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Abstract
We give all non splitting bi-unitary perfect polynomials over the prime field
of two elements, which have only Mersenne polynomials as odd irreducible
divisors.

1 Introduction

Let S ∈ F2[x] be a nonzero polynomial. We say that S is odd if
gcd(S, x(x + 1)) = 1, S is even if it is not odd. A Mersenne (prime) is
a polynomial (irreducible) of the form 1 + xa(x+ 1)b, with gcd(a, b) = 1. A
divisorD of S is called unitary if gcd(D,S/D) = 1. We denote by gcdu(S, T )
the greatest common unitary divisor of S and T . A divisor D of S is called
bi-unitary if gcdu(D,S/D) = 1.
We denote by σ(S) (resp. σ∗(S), σ∗∗(S)) the sum of all divisors (resp. uni-
tary divisors, bi-unitary divisors) of S. The functions σ, σ∗ and σ∗∗ are all
multiplicative. We say that a polynomial S is perfect (resp. unitary perfect,
bi-unitary perfect) if σ(S) = S (resp. σ∗(S) = S, σ∗∗(S) = S).
Finally, we say that a bi-unitary perfect polynomial is indecomposable if it
is not a product of two coprime nonconstant bi-unitary perfect polynomials.
As usual, ω(S) designates the number of distinct irreducible factors of S.
Several studies are done about (unitary) perfect polynomials over F2. In
particular, we gave ([3], [4], [5]) the list of them with ω(A) ≤ 4 and that of
all which are divisible only by x, x+1 and by Mersenne primes ([6] and [8]).

We are interested in indecomposable bi-unitary perfect (i.b.u.p) poly-
nomials (over F2) with only Mersenne primes as odd divisors and we get
Theorem 1.1.

If A is a nonconstant b.u.p polynomial, then x(x+ 1) divides A so that
ω(A) ≥ 2 (see Lemma 2.1). Moreover, the only b.u.p polynomials over F2

with exactly two prime divisors are x2(x+1)2 and x2
n−1(x+1)2

n−1, for any
nonnegative integer n (Lemma 2.1 and [1] Theorem 5).

Note that in the integer case, 6, 60 and 90 are the only b.u.p numbers ([9]).
In the rest of the paper, for S ∈ F2[x], we denote by S (resp. S∗) the

polynomial obtained from S with x replaced by x+ 1 (resp. the reciprocal
of S): S(x) = S(x+ 1), S∗(x) = xdeg(S) · S(x−1).
As usual, N (resp. N∗) denotes the set of nonnegative integers (resp. of
positive integers).

For S, T ∈ F2[x] and n ∈ N∗, we write: Sn∥T if Sn|T but Sn+1 - T .
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We consider the following polynomials:

M1 = 1 + x+ x2 = σ(x2), M2 = 1 + x+ x3, M3 = M2 = 1 + x2 + x3,

M4 = 1 + x+ x2 + x3 + x4 = σ(x4),M5 = M4 = 1 + x3 + x4,
C1 = x3(x+ 1)4M1, C2 = x3(x+ 1)5M1

2, C3 = x4(x+ 1)4M1
2,

C4 = x6(x+ 1)6M1
2, C5 = x4(x+ 1)5M1

3, C6 = x7(x+ 1)8M5,
C7 = x7(x+ 1)9M5

2, C8 = x8(x+ 1)8M4M5, C9 = x8(x+ 1)9M4M5
2,

C10 = x7(x+ 1)10M1
2M5, C11 = x7(x+ 1)13M2

2M3
2,

C12 = x9(x+ 1)9M4
2M5

2, C13 = x14(x+ 1)14M2
2M3

2,
C14 = x8(x+ 1)10M1

2M4M5, C15 = x8(x+ 1)12M1
2M2M3M5,

C16 = x10(x+ 1)13M1
2M2

2M3
2M4, C17 = x13(x+ 1)13M1

2M2
4M3

4M4M5,
C18 = x12(x+ 1)13M1

2M2
3M3

3, C19 = x9(x+ 1)13M2
2M3

2M4
2,

C20 = x8(x+ 1)13M2
2M3

2M4, C21 = x9(x+ 1)10M1
2M4

2M5,
C22 = x7(x+ 1)12M1

2M2M3, C23 = x9(x+ 1)12M1
2M2M3M4

2.
The polynomials M1, . . . ,M5 are all Mersenne primes.

Theorem 1.1. Let A = xa(x+1)bP1
h1 · · ·Pr

hr ∈ F2[x] be such that the Pj’s
are Mersenne primes, a, b, hj ∈ N and ω(A) ≥ 3. Then A is i.b.u.p if and
only if A,A ∈ {Cj : 1 ≤ j ≤ 23}.

