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We give all non splitting bi-unitary perfect polynomials over the prime field of two elements, which have only Mersenne polynomials as odd irreducible divisors.

Introduction

Let S ∈ F 2 [x] be a nonzero polynomial. We say that S is odd if gcd(S, x(x + 1)) = 1, S is even if it is not odd. A Mersenne (prime) is a polynomial (irreducible) of the form 1 + x a (x + 1) b , with gcd(a, b) = 1. A divisor D of S is called unitary if gcd(D, S/D) = 1. We denote by gcd u (S, T ) the greatest common unitary divisor of S and T . A divisor D of S is called bi-unitary if gcd u (D, S/D) = 1. We denote by σ(S) (resp. σ * (S), σ * * (S)) the sum of all divisors (resp. unitary divisors, bi-unitary divisors) of S. The functions σ, σ * and σ * * are all multiplicative. We say that a polynomial S is perfect (resp. unitary perfect, bi-unitary perfect) if σ(S) = S (resp. σ * (S) = S, σ * * (S) = S). Finally, we say that a bi-unitary perfect polynomial is indecomposable if it is not a product of two coprime nonconstant bi-unitary perfect polynomials. As usual, ω(S) designates the number of distinct irreducible factors of S. Several studies are done about (unitary) perfect polynomials over F 2 . In particular, we gave ( [START_REF] Gallardo | There is no odd perfect polynomial over F 2 with four prime factors[END_REF], [START_REF] Gallardo | Even perfect polynomials over F 2 with four prime factors[END_REF], [START_REF] Gallardo | All unitary perfect polynomials over F 2 with at most four distinct irreducible factors[END_REF]) the list of them with ω(A) ≤ 4 and that of all which are divisible only by x, x + 1 and by Mersenne primes ( [START_REF] Gallardo | On even (unitary) perfect polynomials over F 2[END_REF] and [START_REF] Gallardo | All even (unitary) perfect polynomials over F 2 with only Mersenne primes as odd divisors[END_REF]).

We are interested in indecomposable bi-unitary perfect (i.b.u.p) polynomials (over F 2 ) with only Mersenne primes as odd divisors and we get Theorem 1.1.

If A is a nonconstant b.u.p polynomial, then x(x + 1) divides A so that ω(A) ≥ 2 (see Lemma 2.1). Moreover, the only b.u.p polynomials over F 2 with exactly two prime divisors are x 2 (x + 1) 2 and x 2 n -1 (x + 1) 2 n -1 , for any nonnegative integer n (Lemma 2.1 and [1] Theorem 5).

Note that in the integer case, 6, 60 and 90 are the only b.u.p numbers ( [START_REF] Wall | Bi-Unitary Perfect numbers[END_REF]).

In the rest of the paper, for S ∈ F 2 [x], we denote by S (resp. S * ) the polynomial obtained from S with x replaced by x + 1 (resp. the reciprocal of S): S(x) = S(x + 1), S * (x) = x deg(S) • S(x -1 ). As usual, N (resp. N * ) denotes the set of nonnegative integers (resp. of positive integers).

For S, T ∈ F 2 [x] and n ∈ N * , we write:

S n ∥T if S n |T but S n+1 T .
We consider the following polynomials:

