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Abstract :   
 
Deep-sea elasmobranchs are commonly reported as bycatch of deep-sea fisheries and their subsequent 
loss has been highlighted as a long-running concern to the ecosystem ecological functioning. To 
understand the possible consequences of their removal, information on basic ecological traits, such as 
diet and foraging strategies, is needed. Such aspects have been widely studied through stomach content 
analysis but the lack of long-term dietary information requires other tools to be used such as stable 
isotopes. This study examines nitrogen and carbon isotope compositions of the velvet belly lantern shark, 
Etmopterus spinax, one of the most impacted shark species in Northeastern Atlantic fisheries as a result 
of accidental catches. E. spinax was sampled at four different locations, characterized by contrasting 
oceanographic and ecological conditions: the western Mediterranean Sea (near the Balearic Islands), the 
southern Iberian upwelling system, Rockall Trough and southwestern Norwegian fjords. Stomach content 
analysis revealed similar prey species among sites, with a diet dominated by Euphausiacea (mostly 
Meganyctiphanes norvegica) and an ontogenetic shift towards small teleost fishes, cephalopods or other 
crustaceans. Despite these similarities, muscle stable isotope compositions differed across sampled 
locations. Rather than clear dietary differences, the contrasted isotopic values are likely to reflect 
differences in environmental settings and biogeochemical processes affecting nutrient dynamics at the 
base of the food webs. 
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Highlights 

► E. spinax were sampled across the northeastern Atlantic and Mediterranean Sea. ► Stomach contents 
suggested a similar diet. ► E. spinax fed mainly on Euphausiacea with an ontogenetic diet shift. ► Muscle 
carbon and nitrogen isotope compositions differed between locations. ► Isotopic differences probably 
resulted from mechanisms affecting the baselines. 

 

Keywords : Trophic ecology, Stable Isotopes, Stomach content, Mesopredator, Food webs, 
Benthopelagic predator. 
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Under the footprint of anthropogenic activities and climate change, many coastal and 23 

epipelagic fisheries have significantly declined (Chavez et al., 2003; Pinsky et al., 2011; Tu et 24 

al., 2018), diverting fishing efforts toward deep-sea stocks (Bailey et al., 2009; Devine et al., 25 

2006; Priede et al., 2011; Vieira et al., 2019). As a consequence, significant population 26 

decreases have been observed in these deep water ecosystems with unknown and potentially 27 

disruptive impacts on ecological processes and functions (Benn et al., 2010; Vieira et al., 2020). 28 

However, despite their ecological importance, fragility and current state of exploitation, deep-29 

sea ecosystems are still relatively understudied compared to their shallower counterparts 30 

(Benn et al., 2010; Thurber et al., 2014). In order to predict how deep-sea ecosystems will 31 

respond to natural or human-induced changes, information on the functioning of deep-sea 32 

communities is urgently needed (Howell et al., 2021). 33 

Previous descriptions of deep-sea habitats have established that food webs are complexly 34 

structured and include a range of trophic levels fuelled by a mixture of primary production, 35 

secondary production and benthic recycling (Newman et al., 2011; Shipley et al., 2017b; 36 

Trueman et al., 2014). Due to the absence of light for autochthonous primary production, 37 

deep-sea fauna relies on the downward vertical transport of nutrients (Polunin et al., 2001; 38 

Preciado et al., 2017), either actively by species diel vertical migrations or passively due to 39 

particulate organic matter sinking and re-suspension (Trueman et al., 2014). Within these food 40 

webs, deep-sea elasmobranch species are meso- to top predators (Churchill et al., 2015; 41 

Simpfendorfer and Kyne, 2009) which are of critical importance through their potential top-42 

down or more complex regulation of communities (Heithaus et al., 2008; Shipley et al., 2017a). 43 

By connecting different depth layers, they also influence energy flux and carbon cycling, 44 

further enhancing their key ecological role (Trueman et al., 2014). Unfortunately, information 45 
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on deep-sea sharks is still lacking due to the logistical challenges of accessing and studying 46 

them (Hussey et al., 2018; Moura et al., 2018; Simpfendorfer and Kyne, 2009). 47 

In deep-sea sharks, most trophic studies have relied upon stomach content analysis (Barría et 48 

al., 2018; Cortés, 1999). Even if this approach allows a complete qualitative description of the 49 

diet, it requires a large number of samples, represents only a snapshot of the last meal(s) and 50 

differences in digestion rates may also bias the importance of prey items (Albo-Puigserver et 51 

al., 2015). In contrast, biochemical tracers such as stable isotope ratios of carbon (δ13C) and 52 

nitrogen (δ15N) can help to describe the trophic structure, niche width and energy fluxes on a 53 

long-term basis with potential quantitative approaches (Layman et al., 2012; Shipley et al., 54 