The polynomials C1, . . . , C13 in Theorem 1.1 are already given in [1]. Our
method consists in determining the possible irreducible divisors of such b.u.p
polynomials and the upper bound of their exponents, without considering
several distinct cases. We then use Maple computations to obtain our list.

2 Preliminaries

We need the following results. Some of them are obvious or (well) known,
so we omit their proofs. We putM := {M1,M2,M3,M4,M5}.

Lemma 2.1. If A is a nonconstant b.u.p polynomial over F2, then x(x+1)
divides A, so that A is even and ω(A) ≥ 2.

Lemma 2.2. If A = A1A2 is b.u.p over F2 and if gcd(A1, A2) = 1, then
A1 is b.u.p if and only if A2 is b.u.p.

Lemma 2.3. If A is b.u.p over F2, then A is also b.u.p over F2.

Lemma 2.4 is obtained from [7] (Lemma 2.6) and from Canaday’s paper
[2] (Lemmas 4, 5, 6, Theorem 8 and Corollary on page 728).
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Lemma 2.4. Let P,Q ∈ F2[x] be odd and irreducible and let n,m ∈ N.
i) If P is a Mersenne prime, then σ(P 2n) is odd and square-free.
ii) If P is a Mersenne prime and if P = P ∗, then P = M1 or P = M4.
iii) If σ(x2n) = PQ and P = σ(x2m), then n = 4, m = 1 and Q = P (x3).
iv) If σ(x2n) is only divisible by Mersenne primes, then 2n ∈ {2, 4, 6}.
v) If σ(x2r) is a Mersenne prime, then 2r ∈ {2, 4}.
vi) If σ(xh) = σ((x+ 1)h), then h = 2n − 2, for some n ∈ N∗.
vii) If σ(P 2n) = Qm, then m ∈ {0, 1}.

Lemma 2.5 ([8], Theorem 1.2).
Let M ∈ M be such that σ(M2m) (resp. σ(M2m+1)) has only Mersenne
primes as odd divisors, then 2m = 2 (resp. 2m + 1 = 3 · 2α − 1 for some
α ∈ N∗) and M ∈ {M2,M3}.
All odd divisors of σ(M2m) (resp. of σ(M2m+1)) lie in {M1,M4,M5}.

Lemma 2.6. Let T be an irreducible polynomial over F2 and k, l ∈ N∗.
Then, gcdu(T

k, T l) = 1 (resp. T k) if k ̸= l (resp. k = l).
In particular, gcdu(T

k, T 2n−k) = 1 for k ̸= n, gcdu(T
k, T 2n+1−k) = 1 for

any 0 ≤ k ≤ 2n+ 1.

Corollary 2.7. Let T ∈ F2[x] be irreducible. Then
i) σ∗∗(T 2n) = (1 + T )σ(Tn)σ(Tn−1), σ∗∗(T 2n+1) = σ(T 2n+1).
ii) For any c ∈ N, T does not divide σ∗∗(T c).

Proof. i): σ∗∗(T 2n) = 1 + T + · · · + Tn−1 + Tn+1 + · · · + T 2n = (1 +
Tn+1)σ(Pn−1) = (1 + T )σ(Tn)σ(Tn−1).
σ∗∗(T 2n+1) = 1 + T + · · ·+ T 2n+1 = σ(T 2n+1).
ii) follows from i).

Corollary 2.8. Let T ∈ F2[x] be irreducible.
i) If a = 4r, where 2r − 1 is of the form 2αu− 1, u odd, then
σ∗∗(T a) = (1 + T )2

α · σ(T 2r) · (σ(T u−1))2
α
and gcd(σ(T 2r), σ(T u−1)) = 1.

ii) If a = 4r + 2, where 2r + 1 is of the form 2αu− 1, u odd, then
σ∗∗(T a) = (1 + T )2

α · σ(T 2r) · (σ(T u−1))2
α
and gcd(σ(T 2r), σ(T u−1)) = 1.

iii) If a = 2αu − 1 is odd (with u odd), then σ∗∗(T a) = (1 + T )2
α−1 ·

(σ(T u−1))2
α
.

