All bi-unitary perfect polynomials over F 2 only divisible by $\mathrm{x}, \mathrm{x}+1$ and by Mersenne primes

Luis H. Gallardo -, Olivier Rahavandrainy

To cite this version:

Luis H. Gallardo -, Olivier Rahavandrainy. All bi-unitary perfect polynomials over F 2 only divisible by $\mathrm{x}, \mathrm{x}+1$ and by Mersenne primes. 2022. hal-03653825

HAL Id: hal-03653825

https://hal.univ-brest.fr/hal-03653825

Preprint submitted on 28 Apr 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

All bi-unitary perfect polynomials over \mathbb{F}_{2} only divisible by $x, x+1$ and by Mersenne primes
 Luis H. Gallardo - Olivier Rahavandrainy Univ Brest, UMR CNRS 6205
 Laboratoire de Mathématiques de Bretagne Atlantique
 e-mail : luis.gallardo@univ-brest.fr - olivier.rahavandrainy@univ-brest.fr

April 27, 2022
a) Keywords: Bi-unitary divisors, Mersenne primes, finite fields
b) Mathematics Subject Classification (2010): 11T55, 11 T 06 .
c) Corresponding author: Luis H. Gallardo

Abstract

We give all non splitting bi-unitary perfect polynomials over the prime field of two elements, which have only Mersenne polynomials as odd irreducible divisors.

1 Introduction

Let $S \in \mathbb{F}_{2}[x]$ be a nonzero polynomial. We say that S is odd if $\operatorname{gcd}(S, x(x+1))=1, S$ is even if it is not odd. A Mersenne (prime) is a polynomial (irreducible) of the form $1+x^{a}(x+1)^{b}$, with $\operatorname{gcd}(a, b)=1$. A divisor D of S is called unitary if $\operatorname{gcd}(D, S / D)=1$. We denote by $\operatorname{gcd}_{u}(S, T)$ the greatest common unitary divisor of S and T. A divisor D of S is called bi-unitary if $\operatorname{gcd}_{u}(D, S / D)=1$.
We denote by $\sigma(S)$ (resp. $\sigma^{*}(S), \sigma^{* *}(S)$) the sum of all divisors (resp. unitary divisors, bi-unitary divisors) of S. The functions σ, σ^{*} and $\sigma^{* *}$ are all multiplicative. We say that a polynomial S is perfect (resp. unitary perfect, bi-unitary perfect) if $\sigma(S)=S$ (resp. $\left.\sigma^{*}(S)=S, \sigma^{* *}(S)=S\right)$.
Finally, we say that a bi-unitary perfect polynomial is indecomposable if it is not a product of two coprime nonconstant bi-unitary perfect polynomials. As usual, $\omega(S)$ designates the number of distinct irreducible factors of S.
Several studies are done about (unitary) perfect polynomials over \mathbb{F}_{2}. In particular, we gave ([3], [4], [5]) the list of them with $\omega(A) \leq 4$ and that of all which are divisible only by $x, x+1$ and by Mersenne primes ([6] and [8]).

We are interested in indecomposable bi-unitary perfect (i.b.u.p) polynomials (over \mathbb{F}_{2}) with only Mersenne primes as odd divisors and we get Theorem 1.1.

If A is a nonconstant b.u.p polynomial, then $x(x+1)$ divides A so that $\omega(A) \geq 2$ (see Lemma 2.1). Moreover, the only b.u.p polynomials over \mathbb{F}_{2} with exactly two prime divisors are $x^{2}(x+1)^{2}$ and $x^{2^{n}-1}(x+1)^{2^{n}-1}$, for any nonnegative integer n (Lemma 2.1 and [1] Theorem 5).

Note that in the integer case, 6, 60 and 90 are the only b.u.p numbers ([9]).
In the rest of the paper, for $S \in \mathbb{F}_{2}[x]$, we denote by \bar{S} (resp. S^{*}) the polynomial obtained from S with x replaced by $x+1$ (resp. the reciprocal of $S): \bar{S}(x)=S(x+1), \quad S^{*}(x)=x^{\operatorname{deg}(S)} \cdot S\left(x^{-1}\right)$.
As usual, \mathbb{N} (resp. \mathbb{N}^{*}) denotes the set of nonnegative integers (resp. of positive integers).

For $S, T \in \mathbb{F}_{2}[x]$ and $n \in \mathbb{N}^{*}$, we write: $S^{n} \| T$ if $S^{n} \mid T$ but $S^{n+1} \nmid T$.