2017a). Carbon isotope signatures are considered as a good proxy to characterize the primary 55 

producers at the base of food webs (Fry and Sherr, 1984; Layman et al., 2012). Nitrogen 56 

isotope composition is mainly used as a proxy of trophic position due to a global increase in 57 

δ15N signal from prey to predator (Cabana and Rasmussen, 1994; Post, 2002) and has been 58 

linked to foraging depth in benthopelagic communities (Trueman et al., 2014). By extension, 59 

the combination of carbon and nitrogen isotopes constitutes a proxy of the trophic niche 60 

crucial for assessing the ecological role of a given species or population (Newsome et al., 61 

2007). 62 

Deep-sea shark isotopic values depend on their diet but also on the isotopic compositions at 63 

the base of food webs, which exhibit spatial and temporal variations (Magozzi et al., 2017; 64 

Somes et al., 2010). Environmental conditions and local biogeochemical processes are known 65 

to affect baseline isotopic profiles due to changes in nutrient dynamics. For example, 66 

latitudinal differences in baseline isotopic values can be influenced by temperature (Magozzi 67 

et al., 2017; Rau et al., 1997), river discharges (Chouvelon et al., 2012) and upwelling events 68 
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(Lopez-Lopez et al., 2017; Puccinelli et al., 2019). The extent to which large-scale spatial 69 

variations in isotopic baselines are reflected in deep-sea ichtyofauna remains unclear. 70 

Moreover, deep-sea sharks are mobile species that can shift their feeding ground while 71 

migrating. Isotopically, this shift will follow baseline changes and these variations need to be 72 

considered when analysing the trophic niche of a species over time or space (Bird et al., 2018; 73 

Lorrain et al., 2015).  74 

Along the northeastern Atlantic and Mediterranean continental shelfs and slopes, the trophic 75 

ecology of a small deep-sea shark, the velvet belly lantern shark, Etmopterus spinax (Linnaeus, 76 

1758), has been extensively studied using stomach content analysis (Klimpel et al., 2003; Neiva 77 

et al., 2006; Valls et al., 2017). Beyond those habitats, luminous velvet belly lantern sharks 78 

inhabit deep layers of fjords in Norway (Claes et al., 2010; Duchatelet et al., 2021). The first 79 

objective of this study is to present a description of the species diet inside these semi-enclosed 80 

habitats. More generally, throughout its distribution area, only a few studies took into account 81 

stable isotopes to specifically investigate E. spinax trophic habitat (Albo-Puigserver et al., 82 

2015; Valls et al., 2017). Consequently, the second objective of this study is to investigate 83 

muscle carbon and nitrogen isotopic compositions of E. spinax at four different locations in 84 

the Mediterranean Sea and in the northeastern Atlantic to gain long-term dietary information 85 

on this species. Information on the trophic ecology of E. spinax gathered by stomach content 86 

analysis were ultimately compared to stable isotope values and discussed in terms of local 87 

habitat ecological characteristics and physical processes affecting nutrient dynamics. 88 

2. MATERIALS AND METHODS 89 

2.1. Stomach content 90 
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In Norway, stomach content analysis of Etmopterus spinax came from eleven scientific 91 

expeditions from 2008 to 2012 inside the Raunefjord (Figure 1). Based on morphological 92 

analysis of less-digested or undigested component, preys were identified at the lowest 93 

taxonomic level possible. For Euphausiacea, eyes were digested at a lower rate than the rest 94 

of the body parts. Therefore, each pair of eyes was identified as one Euphausiacea individual 95 

unless morphological characteristics allowed identification to the species level. Cephalopods 96 

were identified through their remaining beaks. For large fishes, species identification was 97 

possible when the whole body was present or based on dental bone dimension. To assess and 98 

compare prey composition, four indices were calculated: the numeric percentage %N (a prey 99 

item abundance as a percent of the total prey abundance), the gravimetric percentage %W (a 100 

prey item remaining mass as a percent of the total prey mass), the occurrence percentage %O 101 