We explicit the following formulas (useful for T ∈ {x, x+ 1} ∪M).
σ∗∗(T 2) = (1 + T )2, σ∗∗(T 4) = (1 + T )2σ(T 2), σ∗∗(T 6) = (1 + T )4σ(T 2),
σ∗∗(T 8) = (1 + T )4σ(T 4), σ∗∗(T 10) = (1 + T )2(σ(T 2))2σ(T 4),
σ∗∗(T 12) = (1 + T )2(σ(T 2))2σ(T 6), σ∗∗(T 14) = (1 + T )8σ(T 6).

(1)
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Corollary 2.9. i) For any j ≤ 5, neither M2 nor M3 divides σ∗∗(M
hj

j ).

ii) σ∗∗(M2
4) = x2(x+ 1)4M1M5 and σ∗∗(M3

4) = x4(x+ 1)2M1M4.
iii) If j ̸∈ {2, 3} and r ≥ 2, then σ∗∗(Mj

2r) has a non Mersenne prime
divisor.
iv) If M2 divides σ∗∗(xa), then a ∈ {12, 14, 7 · 2n− 1 : n ∈ N∗}. In this case,
M3 also divides σ∗∗(xa).

Corollary 2.10. i) The polynomial σ∗∗(xa) splits over F2 if and only if
a = 2 or a = 2α − 1, for some α ∈ N∗.
ii) Let T ∈ F2[x] be odd and irreducible. Then σ∗∗(T c) splits over F2 if and
only if T is a Mersenne prime and (c = 2 or c = 2γ − 1 for some γ ∈ N∗).

Lemma 2.11. If σ∗∗(x2m) has only Mersenne primes as odd divisors, then
2m ∈ {4, 6, 8, 10, 12, 14}. In this case, all its divisors lie inM.

Proof. - Case 1: 2m = 4r, with r ≥ 1 and 2r − 1 = 2αu− 1, u odd.
We obtain: σ∗∗(x2m) = (1 + x)2

α · σ(x2r) · (σ(xu−1))2
α

Therefore, 2r ∈ {2, 4, 6} and u ∈ {1, 3, 5, 7}, 2r = 2αu. So, 2m ∈ {4, 8, 12}.
- Case 2: 2m = 4r + 2, with r ≥ 0 and 2r + 1 = 2αu− 1, u odd.
One has: σ∗∗(x2m) = (1 + x)2

α · σ(x2r) · (σ(xu−1))2
α
.

Thus, 2r ∈ {2, 4, 6} and u ∈ {1, 3, 5, 7}, 2r = 2αu− 2. So, 2m ∈ {6, 10, 14}.
It remains to remark that σ(x2) = M1, σ(x

4) = M4 and σ(x6) = M2M3.

We get from Lemma 2.5 (with similar proofs):

Lemma 2.12. If σ∗∗(x2m+1) has only Mersenne primes as odd divisors,
then 2m+ 1 = 2αu− 1 for some α ∈ N∗ and u ∈ {3, 5, 7}.
In this case, all its odd divisors lie inM.

Lemma 2.13. Let M ∈M such that σ∗∗(M2m) has only Mersenne primes
as odd divisors, then 2m ∈ {4, 6} and M ∈ {M2,M3}.
In this case, all its divisors lie in {M1,M4,M5}.

Lemma 2.14. If M ∈ M and σ∗∗(M2m+1) has only Mersenne primes as
odd divisors, then 2m+ 1 ∈ {3 · 2α − 1 : α ∈ N∗} and M ∈ {M2,M3}.
In this case, all its odd divisors lie in {M1,M4,M5}.

Lemma 2.15.
If Q is a Mersenne prime divisor of σ∗∗(A1), then Q ∈M.

Proof. We apply Lemmas 2.11 and 2.13. If Q divides σ∗∗(xa)σ∗∗((x+ 1)b),
then Q ∈ M. If Q divides σ∗∗(P hi

i ) with Pi ∈ M, then Pi ∈ {M2,M3} and
Q ∈ {M1,M4,M5}.
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3 The proof of Theorem 1.1

Sufficiencies are obtained by direct computations. For the necessities, we
shall apply Lemmas 2.11, 2.12, 2.13 and 2.14. We fix:

A = xa(x+ 1)b
∏
i∈I

P hi
i = A1A2, where a, b, hi ∈ N, Pi is a Mersenne prime,

A1 = xa(x+ 1)b
5∏

i=1

Mhi
i and A2 =

∏
Pi ̸∈M

Pi
hi .

We suppose that A is i.b.u.p: A1A2 = A = σ∗∗(A) = σ∗∗(A1)σ
∗∗(A2).

3.1 First reduction

Lemma 3.1. For any Pj ̸∈ M, one has: gcd(P
hj

j , σ∗∗(A1)) = 1 and hj = 0,
so that A = A1.