M 1 = 1 + x + x 2 = σ(x 2 ), M 2 = 1 + x + x 3 , M 3 = M 2 = 1 + x 2 + x 3 , M 4 = 1 + x + x 2 + x 3 + x 4 = σ(x 4 ), M 5 = M 4 = 1 + x 3 + x 4 , C 1 = x 3 (x + 1) 4 M 1 , C 2 = x 3 (x + 1) 5 M 1 2 , C 3 = x 4 (x + 1) 4 M 1 2 , C 4 = x 6 (x + 1) 6 M 1 2 , C 5 = x 4 (x + 1) 5 M 1 3 , C 6 = x 7 (x + 1) 8 M 5 , C 7 = x 7 (x + 1) 9 M 5 2 , C 8 = x 8 (x + 1) 8 M 4 M 5 , C 9 = x 8 (x + 1) 9 M 4 M 5 2 , C 10 = x 7 (x + 1) 10 M 1 2 M 5 , C 11 = x 7 (x + 1) 13 M 2 2 M 3 2 , C 12 = x 9 (x + 1) 9 M 4 2 M 5 2 , C 13 = x 14 (x + 1) 14 M 2 2 M 3 2 , C 14 = x 8 (x + 1) 10 M 1 2 M 4 M 5 , C 15 = x 8 (x + 1) 12 M 1 2 M 2 M 3 M 5 , C 16 = x 10 (x + 1) 13 M 1 2 M 2 2 M 3 2 M 4 , C 17 = x 13 (x + 1) 13 M 1 2 M 2 4 M 3 4 M 4 M 5 , C 18 = x 12 (x + 1) 13 M 1 2 M 2 3 M 3 3 , C 19 = x 9 (x + 1) 13 M 2 2 M 3 2 M 4 2 , C 20 = x 8 (x + 1) 13 M 2 2 M 3 2 M 4 , C 21 = x 9 (x + 1) 10 M 1 2 M 4 2 M 5 , C 22 = x 7 (x + 1) 12 M 1 2 M 2 M 3 , C 23 = x 9 (x + 1) 12 M 1 2 M 2 M 3 M 4 2 . The polynomials M 1 , . . . , M 5 are all Mersenne primes. Theorem 1.1. Let A = x a (x + 1) b P 1 h 1 • • • P r hr ∈ F 2 [x] be such that the P j 's are Mersenne primes, a, b, h j ∈ N and ω(A) ≥ 3. Then A is i.b.u.p if and only if A, A ∈ {C j : 1 ≤ j ≤ 23}.
The polynomials C 1 , . . . , C 13 in Theorem 1.1 are already given in [START_REF] Beard | Bi-Unitary Perfect polynomials over GF (q), Annali di Mat[END_REF]. Our method consists in determining the possible irreducible divisors of such b.u.p polynomials and the upper bound of their exponents, without considering several distinct cases. We then use Maple computations to obtain our list.

Preliminaries

We need the following results. Some of them are obvious or (well) known, so we omit their proofs. We put

M := {M 1 , M 2 , M 3 , M 4 , M 5 }. Lemma 2.1. If A is a nonconstant b.u.p polynomial over F 2 , then x(x + 1) divides A, so that A is even and ω(A) ≥ 2.

Lemma 2.2. If

A = A 1 A 2 is b.u.p over F 2 and if gcd(A 1 , A 2 ) = 1, then A 1 is b.u.p if and only if A 2 is b.u.p. Lemma 2.3. If A is b.u.p over F 2 , then A is also b.u.p over F 2 .
Lemma 2.4 is obtained from [START_REF] Gallardo | Characterization of Sporadic perfect polynomials over F 2[END_REF] (Lemma 2.6) and from Canaday's paper [START_REF] Canaday | The sum of the divisors of a polynomial[END_REF] (Lemmas 4, 5, 6, Theorem 8 and Corollary on page 728). 

= P (x 3 ). iv) If σ(x 2n ) is only divisible by Mersenne primes, then 2n ∈ {2, 4, 6}. v) If σ(x 2r ) is a Mersenne prime, then 2r ∈ {2, 4}. vi) If σ(x h ) = σ((x + 1) h ), then h = 2 n -2, for some n ∈ N * . vii) If σ(P 2n ) = Q m , then m ∈ {0, 1}. Lemma 2.5 ([8], Theorem 1.2). Let M ∈ M be such that σ(M 2m ) (resp. σ(M 2m+1 )) has only Mersenne primes as odd divisors, then 2m = 2 (resp. 2m + 1 = 3 • 2 α -1 for some α ∈ N * ) and M ∈ {M 2 , M 3 }. All odd divisors of σ(M 2m ) (resp. of σ(M 2m+1 )) lie in {M 1 , M 4 , M 5 }.
Lemma 2.6. Let T be an irreducible polynomial over F 2 and k, l