(number of stomachs containing a prey item in percent compare to all stomachs) and finally 102 

the index of relative importance IRI: IRI = (%N + %W) × %O (Cortés, 1997). Empty stomachs 103 

were not considered in indices calculation. 104 

2.2. Stable isotope analysis 105 

From 2014 to 2017, Etmopterus spinax specimens were sampled in four different areas 106 

of the northeast Atlantic and the Mediterranean Sea (Figure 1). Individuals from Rockall 107 

Trough and Portugal were sampled during annual-fisheries surveys run by Marine Science 108 

Scotland (MSS) and Instituto Português do Mar e da Atmosfera (IPMA) respectively. Additional 109 

samples were collected in Portugal from bycatches of the commercial black scabbardfish 110 

(Aphanopus carbo) longline and of the crustacean bottom trawl fisheries. In the 111 

Mediterranean Sea, E. spinax samples from the Balearic Islands were obtained from research 112 

cruises conducted by the Mediterranean International Trawl Survey (MEDITS). In the 113 
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Raunefjord (Norway), sharks were caught using deep-water longlines during scientific surveys. 114 

Each collected specimen was sexed and measured for total length (TL). Following dissection, 115 

white muscle was quickly frozen before analysis.  116 

Samples were dried (48 hours at 60°C) and ground using pestle and mortar prior analysis. To 117 

avoid possible biases linked to polar compound contents (i.e. lipids, urea and trimethylamine 118 

N-oxide), all samples were washed in distilled water and their δ13C mathematically corrected 119 

(Kiljunen et al., 2006; Li et al., 2016). Only samples from Norway obtained in 2017 underwent 120 

lipid chemical extraction using a modified Folch method based on repetitive wash in a 2:1 121 

dichloromethane:methanol mix (Folch et al., 1957). Carbon and nitrogen isotope 122 

compositions were subsequently compared between individuals sampled in Norway in 2014 123 

(i.e. corrected δ13C values) and in 2017 (i.e. δ13C values measured after extraction) at the same 124 

locations. They were all kept in the dataset because no significant difference in mean isotopic 125 

values was observed. As pure protein samples exhibit a C:N ratio around 3.0 for shark muscle, 126 

a good lipid, urea and trimethylamine N-oxide extraction for all samples were considered as 127 

those with a C:N ratio lower than 4.0 (Hussey et al., 2012) leading to no discard or additional 128 

chemical extractions.  129 

Isotopic ratios (δ) were expressed in per mille (‰) following: δX = [(Rsample/Rstandard) - 1] × 1000 130 

where X is 13C or 15N and R is 13C/12C or 15N/14N, respectively. δ13C values are expressed with 131 

reference to the Vienna Pee Dee Belemnite and δ15N values are expressed relative to 132 

Atmospheric air. Depending on sites and sampling year, samples were analysed in different 133 

facilities. Samples from Norway obtained in 2017 were processed in Liege (Oceanology, 134 

ULiege, Belgium) using a continuous flow isotope ratio mass spectrometer (Isoprime 100, 135 

Isoprime, United Kingdom) coupled to a C-N-S elemental analyser (MicroVario, Elementar, 136 
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Germany). The certified substances, provided by the International Atomic Energy Agency IAEA 137 

(Vienna) were IAEA-CH-6 (sucrose) for δ13C and IAEA-N-1 (ammonium sulfate) for δ15N. Cod 138 

(Gadus morhua) muscle was used as a natural replicate showing precision of ± 0.05 ‰ for δ13C 139 

and ± 0.23 ‰ for δ15N (based on the standard deviation of the replicate measurements). 140 

Stable isotope ratios of samples obtained along the southern Iberian coast of Portugal in 2015 141 

were measured using a Thermo Scientific Delta V Advantage IRMS via Conflo IV interface at 142 

Marinnova – Marine and Environmental Innovation, Technology and Services (Portugal). 143 

Samples from Rockall were analysed in two separate laboratories at the Scottish University 144 

Environmental Research Council (SUERC) and at the OEA Labs (Exeter, United Kingdom). The 145 

remaining samples from 2014 (i.e. Norway, Portugal and Balearic Islands) were processed in 146 

Elemtex (Gunnislake, United Kingdom). SUERC samples were run on a continuous flow 147 

Elementar vario PYRO cube elemental analyser coupled with a Thermo Scientific Delta V plus 148 

isotope ratio mass spectrometer (SUERC, NERC LSMSF, East Kilbride facility). OEA Labs and 149 

Elemtex samples were run on a Thermo EA 110 elemental analyser linked to a Europa Scientific 150 