Proof. Any odd irreducible divisor of σ∗∗(xa) (resp. of σ∗∗((x + 1)b), of
σ∗∗(Mhi

i ), with Mi ∈ M) must belong to M. Thus, for all Pj ̸∈ M and

Mi ∈ M, Pj divides neither σ∗∗(xa), σ∗∗((x + 1)b) nor σ∗∗(Mhi
i ). Hence,

gcd(P
hj

j , σ∗∗(A1)) = 1.

Moreover, P
hj

j divides σ∗∗(A2) because it dividesA = σ∗∗(A) = σ∗∗(A1)σ
∗∗(A2)

and gcd(P
hj

j , σ∗∗(A1)) = 1. Hence, A2 divides σ∗∗(A2). So, A2 is b.u.p and
it is equal to 1, A being indecomposable.

Corollary 3.2.
If A1 is b.u.p, then h3 = h2, h2 ∈ {0, 2, 4, 6, 2n − 1, 3 · 2n − 1 : n ∈ N∗} and
hi ∈ {0, 2, 2n − 1 : n ∈ N∗}, for i ∈ {1, 4, 5}.

Proof. IfM2 (resp. M3) divides σ
∗∗(A1), then it divides V = σ∗∗(xa)σ∗∗((x+

1)b). Therefore, M3 (resp. M2) also divides V and σ∗∗(A1). Hence, h2 = h3.

Suppose that hj ≥ 1. The polynomial σ∗∗(M
hj

j ) must factor in {x, x+ 1} ∪
M. Thus, if j ̸∈ {2, 3}, then hj ∈ {2, 2n − 1 : n ∈ N∗}. If j ∈ {2, 3}, then
hj ∈ {2, 4, 6} or it is of the form 2nu− 1, where n ≥ 1 and u ∈ {1, 3}.

In the rest of the paper, we prove the following

Proposition 3.3. If A1 is b.u.p, then A1, A1 ∈ {C1, . . . , C23}.
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3.2 Proof of Proposition 3.3

We write: A1 = xa(x+ 1)bMh1
1 Mh2

2 Mh3
3 Mh4

4 Mh5
5 .

Corollary 3.2 implies that for any i, hi ∈ {0, 2, 4, 6, 2n−1, 3 ·2n−1 : n ∈ N∗}.

Lemma 3.4. For any n,m ∈ N∗, a ̸= 2n − 1 or b ̸= 2m − 1.

Proof. If a = 2n − 1 and b = 2m − 1 for some n,m ≥ 1, then

xa(x+1)bMh1
1 · · ·M

h5
5 = A1 = σ∗∗(A1) = (x+1)axbσ∗∗(Mh1

1 ) · · ·σ∗∗(Mh5
5 ).

Thus, a = b and Mh1
1 · · ·M

h5
5 is b.u.p, which contradicts Lemma 2.1.

By direct computations (sketched in Section 3.3), we get Proposition 3.3
from Lemmas 3.5 and 3.6.
Set K1 = {0, 1, 2, 3, 4, 5, 6, 7, 11, 23} and K2 = {0, 1, 2, 3, 4, 6, 7, 15}.

Lemma 3.5. i) If a and b are both even, then a, b ≤ 14 and hi ∈ K1.
ii) If a is even and b odd, then a ≤ 14, b = 2βv− 1, with β ≤ 3, v ≤ 7, v odd
and hi ∈ K1.
More precisely, h3 = h2, h2 ∈ {0, 2, 4, 6} and h1, h4, h5 ∈ {0, 1, 2, 3, 7, 15}.

Proof. According to Corollary 3.2, it remains to give upper bounds for a, b
and for hi, if hi is odd.
i): If a and b are both even, then a (resp. b) is of the form 4r or 4r + 2,
(resp. 4s or 4s+ 2). Thus, σ(x2r) and σ((x+ 1)2s) are both odd divisors of
σ∗∗(A1) = A1. Hence, 2r, 2s ≤ 6 and a, b ≤ 14.
If hi is odd, then it is of the form 2nu− 1, with u ∈ {1, 3}. So, σ∗∗(Mi

hi) =
σ(Mi

hi) = (1+Mi)
2n−1(σ(Mi

u−1))2
n
. Thus, 2n−1 ≤ a ≤ 14, by considering

the exponents of x in A1 and in σ∗∗(A1). We get n ≤ 3 and hi ∈ K1.
ii): In this case, 2β ≤ a ≤ 14 so that β ≤ 3. Moreover, σ((x+ 1)v−1) lies in
{1,M1,M2M3,M5}. We deduce that v ≤ 7. As above, hi ∈ K1.