We consider the following polynomials:

$$
\begin{aligned}
& M_{1}=1+x+x^{2}=\sigma\left(x^{2}\right), M_{2}=1+x+x^{3}, M_{3}=\overline{M_{2}}=1+x^{2}+x^{3}, \\
& M_{4}=1+x+x^{2}+x^{3}+x^{4}=\sigma\left(x^{4}\right), M_{5}=\overline{M_{4}}=1+x^{3}+x^{4}, \\
& C_{1}=x^{3}(x+1)^{4} M_{1}, C_{2}=x^{3}(x+1)^{5} M_{1}^{2}, C_{3}=x^{4}(x+1)^{4} M_{1}{ }^{2}, \\
& C_{4}=x^{6}(x+1)^{6} M_{1}^{2}, C_{5}=x^{4}(x+1)^{5} M_{1}^{3}, C_{6}=x^{7}(x+1)^{8} M_{5}, \\
& C_{7}=x^{7}(x+1)^{9} M_{5}{ }^{2}, C_{8}=x^{8}(x+1)^{8} M_{4} M_{5}, C_{9}=x^{8}(x+1)^{9} M_{4} M_{5}^{2}, \\
& C_{10}=x^{7}(x+1)^{10} M_{1}^{2} M_{5}, C_{11}=x^{7}(x+1)^{13} M_{2}^{2} M_{3}^{2}, \\
& C_{12}=x^{9}(x+1)^{9} M_{4}^{2} M_{5}^{2}, C_{13}=x^{14}(x+1)^{14} M_{2}^{2} M_{3}^{2}, \\
& C_{14}=x^{8}(x+1)^{10} M_{1}^{2} M_{4} M_{5}, C_{15}=x^{8}(x+1)^{12} M_{1}^{2} M_{2} M_{3} M_{5}, \\
& C_{16}=x^{10}(x+1)^{13} M_{1}^{2} M_{2}{ }^{2} M_{3}^{2} M_{4}, C_{17}=x^{13}(x+1)^{13} M_{1}^{2} M_{2}^{4} M_{3}^{4} M_{4} M_{5}, \\
& C_{18}=x^{12}(x+1)^{13} M_{1}^{2} M_{2}^{3} M_{3}^{3}, C_{19}=x^{9}(x+1)^{13} M_{2}^{2} M_{3}{ }^{2} M_{4}^{2}, \\
& C_{20}=x^{8}(x+1)^{13} M_{2}^{2} M_{3}^{2} M_{4}, C_{21}=x^{9}(x+1)^{10} M_{1}^{2} M_{4}^{2} M_{5}, \\
& C_{22}=x^{7}(x+1)^{12} M_{1}^{2} M_{2} M_{3}, C_{23}=x^{9}(x+1)^{12} M_{1}^{2} M_{2} M_{3} M_{4}^{2} .
\end{aligned}
$$

The polynomials M_{1}, \ldots, M_{5} are all Mersenne primes.
Theorem 1.1. Let $A=x^{a}(x+1)^{b} P_{1}{ }^{h_{1}} \cdots P_{r}{ }^{h_{r}} \in \mathbb{F}_{2}[x]$ be such that the P_{j} 's are Mersenne primes, $a, b, h_{j} \in \mathbb{N}$ and $\omega(A) \geq 3$. Then A is i.b.u.p if and only if $A, \bar{A} \in\left\{C_{j}: 1 \leq j \leq 23\right\}$.

The polynomials C_{1}, \ldots, C_{13} in Theorem 1.1 are already given in [1]. Our method consists in determining the possible irreducible divisors of such b.u.p polynomials and the upper bound of their exponents, without considering several distinct cases. We then use Maple computations to obtain our list.

2 Preliminaries

We need the following results. Some of them are obvious or (well) known, so we omit their proofs. We put $\mathcal{M}:=\left\{M_{1}, M_{2}, M_{3}, M_{4}, M_{5}\right\}$.

Lemma 2.1. If A is a nonconstant b.u.p polynomial over \mathbb{F}_{2}, then $x(x+1)$ divides A, so that A is even and $\omega(A) \geq 2$.

Lemma 2.2. If $A=A_{1} A_{2}$ is b.u.p over \mathbb{F}_{2} and if $\operatorname{gcd}\left(A_{1}, A_{2}\right)=1$, then A_{1} is b.u.p if and only if A_{2} is b.u.p.