2020 isotope ratio mass spectrometer running in continuous flow mode.  151 

2.3. Data analysis 152 

To assess isotopic baseline effects (i.e. change of primary producer isotopic 153 

composition) in each sampling site, isotope values were extracted from predictive models 154 

established for δ13C (Magozzi et al., 2017) and δ15N (Somes et al., 2010). Baseline values were 155 

extracted from the shark specific sampling locations (details of the specific latitudes and 156 

longitudes can be found in supplementary information). To overcome the baseline effect 157 

when comparing sharks between locations, the modelled baseline (i.e. phytoplankton) value 158 

was subtracted from shark stable isotope composition for each individual geographic 159 
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coordinate: ΔX = δXshark - δXphyto where X is 13C or 15N. Modelled δ15N baseline values inside 160 

the fjord were not available and values from the adjacent North Sea were subsequently used. 161 

All statistical analyses were performed on the open source software R (R Core Team, 2020). 162 

For each site, the SIBER package (Jackson et al., 2011) was used to estimate the size of the 163 

isotopic niches (i.e. using Δ13C and Δ15N) and their associated Layman metrics (Layman et al., 164 

2007). Layman metrics were first used to characterize trophic niche space using four metrics. 165 

Isotopic ranges (Δ13C rg and Δ15N rg) described the distance between the most 13C- and 15N-166 

enriched and most depleted individuals respectively, the total area (TA), the size of the 167 

isotopic niche based on convex hull area and the mean distance to the centroid (CD), the mean 168 

distance of each individual to the Δ13C/Δ15N centroid. The other two metrics reflected trophic 169 

redundancy (i.e. the relative position of individuals from one another inside their isotopic 170 

niche). Mean nearest neighbor distance (NND and its standard deviation SDNND) measured 171 

the overall density of individuals clustering in a way that smaller NND and SDNND would 172 

describe small differences between individual isotopic values (Layman et al., 2007). The SIBER 173 

package was finally used to calculate the standard ellipse area (SEA) encompassing 40% of the 174 

bulk δ13C/δ15N data at each site and the isotopic overlaps between them as a proportion of 175 

the non-overlapping area of two given ellipses.  176 

For between-site comparisons, data was first checked for normality by Shapiro-Wilk tests and 177 

homoscedasticity by Bartlett’s tests. As both conditions were not met, Kruskal-Wallis tests 178 

followed by Conover-Iman (C-I) post-hoc tests were applied. Comparisons between sexes 179 

were carried out using Student’s t-tests or its non-parametric analogue, the Wilcoxon test. 180 

Pearson correlation tests were used to assess linear correlations between Δ13C, Δ15N and TL. 181 

Finally, an analysis of covariance (ANCOVA) was performed to test for slope differences 182 
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between linear regressions. For all statistical analyses, the significance threshold was set at 183 

p<0.05.  184 

3. RESULTS 185 

3.1. Stomach content analysis  186 

In the Raunefjord, a set of 255 stomachs was analysed (on different specimens than 187 

for stable isotope analysis), among which 80 contained remains of prey items. Individuals that 188 

had food remains in their stomach ranged from 14.3 to 52.0 cm (TL) and included 51 females 189 

and 29 males. Euphausiacea was the major prey items of E. spinax with occurrence of 190 

Meganyctiphanes norvegica. Other prey included other crustaceans (mostly decapods), 191 

teleost fishes and cephalopods (Table 1). Until they reached 36.0 cm, Euphausiacea was the 192 

only prey item identified in the guts of E. spinax. Beyond this size, a diet shift was observed 193 

with occurrence of teleost fishes (such as Scomber scombrus and Maurolicus muelleri) and, to 194 

a lesser extent, decapods and cephalopods, therefore decreasing the importance of 195 

Euphausiacea overall. 196 

3.2. Stable isotopes 197 

Muscle tissues from 147 E. spinax individuals were recovered from the four different 198 

stations (Table 2). As fishing methodologies differed between stations, capture depth 199 

significantly varied among sampling sites (²146,3 = 98.2, p<0.001). Samples from Norway were 200 

caught on average at a depth of 243 meters, which was significantly shallower than the other 201 

sites where catch depth was around 600 meters. E. spinax TL varied from 11.0 to 57.4 cm and 202 

was significantly different between sampling sites (²146,3 = 74.2, p<0.001). Individuals from 203 
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Norway and Rockall were significantly larger than in Portugal and in the Balearic Islands (C-I 204 

test, p<0.001 for all pairs of comparison). Females were larger than males considering the 205 

entire dataset (W = 1860, p<0.01), as observed in Portugal (W = 148, p<0.05) and in Norway 206 