Lemma 3.6. If a and b are both odd, then a = 2αu − 1, b = 2βv − 1 with
u, v ≤ 7, u, v both odd, (u, v) ̸= (1, 1), 1 ≤ α, β ≤ 3 and hi ∈ K2.

Proof. We give upper bounds for a, b and for hi, if hi is odd. One has:

σ∗∗(xa) = (x+ 1)2
α−1(σ(xu−1))2

α
, σ∗∗((x+ 1)b) = x2

β−1(σ((x+ 1)v−1))2
β
.

Without loss of generality, we may suppose that u ≤ v.
• If u = 7 or v = 7, then h2 ̸= 0 and h2 ∈ {2α, 2β, 2α + 2β} (compare
h2 with all possible exponents of M2 in σ∗∗(A1)). So, h2 is even and thus
h3 = h2 ≤ 6, α, β ≤ 2 and a, b ≤ 27.
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Now, for i ∈ {1, 4, 5} with hi odd, one has: hi = 2n − 1 ≤ a ≤ 27, so that
n ≤ 4 and hi ∈ {1, 3, 7, 15}.
• If u, v ≤ 5, then h3 = h2 = 0. For j ∈ {1, 4, 5}, Mj divides σ∗∗(A1) if and

only if it divides σ∗∗(xa)σ∗∗((1 + x)b).
- The case u = v = 1 does not happen because A1 does not split.
- If u = 1 and v = 3, then h1 = 2β ≤ 2, 2α−1 ≤ b = 3 ·2β−1, β = 1, α ≤ 2.
- If u = 1 and v = 5, then h5 = 2β ≤ 2, 2α−1 ≤ b = 5 ·2β−1, β = 1, α ≤ 3.
- If u = v = 3, then h1 is even and h1 = 2α + 2β ≥ 4, which is impossible.
- If u = 3 and v = 5, then h1 = 2α ≤ 2, h5 = 2β ≤ 2, α = β = 1.
- If u = v = 5, then h4 = 2α ≤ 2, h5 = 2β ≤ 2 and α = β = 1.

3.3 Maple Computations

According to Lemmas 3.5 and 3.6, we determine, in 4 parts, the set L
of all 7-uples [a, b, h1, h2, h3, h4, h5] such that a ≤ b. Then, we search
S = xa(x+ 1)bM1

h1M2
h2M3

h3M4
h4M5

h5 satisfying: σ∗∗(S) = S.
The case where a ≥ b is obtained from the substitution: x←→ x+ 1.

1) If a and b are even, then b ∈ {0, 2, 4, 6, 8, 10, 12, 14} and hi ∈ K1. We get
(after 6 mn) #L = 35000 and C3, C4, C8, C13, C14, C15 as b.u.p polynomials.
2) If a is even and b odd, then b ∈ {0, 1, 3, 5, 7, 9, 11, 13, 19, 23, 27, 39, 55},
a ∈ {0, 2, 4, 6, 8, 10, 12, 14} and hi ∈ K1.
We get (15 mn): #L = 70000 and as b.u.p polynomials: C5, C9, C16, C18, C20.
3) If a is odd and b even, then a ∈ {0, 1, 3, 5, 7, 9, 11, 13, 19, 23, 27, 39, 55},
b ∈ {0, 2, 4, 6, 8, 10, 12, 14} and hi ∈ K1.
We get (5 mn): #L = 35000 and C1, C6, C10, C21, C22, C23.
4) If a and b are both odd, then a, b ≤ 27 and hi ∈ K2.
Moreover, h2 = h3 = 0 if u, v ≤ 5.
We get (30 mn): #L = 97500 and C2, C7, C11, C12, C17, C19.

The function σ∗∗ is defined as Sigm2star

> Sigm2star1:=proc(S,a) if a=0 then 1;else if a mod 2 = 0

then n:=a/2:sig1:=sum(S^l,l=0..n):sig2:=sum(S^l,l=0..n-1):

Factor((1+S)*sig1*sig2) mod 2:

else Factor(sum(S^l,l=0..a)) mod 2:fi:fi:end:

> Sigm2star:=proc(S) P:=1:L:=Factors(S) mod 2:k:=nops(L[2]):

for j to k do S1:=L[2][j][1]:h1:=L[2][j][2]:

P:=P*Sigm2star1(S1,h1):od:P:end:
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