Lemma 2.3. If A is b.u.p over \mathbb{F}_{2}, then \bar{A} is also b.u.p over \mathbb{F}_{2}.
Lemma 2.4 is obtained from [7] (Lemma 2.6) and from Canaday's paper [2] (Lemmas 4, 5, 6, Theorem 8 and Corollary on page 728).

Lemma 2.4. Let $P, Q \in \mathbb{F}_{2}[x]$ be odd and irreducible and let $n, m \in \mathbb{N}$.
i) If P is a Mersenne prime, then $\sigma\left(P^{2 n}\right)$ is odd and square-free.
ii) If P is a Mersenne prime and if $P=P^{*}$, then $P=M_{1}$ or $P=M_{4}$.
iii) If $\sigma\left(x^{2 n}\right)=P Q$ and $\bar{P}=\sigma\left(x^{2 m}\right)$, then $n=4, m=1$ and $Q=P\left(x^{3}\right)$.
iv) If $\sigma\left(x^{2 n}\right)$ is only divisible by Mersenne primes, then $2 n \in\{2,4,6\}$.
v) If $\sigma\left(x^{2 r}\right)$ is a Mersenne prime, then $2 r \in\{2,4\}$.
vi) If $\sigma\left(x^{h}\right)=\sigma\left((x+1)^{h}\right)$, then $h=2^{n}-2$, for some $n \in \mathbb{N}^{*}$.
vii) If $\sigma\left(P^{2 n}\right)=Q^{m}$, then $m \in\{0,1\}$.

Lemma 2.5 ([8], Theorem 1.2).
Let $M \in \mathcal{M}$ be such that $\sigma\left(M^{2 m}\right)$ (resp. $\sigma\left(M^{2 m+1}\right)$) has only Mersenne primes as odd divisors, then $2 m=2$ (resp. $2 m+1=3 \cdot 2^{\alpha}-1$ for some $\left.\alpha \in \mathbb{N}^{*}\right)$ and $M \in\left\{M_{2}, M_{3}\right\}$.
All odd divisors of $\sigma\left(M^{2 m}\right)$ (resp. of $\sigma\left(M^{2 m+1}\right)$) lie in $\left\{M_{1}, M_{4}, M_{5}\right\}$.
Lemma 2.6. Let T be an irreducible polynomial over \mathbb{F}_{2} and $k, l \in \mathbb{N}^{*}$. Then, $\operatorname{gcd}_{u}\left(T^{k}, T^{l}\right)=1\left(\right.$ resp. $\left.T^{k}\right)$ if $k \neq l($ resp. $k=l)$.
In particular, $\operatorname{gcd}_{u}\left(T^{k}, T^{2 n-k}\right)=1$ for $k \neq n, \operatorname{gcd}_{u}\left(T^{k}, T^{2 n+1-k}\right)=1$ for any $0 \leq k \leq 2 n+1$.

Corollary 2.7. Let $T \in \mathbb{F}_{2}[x]$ be irreducible. Then
i) $\sigma^{* *}\left(T^{2 n}\right)=(1+T) \sigma\left(T^{n}\right) \sigma\left(T^{n-1}\right), \sigma^{* *}\left(T^{2 n+1}\right)=\sigma\left(T^{2 n+1}\right)$.
ii) For any $c \in \mathbb{N}, T$ does not divide $\sigma^{* *}\left(T^{c}\right)$.

Proof. i): $\sigma^{* *}\left(T^{2 n}\right)=1+T+\cdots+T^{n-1}+T^{n+1}+\cdots+T^{2 n}=(1+$ $\left.T^{n+1}\right) \sigma\left(P^{n-1}\right)=(1+T) \sigma\left(T^{n}\right) \sigma\left(T^{n-1}\right)$.
$\sigma^{* *}\left(T^{2 n+1}\right)=1+T+\cdots+T^{2 n+1}=\sigma\left(T^{2 n+1}\right)$.
ii) follows from i).