∈ N * . Then, gcd u (T k , T l ) = 1 (resp. T k ) if k ̸ = l (resp. k = l). In particular, gcd u (T k , T 2n-k ) = 1 for k ̸ = n, gcd u (T k , T 2n+1-k ) = 1 for any 0 ≤ k ≤ 2n + 1. Corollary 2.7. Let T ∈ F 2 [x] be irreducible. Then i) σ * * (T 2n ) = (1 + T )σ(T n )σ(T n-1 ), σ * * (T 2n+1 ) = σ(T 2n+1 ). ii) For any c ∈ N, T does not divide σ * * (T c ). Proof. i): σ * * (T 2n ) = 1 + T + • • • + T n-1 + T n+1 + • • • + T 2n = (1 + T n+1 )σ(P n-1 ) = (1 + T )σ(T n )σ(T n-1 ). σ * * (T 2n+1 ) = 1 + T + • • • + T 2n+1 = σ(T 2n+1 ). ii) follows from i). Corollary 2.8. Let T ∈ F 2 [x] be irreducible. i) If a = 4r, where 2r -1 is of the form 2 α u -1, u odd, then σ * * (T a ) = (1 + T ) 2 α • σ(T 2r ) • (σ(T u-1 )) 2 α and gcd(σ(T 2r ), σ(T u-1 )) = 1. ii) If a = 4r + 2, where 2r + 1 is of the form 2 α u -1, u odd, then σ * * (T a ) = (1 + T ) 2 α • σ(T 2r ) • (σ(T u-1 )) 2 α and gcd(σ(T 2r ), σ(T u-1 )) = 1. iii) If a = 2 α u -1 is odd (with u odd), then σ * * (T a ) = (1 + T ) 2 α -1 • (σ(T u-1 )) 2 α .
We explicit the following formulas (useful for

T ∈ {x, x + 1} ∪ M).    σ * * (T 2 ) = (1 + T ) 2 , σ * * (T 4 ) = (1 + T ) 2 σ(T 2 ), σ * * (T 6 ) = (1 + T ) 4 σ(T 2 ), σ * * (T 8 ) = (1 + T ) 4 σ(T 4 ), σ * * (T 10 ) = (1 + T ) 2 (σ(T 2 )) 2 σ(T 4 ), σ * * (T 12 ) = (1 + T ) 2 (σ(T 2 )) 2 σ(T 6 ), σ * * (T 14 ) = (1 + T ) 8 σ(T 6 ). ( 1 
)
3 The proof of Theorem 1.1

Sufficiencies are obtained by direct computations. For the necessities, we shall apply Lemmas 2.11, 2.12, 2.13 and 2.14. We fix:

A = x a (x + 1) b ∏ i∈I P h i i = A 1 A 2 ,
where a, b, h i ∈ N, P i is a Mersenne prime,

A 1 = x a (x + 1) b 5 ∏ i=1 M h i i and A 2 = ∏ P i ̸ ∈M P i h i .
We suppose that A is i.b.u.p:

A 1 A 2 = A = σ * * (A) = σ * * (A 1 )σ * * (A 2 ).

First reduction

Lemma 3.1. For any P j ̸ ∈ M, one has: gcd(P

h j j , σ * * (A 1 )) = 1 and h j = 0, so that A = A 1 . Proof. Any odd irreducible divisor of σ * * (x a ) (resp. of σ * * ((x + 1) b ), of σ * * (M h i i ), with M i ∈ M) must belong to M. Thus, for all P j ̸ ∈ M and M i ∈ M, P j divides neither σ * * (x a ), σ * * ((x + 1) b ) nor σ * * (M h i i ). Hence, gcd(P h j j , σ * * (A 1 )) = 1. Moreover, P h j j divides σ * * (A 2 ) because it divides A = σ * * (A) = σ * * (A 1 )σ * * (A 2 )
and gcd(P h j j , σ * * (A 1 )) = 1. Hence, A 2 divides σ * * (A 2 ). So, A 2 is b.u.p and it is equal to 1, A being indecomposable.

Corollary 3.2.

If A 1 is b.u.p, then h 3 = h 2 , h 2 ∈ {0, 2, 4, 6, 2 n -1, 3 • 2 n -1 : n ∈ N * } and h i ∈ {0, 2, 2 n -1 : n ∈ N * }, for i ∈ {1, 4, 5}.
Proof. If M 2 (resp. M 3 ) divides σ * * (A 1 ), then it divides V = σ * * (x a )σ * * ((x+ 1) b ). Therefore, M 3 (resp. M 2 ) also divides V and σ * * (A 1 ). Hence, h 2 = h 3 . Suppose that h j ≥ 1. The polynomial σ * * (M

h j j ) must factor in {x, x + 1} ∪ M. Thus, if j ̸ ∈ {2, 3}, then h j ∈ {2, 2 n -1 : n ∈ N * }. If j ∈ {2, 3}, then h j ∈ {2, 4, 6}
or it is of the form 2 n u -1, where n ≥ 1 and u ∈ {1, 3}.

