search all S = x a (x+1) b P c or S = x a (x+1) b P c Q d such that σ * * (S) = S.

Lemma 2.8. Let

  and only if A 2 is b.u.p. P, Q ∈ F 2 [x] be such that P is irreducible and let

	Lemma 2.7. If A is b.u.p. over F 2 , then the polynomial A is also b.u.p.
	over F 2 .
	Lemma 2.8 below gives some useful results from Canaday's paper ([2],
	Lemmas 4, 5, 6, Theorem 8 and Corollary on page 728).

  v 2 P w 2 , where u 2 , v 2 , w 2 ≥ 1.

	Lemma 4.1. i) The polynomial P is a Mersenne prime.
	ii) The integer d equals 2 or it is of the form d = 2

δ -1, with δ ∈ N * . iii) The polynomial Q is of the form 1 + x u 2 (x + 1) v 2 P w 2 , where w 2 ∈ {0, 1}. iv) One has: a, b ≥ 3 and d ≤ min(a, b). v) If σ * * (P c ) does not split, then Q is its unique odd divisor.

Proof. i): We remark that 1+P divides σ * * (P c ). If 1+ P does not split over F 2 , then Q is an odd irreducible divisor of 1+P and we get the contradiction:

deg(Q) < deg(P ) ≤ deg(Q). ii): If d is even and if d ≥ 4,

then d is of the form 4r or 4r + 2. Thus, the odd polynomial σ(Q 2r ) divides σ * * (A) = A, so we must have P = σ(Q 2r ), which contradicts the fact: deg(P ) ≤ deg(Q). If d = 2 δ w -1 is odd (with w odd) and if w ≥ 3, then P = σ(Q w-1 ) and deg(P ) > deg(Q), which is impossible. iii

5.3 Case where ω(A) = 4 with P ∈ M, Q ̸ ∈ M We apply Corollaries 4.20, 4.25 and 4.27. 1) If Q or P Q is of the form σ(x 2m ), then we obtain no b.u.p. polynomials. 2) If Q is of the form σ(P 2m ), then we get D 1 , D 2 , D 1 and D 2 .

For any g ≥ 1, P Q is not of the form σ(P 2g ), because P does not divide σ(P 2g ). We shall see that it suffices to consider three cases (replace A by A, if necessary): P Q = σ(x 2m ), Q = σ(x 2m ), Q = σ(P 2m ), for some m ≥ 1. Lemma 4.7. i) Let n ≥ 1 be such that σ(x 2n ) (resp. σ((x + 1) 2n ), σ(P 2n )) divides σ * * (A), then σ(x 2n ) ∈ {P, Q, P Q} (resp. σ((x + 1) 2n ) ∈ {P, Q, P Q}, σ(P 2n ) = Q). ii) For any n ≥ 1, σ(Q 2n ) does not divide σ * * (A).

Proof. Recall that we suppose: σ * * (A) = A. i): σ(x 2n ), σ((x + 1) 2n ) and σ(P 2n ) are all odd and squarefree (Lemma 2.9). Hence, they belong to {P, Q, P Q} whenever they divide σ * * (A), with σ(P 2n ) ̸ ∈ {P, P Q}.

Proof. Since σ(P 2n ) is odd and square-free, Q must divide it. So Q = σ(P 2n ). Put: 2n = 2 γ h, with h odd. We get:

Thus, w 2 = 1 and (1 + P ) 2 γ -1 (1

). Thus, P (P +1)

), then by Lemma 4.11, one has: (2n = 8, P = M 1 and

Without loss of generality, by Lemmas 4.11, 4.12 and 4.13, it suffices to consider the following three cases:

In each case, we distinguish: (a, b both even), (a even, b odd), (a, b both odd). We shall compare a, b, c or d with all possible values of the exponents of x, x + 1, of P or of Q, in σ * * (A).

According to Corollary 2.3 and Lemma 4.1, we get Lemma 4.15 from Relations in [START_REF] Beard | Bi-Unitary Perfect polynomials over GF (q), Annali di Mat[END_REF] and in (4).

Lemma 4.15.

i) The polynomial P does not divide σ * * (P c ), but it may divide σ * * (Q d ).

ii) One has:

Case where

We get, from Lemma 4.11, Q, Q ̸ ∈ {σ(x 2g ), σ(P 2g ) : g ≥ 1}, (2m = 8, P = M 1 and Q = 1 + x 3 + x 6 = 1 + x 3 (x + 1)P ) or (2m = 24, P = M 4 and Q = 1 + x 5 (x 5 + 1) 3 = 1 + x 5 (x + 1) 3 P 3 ). We refer to Relations in [START_REF] Beard | Bi-Unitary Perfect polynomials over GF (q), Annali di Mat[END_REF] and in (4). Proof. Lemma 4.1-iv) implies that a, b ≥ 4. Moreover, P Q ∈ {σ(x 2r ), σ(x u-1 )}.

), then σ(x 2r ) = P (by Lemma 4.7), which is impossible since gcd(σ(x 2r ), σ(x u-1 )) = 1. Proof. As above, a even implies that a = 4r = 16 and P = M 1 . One has:

4.2.3

Case where Q = σ(x 2m ), for some m ≥ 1 One has (Lemma 4.12):

We consider Relations in [START_REF] Beard | Bi-Unitary Perfect polynomials over GF (q), Annali di Mat[END_REF] and in (4). Proof. If σ * * (P c ) does not split, then Q is the unique odd irreducible divisor of σ * * (P c ). It contradicts the fact that Q is not of the form σ(P 2g ). So, σ * * (P c ) splits and Proof. If a and b are both odd, then Q = σ(x u-1 ), Q ̸ = σ((x + 1) v-1 ) (by Lemma 4.14-ii)) and σ((x +1) v-1 ) ∈ {1, P }. Thus, v ∈ {1, 3, 5}, Proof. One has: Q ∈ {σ(x 2r ), σ(x u-1 )}.

-If Q = σ(x 2r ), then Q ̸ = σ((x + 1) 2s ) (by Lemma 4.14-ii)), Q does not divide σ(x u-1 ) since gcd(σ(x 2r ), σ(x u-1 )) = 1. So, Q∥σ * * (A). Therefore,

Here, Q = 1 + x(x + 1) 2 ν -1 P 2 ν , with P ∈ {M 1 , M 4 } and ν ≤ 2. By Lemma 4.10-ii), one has: (P = M 1 , ν = 2 and 2r = 12) or (P = M 4 , ν = 1 and 2r = 10). So, 20 ≤ a ≤ 26.

Lemma 4.24. The case where a is even and b odd does not happen.

Proof. If a is even and b odd, then Q ∈ {σ(x 2r ), σ(x u-1 )}.

- 

4.2.4

Case where Q = σ(P 2m ), for some m ≥ 1 Lemma 4.13 implies that Q, P Q ̸ ∈ {σ(x 2g ), σ((x + 1) 2g ) : g ≥ 1}. P = M 1 and (Q = σ(P 2 ) = 1 + x(x + 1)P or Q = σ(P 4 ) = 1 + x 3 (x + 1) 3 P ). Thus,