Corollary 2.8. Let $T \in \mathbb{F}_{2}[x]$ be irreducible.
i) If $a=4 r$, where $2 r-1$ is of the form $2^{\alpha} u-1$, u odd, then $\sigma^{* *}\left(T^{a}\right)=(1+T)^{2^{\alpha}} \cdot \sigma\left(T^{2 r}\right) \cdot\left(\sigma\left(T^{u-1}\right)\right)^{2^{\alpha}}$ and $\operatorname{gcd}\left(\sigma\left(T^{2 r}\right), \sigma\left(T^{u-1}\right)\right)=1$.
ii) If $a=4 r+2$, where $2 r+1$ is of the form $2^{\alpha} u-1$, u odd, then $\sigma^{* *}\left(T^{a}\right)=(1+T)^{2^{\alpha}} \cdot \sigma\left(T^{2 r}\right) \cdot\left(\sigma\left(T^{u-1}\right)\right)^{2^{\alpha}}$ and $\operatorname{gcd}\left(\sigma\left(T^{2 r}\right), \sigma\left(T^{u-1}\right)\right)=1$. iii) If $a=2^{\alpha} u-1$ is odd (with u odd), then $\sigma^{* *}\left(T^{a}\right)=(1+T)^{2^{\alpha}-1}$. $\left(\sigma\left(T^{u-1}\right)\right)^{2^{\alpha}}$.

We explicit the following formulas (useful for $T \in\{x, x+1\} \cup \mathcal{M}$).

$$
\left\{\begin{array}{l}
\sigma^{* *}\left(T^{2}\right)=(1+T)^{2}, \sigma^{* *}\left(T^{4}\right)=(1+T)^{2} \sigma\left(T^{2}\right), \sigma^{* *}\left(T^{6}\right)=(1+T)^{4} \sigma\left(T^{2}\right), \tag{1}\\
\sigma^{* *}\left(T^{8}\right)=(1+T)^{4} \sigma\left(T^{4}\right), \sigma^{* *}\left(T^{10}\right)=(1+T)^{2}\left(\sigma\left(T^{2}\right)\right)^{2} \sigma\left(T^{4}\right), \\
\sigma^{* *}\left(T^{12}\right)=(1+T)^{2}\left(\sigma\left(T^{2}\right)\right)^{2} \sigma\left(T^{6}\right), \sigma^{* *}\left(T^{14}\right)=(1+T)^{8} \sigma\left(T^{6}\right) .
\end{array}\right.
$$

Corollary 2.9. i) For any $j \leq 5$, neither M_{2} nor M_{3} divides $\sigma^{* *}\left(M_{j}^{h_{j}}\right)$.
ii) $\sigma^{* *}\left(M_{2}^{4}\right)=x^{2}(x+1)^{4} M_{1} M_{5}$ and $\sigma^{* *}\left(M_{3}{ }^{4}\right)=x^{4}(x+1)^{2} M_{1} M_{4}$.
iii) If $j \notin\{2,3\}$ and $r \geq 2$, then $\sigma^{* *}\left(M_{j}{ }^{2 r}\right)$ has a non Mersenne prime divisor.
iv) If M_{2} divides $\sigma^{* *}\left(x^{a}\right)$, then $a \in\left\{12,14,7 \cdot 2^{n}-1: n \in \mathbb{N}^{*}\right\}$. In this case, M_{3} also divides $\sigma^{* *}\left(x^{a}\right)$.

Corollary 2.10. i) The polynomial $\sigma^{* *}\left(x^{a}\right)$ splits over \mathbb{F}_{2} if and only if $a=2$ or $a=2^{\alpha}-1$, for some $\alpha \in \mathbb{N}^{*}$.
ii) Let $T \in \mathbb{F}_{2}[x]$ be odd and irreducible. Then $\sigma^{* *}\left(T^{c}\right)$ splits over \mathbb{F}_{2} if and only if T is a Mersenne prime and ($c=2$ or $c=2^{\gamma}-1$ for some $\left.\gamma \in \mathbb{N}^{*}\right)$.

Lemma 2.11. If $\sigma^{* *}\left(x^{2 m}\right)$ has only Mersenne primes as odd divisors, then $2 m \in\{4,6,8,10,12,14\}$. In this case, all its divisors lie in \mathcal{M}.

Proof. - Case 1: $2 m=4 r$, with $r \geq 1$ and $2 r-1=2^{\alpha} u-1$, u odd.
We obtain: $\sigma^{* *}\left(x^{2 m}\right)=(1+x)^{2^{\alpha}} \cdot \sigma\left(x^{2 r}\right) \cdot\left(\sigma\left(x^{u-1}\right)\right)^{2^{\alpha}}$
Therefore, $2 r \in\{2,4,6\}$ and $u \in\{1,3,5,7\}, 2 r=2^{\alpha} u$. So, $2 m \in\{4,8,12\}$.

- Case 2: $2 m=4 r+2$, with $r \geq 0$ and $2 r+1=2^{\alpha} u-1, u$ odd.