In the rest of the paper, we prove the following

Proposition 3.3. If A 1 is b.u.p, then A 1 , A 1 ∈ {C 1 , . . . , C 23 }.
Now, for i ∈ {1, 4, 5} with h i odd, one has: h i = 2 n -1 ≤ a ≤ 27, so that n ≤ 4 and h i ∈ {1, 3, 7, 15}.

• If u, v ≤ 5, then h 3 = h 2 = 0. For j ∈ {1, 4, 5}, M j divides σ * * (A 1 ) if and only if it divides σ * * (x a )σ * * ((1 + x) b ).

-The case u = v = 1 does not happen because A 1 does not split.

-If u = 1 and v = 3, then

h 1 = 2 β ≤ 2, 2 α -1 ≤ b = 3 • 2 β -1, β = 1, α ≤ 2. -If u = 1 and v = 5, then h 5 = 2 β ≤ 2, 2 α -1 ≤ b = 5 • 2 β -1, β = 1, α ≤ 3. -If u = v = 3, then h 1 is even and h 1 = 2 α + 2 β ≥ 4, which is impossible. -If u = 3 and v = 5, then h 1 = 2 α ≤ 2, h 5 = 2 β ≤ 2, α = β = 1. -If u = v = 5, then h 4 = 2 α ≤ 2, h 5 = 2 β ≤ 2 and α = β = 1.

Maple Computations

According to Lemmas 3.5 and 3.6, we determine, in 4 parts, the set L of all 7-uples [a, b, h 1 , h 2 , h 3 , h 4 , h 5 ] such that a ≤ b. Then, we search 

S = x a (x + 1) b M 1 h 1 M 2 h 2 M 3 h 3 M 4 h 4 M 5 h

Lemma 2 . 4 .

 24 Let P, Q ∈ F 2 [x] be odd and irreducible and let n, m ∈ N. i) If P is a Mersenne prime, then σ(P 2n ) is odd and square-free. ii) If P is a Mersenne prime and if P = P * , then P = M 1 or P = M 4 . iii) If σ(x 2n ) = P Q and P = σ(x 2m ), then n = 4, m = 1 and Q

  5 satisfying: σ * * (S) = S. The case where a ≥ b is obtained from the substitution: x ←→ x + 1. 1) If a and b are even, then b ∈ {0, 2, 4, 6, 8, 10, 12, 14} and h i ∈ K 1 . We get (after 6 mn) #L = 35000 and C 3 , C 4 , C 8 , C 13 , C 14 , C 15 as b.u.p polynomials. 2) If a is even and b odd, then b ∈ {0, 1, 3, 5, 7, 9, 11, 13, 19, 23, 27, 39, 55}, a ∈ {0, 2, 4, 6, 8, 10, 12, 14} and h i ∈ K 1 . We get (15 mn): #L = 70000 and as b.u.p polynomials: C 5 , C 9 , C 16 , C 18 , C 20 . 3) If a is odd and b even, then a ∈ {0, 1, 3, 5, 7, 9, 11, 13, 19, 23, 27, 39, 55}, b ∈ {0, 2, 4, 6, 8, 10, 12, 14} and h i ∈ K 1 . We get (5 mn): #L = 35000 and C 1 , C 6 , C 10 , C 21 , C 22 , C 23 . 4) If a and b are both odd, then a, b ≤ 27 and h i ∈ K 2 . Moreover, h 2 = h 3 = 0 if u, v ≤ 5. We get (30 mn): #L = 97500 and C 2 , C 7 , C 11 , C 12 , C 17 , C 19 . The function σ * * is defined as Sigm2star > Sigm2star1:=proc(S,a) if a=0 then 1;else if a mod 2 = 0 then n:=a/2:sig1:=sum(S^l,l=0..n):sig2:=sum(S^l,l=0..n-1): Factor((1+S)*sig1*sig2) mod 2: else Factor(sum(S^l,l=0..a)) mod 2:fi:fi:end: > Sigm2star:=proc(S) P:=1:L:=Factors(S) mod 2:k:=nops(L[2]): for j to k do S1:=L[2][j][1]:h1:=L[2][j][2]: P:=P*Sigm2star1(S1,h1):od:P:end:

Corollary 2.9. i) For any j ≤ 5, neither M 2 nor M 3 divides σ * * (M h j j ). ii) σ * * (M 2 4 ) = x 2 (x + 1) 4 M 1 M 5 and σ * * (M 3 4 ) = x 4 (x + 1) 2 M 1 M 4 . iii) If j ̸ ∈ {2, 3} and r ≥ 2, then σ * * (M j 2r ) has a non Mersenne prime divisor. iv) If M 2 divides σ * * (x a ), then a ∈ {12, 14, 7 • 2 n -1 : n ∈ N * }. In this case, M 3 also divides σ * * (x a ). Corollary 2.10. i) The polynomial σ * * (x a ) splits over F 2 if and only if a = 2 or a = 2 α -1, for some α ∈ N * . ii) Let T ∈ F 2 [x] be odd and irreducible. Then σ * * (T c ) splits over F 2 if and only if T is a Mersenne prime and (c = 2 or c = 2 γ -1 for some γ ∈ N * ). Lemma 2.11. If σ * * (x 2m ) has only Mersenne primes as odd divisors, then 2m ∈ {4, 6, 8, 10, 12, 14}. In this case, all its divisors lie in M.

Proof. -Case 1: 2m = 4r, with r ≥ 1 and 2r -1 = 2 α u -1, u odd. We obtain:

Therefore, 2r ∈ {2, 4, 6} and u ∈ {1, 3, 5, 7}, 2r = 2 α u. So, 2m ∈ {4, 8, 12}.

-Case 2: 2m = 4r + 2, with r ≥ 0 and 2r + 1 = 2 α u -1, u odd. One has:

We get from Lemma 2.5 (with similar proofs): Lemma 2.12. If σ * * (x 2m+1 ) has only Mersenne primes as odd divisors, then 2m + 1 = 2 α u -1 for some α ∈ N * and u ∈ {3, 5, 7}. In this case, all its odd divisors lie in M. 

Proof. We apply Lemmas 2.11 and 2.13.

Proof of Proposition 3.3

We write:

Proof. If a = 2 n -1 and b = 2 m -1 for some n, m ≥ 1, then

Thus, a = b and

By direct computations (sketched in Section 3.3), we get Proposition 3.3 from Lemmas 3.5 and 3.6. Set K 1 = {0, 1, 2, 3, 4, 5, 6, 7, 11, 23} and K 2 = {0, 1, 2, 3, 4, 6, 7, 15}.

Lemma 3.5. i) If a and b are both even, then a, b ≤ 14 and h

Proof. According to Corollary 3.2, it remains to give upper bounds for a, b and for h i , if h i is odd. i): If a and b are both even, then a (resp. b) is of the form 4r or 4r + 2, (resp. 4s or 4s + 2). Thus, σ(x 2r ) and σ((x + 1) 2s ) are both odd divisors of σ * * (A 1 ) = A 1 . Hence, 2r, 2s ≤ 6 and a, b ≤ 14. If h i is odd, then it is of the form 2 n u -1, with u ∈ {1, 3}. So,

)) 2 n . Thus, 2 n -1 ≤ a ≤ 14, by considering the exponents of x in A 1 and in σ * * (A 1 ). We get n ≤ 3 and h i ∈ K 1 . ii): In this case, 2 β ≤ a ≤ 14 so that β ≤ 3. Moreover, σ((x + 1) v-1 ) lies in {1, M 1 , M 2 M 3 , M 5 }. We deduce that v ≤ 7. As above, h i ∈ K 1 . Lemma 3.6. If a and b are both odd, then a

Proof. We give upper bounds for a, b and for h i , if h i is odd. One has: σ * * (x a ) = (x + 1) 2 α -1 (σ(x u-1 )) 2 α , σ * * ((x + 1) b ) = x 2 β -1 (σ((x + 1) v-1 )) 2 β . Without loss of generality, we may suppose that u ≤ v.

• If u = 7 or v = 7, then h 2 ̸ = 0 and h 2 ∈ {2 α , 2 β , 2 α + 2 β } (compare h 2 with all possible exponents of M 2 in σ * * (A 1 )). So, h 2 is even and thus h 3 = h 2 ≤ 6, α, β ≤ 2 and a, b ≤ 27.