One has: $\sigma^{* *}\left(x^{2 m}\right)=(1+x)^{2^{\alpha}} \cdot \sigma\left(x^{2 r}\right) \cdot\left(\sigma\left(x^{u-1}\right)\right)^{2^{\alpha}}$.
Thus, $2 r \in\{2,4,6\}$ and $u \in\{1,3,5,7\}, 2 r=2^{\alpha} u-2$. So, $2 m \in\{6,10,14\}$. It remains to remark that $\sigma\left(x^{2}\right)=M_{1}, \sigma\left(x^{4}\right)=M_{4}$ and $\sigma\left(x^{6}\right)=M_{2} M_{3}$.

We get from Lemma 2.5 (with similar proofs):
Lemma 2.12. If $\sigma^{* *}\left(x^{2 m+1}\right)$ has only Mersenne primes as odd divisors, then $2 m+1=2^{\alpha} u-1$ for some $\alpha \in \mathbb{N}^{*}$ and $u \in\{3,5,7\}$.
In this case, all its odd divisors lie in \mathcal{M}.
Lemma 2.13. Let $M \in \mathcal{M}$ such that $\sigma^{* *}\left(M^{2 m}\right)$ has only Mersenne primes as odd divisors, then $2 m \in\{4,6\}$ and $M \in\left\{M_{2}, M_{3}\right\}$.
In this case, all its divisors lie in $\left\{M_{1}, M_{4}, M_{5}\right\}$.
Lemma 2.14. If $M \in \mathcal{M}$ and $\sigma^{* *}\left(M^{2 m+1}\right)$ has only Mersenne primes as odd divisors, then $2 m+1 \in\left\{3 \cdot 2^{\alpha}-1: \alpha \in \mathbb{N}^{*}\right\}$ and $M \in\left\{M_{2}, M_{3}\right\}$. In this case, all its odd divisors lie in $\left\{M_{1}, M_{4}, M_{5}\right\}$.

Lemma 2.15.

If Q is a Mersenne prime divisor of $\sigma^{* *}\left(A_{1}\right)$, then $Q \in \mathcal{M}$.
Proof. We apply Lemmas 2.11 and 2.13. If Q divides $\sigma^{* *}\left(x^{a}\right) \sigma^{* *}\left((x+1)^{b}\right)$, then $Q \in \mathcal{M}$. If Q divides $\sigma^{* *}\left(P_{i}^{h_{i}}\right)$ with $P_{i} \in \mathcal{M}$, then $P_{i} \in\left\{M_{2}, M_{3}\right\}$ and $Q \in\left\{M_{1}, M_{4}, M_{5}\right\}$.

3 The proof of Theorem 1.1

Sufficiencies are obtained by direct computations. For the necessities, we shall apply Lemmas 2.11, 2.12, 2.13 and 2.14. We fix:
$A=x^{a}(x+1)^{b} \prod_{i \in I} P_{i}^{h_{i}}=A_{1} A_{2}$, where $a, b, h_{i} \in \mathbb{N}, P_{i}$ is a Mersenne prime,
$A_{1}=x^{a}(x+1)^{b} \prod_{i=1}^{5} M_{i}^{h_{i}}$ and $A_{2}=\prod_{P_{i} \notin \mathcal{M}} P_{i}^{h_{i}}$.
We suppose that A is i.b.u.p: $A_{1} A_{2}=A=\sigma^{* *}(A)=\sigma^{* *}\left(A_{1}\right) \sigma^{* *}\left(A_{2}\right)$.

3.1 First reduction

Lemma 3.1. For any $P_{j} \notin \mathcal{M}$, one has: $\operatorname{gcd}\left(P_{j}^{h_{j}}, \sigma^{* *}\left(A_{1}\right)\right)=1$ and $h_{j}=0$, so that $A=A_{1}$.

Proof. Any odd irreducible divisor of $\sigma^{* *}\left(x^{a}\right)$ (resp. of $\sigma^{* *}\left((x+1)^{b}\right)$, of $\sigma^{* *}\left(M_{i}^{h_{i}}\right)$, with $\left.M_{i} \in \mathcal{M}\right)$ must belong to \mathcal{M}. Thus, for all $P_{j} \notin \mathcal{M}$ and $M_{i} \in \mathcal{M}, P_{j}$ divides neither $\sigma^{* *}\left(x^{a}\right), \sigma^{* *}\left((x+1)^{b}\right)$ nor $\sigma^{* *}\left(M_{i}^{h_{i}}\right)$. Hence, $\operatorname{gcd}\left(P_{j}^{h_{j}}, \sigma^{* *}\left(A_{1}\right)\right)=1$.
Moreover, $P_{j}^{h_{j}}$ divides $\sigma^{* *}\left(A_{2}\right)$ because it divides $A=\sigma^{* *}(A)=\sigma^{* *}\left(A_{1}\right) \sigma^{* *}\left(A_{2}\right)$ and $\operatorname{gcd}\left(P_{j}^{h_{j}}, \sigma^{* *}\left(A_{1}\right)\right)=1$. Hence, A_{2} divides $\sigma^{* *}\left(A_{2}\right)$. So, A_{2} is b.u.p and it is equal to $1, A$ being indecomposable.

Corollary 3.2.

If A_{1} is b.u.p, then $h_{3}=h_{2}, h_{2} \in\left\{0,2,4,6,2^{n}-1,3 \cdot 2^{n}-1: n \in \mathbb{N}^{*}\right\}$ and $h_{i} \in\left\{0,2,2^{n}-1: n \in \mathbb{N}^{*}\right\}$, for $i \in\{1,4,5\}$.

Proof. If $M_{2}\left(\right.$ resp. $\left.M_{3}\right)$ divides $\sigma^{* *}\left(A_{1}\right)$, then it divides $V=\sigma^{* *}\left(x^{a}\right) \sigma^{* *}((x+$ $1)^{b}$). Therefore, M_{3} (resp. M_{2}) also divides V and $\sigma^{* *}\left(A_{1}\right)$. Hence, $h_{2}=h_{3}$. Suppose that $h_{j} \geq 1$. The polynomial $\sigma^{* *}\left(M_{j}^{h_{j}}\right)$ must factor in $\{x, x+1\} \cup$ \mathcal{M}. Thus, if $j \notin\{2,3\}$, then $h_{j} \in\left\{2,2^{n}-1: n \in \mathbb{N}^{*}\right\}$. If $j \in\{2,3\}$, then $h_{j} \in\{2,4,6\}$ or it is of the form $2^{n} u-1$, where $n \geq 1$ and $u \in\{1,3\}$.

In the rest of the paper, we prove the following
Proposition 3.3. If A_{1} is b.u.p, then $A_{1}, \overline{A_{1}} \in\left\{C_{1}, \ldots, C_{23}\right\}$.

3.2 Proof of Proposition 3.3

We write: $A_{1}=x^{a}(x+1)^{b} M_{1}^{h_{1}} M_{2}^{h_{2}} M_{3}^{h_{3}} M_{4}^{h_{4}} M_{5}^{h_{5}}$.
Corollary 3.2 implies that for any $i, h_{i} \in\left\{0,2,4,6,2^{n}-1,3 \cdot 2^{n}-1: n \in \mathbb{N}^{*}\right\}$.
Lemma 3.4. For any $n, m \in \mathbb{N}^{*}, a \neq 2^{n}-1$ or $b \neq 2^{m}-1$.
Proof. If $a=2^{n}-1$ and $b=2^{m}-1$ for some $n, m \geq 1$, then
$x^{a}(x+1)^{b} M_{1}^{h_{1}} \cdots M_{5}^{h_{5}}=A_{1}=\sigma^{* *}\left(A_{1}\right)=(x+1)^{a} x^{b} \sigma^{* *}\left(M_{1}^{h_{1}}\right) \cdots \sigma^{* *}\left(M_{5}^{h_{5}}\right)$.
Thus, $a=b$ and $M_{1}^{h_{1}} \cdots M_{5}^{h_{5}}$ is b.u.p, which contradicts Lemma 2.1.
By direct computations (sketched in Section 3.3), we get Proposition 3.3 from Lemmas 3.5 and 3.6.
Set $K_{1}=\{0,1,2,3,4,5,6,7,11,23\}$ and $K_{2}=\{0,1,2,3,4,6,7,15\}$.
Lemma 3.5. i) If a and b are both even, then $a, b \leq 14$ and $h_{i} \in K_{1}$.
ii) If a is even and b odd, then $a \leq 14, b=2^{\beta} v-1$, with $\beta \leq 3, v \leq 7$, v odd and $h_{i} \in K_{1}$.
More precisely, $h_{3}=h_{2}, h_{2} \in\{0,2,4,6\}$ and $h_{1}, h_{4}, h_{5} \in\{0,1,2,3,7,15\}$.
Proof. According to Corollary 3.2, it remains to give upper bounds for a, b and for h_{i}, if h_{i} is odd.
i): If a and b are both even, then a (resp. b) is of the form $4 r$ or $4 r+2$, (resp. $4 s$ or $4 s+2$). Thus, $\sigma\left(x^{2 r}\right)$ and $\sigma\left((x+1)^{2 s}\right)$ are both odd divisors of $\sigma^{* *}\left(A_{1}\right)=A_{1}$. Hence, $2 r, 2 s \leq 6$ and $a, b \leq 14$.
If h_{i} is odd, then it is of the form $2^{n} u-1$, with $u \in\{1,3\}$. So, $\sigma^{* *}\left(M_{i}{ }^{h_{i}}\right)=$ $\sigma\left(M_{i}{ }^{h_{i}}\right)=\left(1+M_{i}\right)^{2^{n}-1}\left(\sigma\left(M_{i}{ }^{u-1}\right)\right)^{2^{n}}$. Thus, $2^{n}-1 \leq a \leq 14$, by considering the exponents of x in A_{1} and in $\sigma^{* *}\left(A_{1}\right)$. We get $n \leq 3$ and $h_{i} \in K_{1}$.
ii): In this case, $2^{\beta} \leq a \leq 14$ so that $\beta \leq 3$. Moreover, $\sigma\left((x+1)^{v-1}\right)$ lies in $\left\{1, M_{1}, M_{2} M_{3}, M_{5}\right\}$. We deduce that $v \leq 7$. As above, $h_{i} \in K_{1}$.

Lemma 3.6. If a and b are both odd, then $a=2^{\alpha} u-1, b=2^{\beta} v-1$ with $u, v \leq 7, u, v$ both odd, $(u, v) \neq(1,1), 1 \leq \alpha, \beta \leq 3$ and $h_{i} \in K_{2}$.

Proof. We give upper bounds for a, b and for h_{i}, if h_{i} is odd. One has:

$$
\sigma^{* *}\left(x^{a}\right)=(x+1)^{2^{\alpha}-1}\left(\sigma\left(x^{u-1}\right)\right)^{2^{\alpha}}, \sigma^{* *}\left((x+1)^{b}\right)=x^{2^{\beta}-1}\left(\sigma\left((x+1)^{v-1}\right)\right)^{2^{\beta}} .
$$

Without loss of generality, we may suppose that $u \leq v$.

- If $u=7$ or $v=7$, then $h_{2} \neq 0$ and $h_{2} \in\left\{2^{\alpha}, 2^{\beta}, 2^{\alpha}+2^{\beta}\right\}$ (compare h_{2} with all possible exponents of M_{2} in $\left.\sigma^{* *}\left(A_{1}\right)\right)$. So, h_{2} is even and thus $h_{3}=h_{2} \leq 6, \alpha, \beta \leq 2$ and $a, b \leq 27$.

Now, for $i \in\{1,4,5\}$ with h_{i} odd, one has: $h_{i}=2^{n}-1 \leq a \leq 27$, so that $n \leq 4$ and $h_{i} \in\{1,3,7,15\}$.

- If $u, v \leq 5$, then $h_{3}=h_{2}=0$. For $j \in\{1,4,5\}, M_{j}$ divides $\sigma^{* *}\left(A_{1}\right)$ if and only if it divides $\sigma^{* *}\left(x^{a}\right) \sigma^{* *}\left((1+x)^{b}\right)$.
- The case $u=v=1$ does not happen because A_{1} does not split.
- If $u=1$ and $v=3$, then $h_{1}=2^{\beta} \leq 2,2^{\alpha}-1 \leq b=3 \cdot 2^{\beta}-1, \beta=1, \alpha \leq 2$.
- If $u=1$ and $v=5$, then $h_{5}=2^{\beta} \leq 2,2^{\alpha}-1 \leq b=5 \cdot 2^{\beta}-1, \beta=1, \alpha \leq 3$.
- If $u=v=3$, then h_{1} is even and $h_{1}=2^{\alpha}+2^{\beta} \geq 4$, which is impossible.
- If $u=3$ and $v=5$, then $h_{1}=2^{\alpha} \leq 2, h_{5}=2^{\beta} \leq 2, \alpha=\beta=1$.
- If $u=v=5$, then $h_{4}=2^{\alpha} \leq 2, h_{5}=2^{\beta} \leq 2$ and $\alpha=\beta=1$.

3.3 Maple Computations

According to Lemmas 3.5 and 3.6 , we determine, in 4 parts, the set L of all 7 -uples $\left[a, b, h_{1}, h_{2}, h_{3}, h_{4}, h_{5}\right]$ such that $a \leq b$. Then, we search $S=x^{a}(x+1)^{b} M_{1}{ }^{h_{1}} M_{2}^{h_{2}} M_{3}^{h_{3}} M_{4}{ }^{h_{4}} M_{5}{ }^{h_{5}}$ satisfying: $\sigma^{* *}(S)=S$.
The case where $a \geq b$ is obtained from the substitution: $x \longleftrightarrow x+1$.

1) If a and b are even, then $b \in\{0,2,4,6,8,10,12,14\}$ and $h_{i} \in K_{1}$. We get (after 6 mn) $\# L=35000$ and $C_{3}, C_{4}, C_{8}, C_{13}, C_{14}, C_{15}$ as b.u.p polynomials.
2) If a is even and b odd, then $b \in\{0,1,3,5,7,9,11,13,19,23,27,39,55\}$, $a \in\{0,2,4,6,8,10,12,14\}$ and $h_{i} \in K_{1}$.
We get (15 mn): $\# L=70000$ and as b.u.p polynomials: $C_{5}, C_{9}, C_{16}, C_{18}, C_{20}$.
3) If a is odd and b even, then $a \in\{0,1,3,5,7,9,11,13,19,23,27,39,55\}$, $b \in\{0,2,4,6,8,10,12,14\}$ and $h_{i} \in K_{1}$.
We get $(5 \mathrm{mn}): \# L=35000$ and $C_{1}, C_{6}, C_{10}, C_{21}, C_{22}, C_{23}$.
4) If a and b are both odd, then $a, b \leq 27$ and $h_{i} \in K_{2}$.

Moreover, $h_{2}=h_{3}=0$ if $u, v \leq 5$.
We get $(30 \mathrm{mn}): \# L=97500$ and $C_{2}, C_{7}, C_{11}, C_{12}, C_{17}, C_{19}$.
The function $\sigma^{* *}$ is defined as Sigm2star

```
> Sigm2star1:=proc(S,a) if a=0 then 1;else if a mod 2 = 0
then n:=a/2:sig1:=sum(S^1,l=0..n):sig2:=sum(S^1,l=0..n-1):
Factor((1+S)*sig1*sig2) mod 2:
else Factor(sum(S^l,l=0..a)) mod 2:fi:fi:end:
> Sigm2star:=proc(S) P:=1:L:=Factors(S) mod 2:k:=nops(L[2]):
for j to k do S1:=L[2][j][1]:h1:=L[2][j][2]:
P:=P*Sigm2star1(S1,h1):od:P:end:
```


References

[1] J. T. B. Beard Jr, Bi-Unitary Perfect polynomials over $G F(q)$, Annali di Mat. Pura ed Appl. 149(1) (1987), 61-68.
[2] E. F. Canaday, The sum of the divisors of a polynomial, Duke Math. J. 8 (1941), 721-737.
[3] L. H. Gallardo, O. Rahavandrainy, There is no odd perfect polynomial over \mathbb{F}_{2} with four prime factors, Port. Math. (N.S.) 66(2) (2009), 131-145.
[4] L. H. Gallardo, O. Rahavandrainy, Even perfect polynomials over \mathbb{F}_{2} with four prime factors, Intern. J. of Pure and Applied Math. 52(2) (2009), 301-314.
[5] L. H. Gallardo, O. Rahavandrainy, All unitary perfect polynomials over \mathbb{F}_{2} with at most four distinct irreducible factors, Journ. of Symb. Comput. 47 (2012), 492-502.
[6] L. H. Gallardo, O. Rahavandrainy, On even (unitary) perfect polynomials over \mathbb{F}_{2}, Finite Fields Appl. 18 (2012), 920-932.
[7] L. H. Gallardo, O. Rahavandrainy, Characterization of Sporadic perfect polynomials over \mathbb{F}_{2}, Funct. et Approx. 55(1) (2016), 7-21.
[8] L. H. Gallardo, O. Rahavandrainy, All even (unitary) perfect polynomials over \mathbb{F}_{2} with only Mersenne primes as odd divisors, arXiv:2202.06357 (2022).
[9] Charles R. Wall, Bi-Unitary Perfect numbers, Proceedings of the AMS 33, N. 1 (1972), 39-42.