(t = -6.91, p<0.001). No significant difference in TL was found between sexes in the Balearic 207 

Islands and Rockall Trough.  208 

Modelled phytoplanktonic baselines significantly differed among sites (²146,3 = 101.4, p<0.001 209 

for δ13Cphyto; ²146,3 = 142.5, p<0.001 for δ15Nphyto). δ13Cphyto was significantly lower in the 210 

Balearic Islands than in Rockall and Portugal, while Norway displayed higher values than all 211 

other sites (C-I test, p<0.001). Concerning δ15Nphyto, all locations significantly differed (C-I test, 212 

p<0.001, for all pairs of comparison) with Portugal being the most 15N-enriched, followed by 213 

the Balearic Islands, Rockall Trough and southwestern Norway. 214 

Shark bulk isotopic values (i.e. δ13C and δ15N) differed among sampling sites (Figure 2) with 215 

the only overlapping SEAs (Standard Ellipse Areas) reported between E. spinax sampled in the 216 

Portugal Iberian system and Rockall Trough (39.89%). Δ15N values differed between locations 217 

(²146,3 = 118.3, p<0.001; Figure 3a). Norway individuals exhibited the highest Δ15N and 218 

individuals sampled in Portugal the lowest (C-I test, p<0.001 for all pairs of comparison). 219 

Rockall Δ15N value was also significantly higher than in Portugal (C-I test, p<0.01). Δ13C also 220 

varied significantly among sampling locations (²146,3 = 89.4, p<0.001; Figure 3b) with 221 

individuals from the Balearic Islands having the highest Δ13C and individuals from Norway the 222 

lowest (C-I test, p<0.001 for all pairs of comparison). E. spinax sampled in Rockall Trough and 223 

Portugal had similar Δ13C (C-I test, p>0.05). At each location, there was no depth-related or 224 

sex differences in Δ13C and Δ15N except in the Norwegian fjord where both values were 225 

significantly higher in males.  226 

Jo
urn

al 
Pre-

pro
of



13 

 

Individuals from Portugal had a singular profile encompassing the highest Δ13C rg, TA and CD 227 

suggesting higher isotopic diversity (Table 3). In Norway and in the Balearic Islands, E. spinax 228 

presented the smallest TA, CD and the lowest Δ13C and Δ15N rg. While displaying intermediate 229 

TA and CD, E. spinax sampled in Rockall exhibited the highest Δ15N rg.  230 

For all sampling sites, significant linear relations were established between Δ15N and TL (Figure 231 

4a). Δ15N increased with TL in three sites: Portugal, Rockall and the Balearic Islands. E. spinax 232 

sampled in Portugal and Rockall had equivalent slopes while specimens from the Balearic 233 

Islands showed a flatter one (ANCOVA, F=5.83 p<0.05 for Rockall and F=21.32 p<0.001 for 234 

Portugal). Specimens in Norway were the only ones with a significant decrease in Δ15N values 235 

with TL. Δ13C increased with TL in the Balearic Islands and Rockall with no differences in slopes 236 

(Figure 4b). At each location, linear regressions did not significantly change between sexes or 237 

with depth.  238 

4. DISCUSSION 239 

4.1. Trophic ecology of E. spinax 240 

  4.1.1. Prey composition (Stomach content analysis) 241 

In Norway, E. spinax stomach content composition inside the Raunefjord matched 242 

previous reports in the surrounding North and Norwegian Sea (Bergstad et al., 2003; Klimpel 243 

et al., 2003). The diet was dominated by M. norvegica, the most abundant prey in the 244 

ecosystem (Bergstad et al., 2003; Klimpel et al., 2003), with an ontogenetic diet switch toward 245 

the consumption of teleost fishes. The only difference was a later switch observed in the fjord, 246 

probably due to a sampling difference with the two previous studies as sampled individuals 247 

inside the fjord were larger.  248 
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At all locations sampled for stable isotope analysis, previously published studies have 249 

highlighted an ontogenetic shift in the diet of E. spinax, except for two studies on Portugal and 250 

the Balearic Islands (Table 4). Before the ontogenetic diet shift, Euphausiacea was generally 251 

the major prey item, mostly represented by the northern krill, Meganyctiphanes norvegica. 252 

Ontogenetic diet shift occurred at different lengths depending on the site, from 19.4 cm in 253 

Norway to 39.0 cm in Rockall Trough. Beyond these sizes, Euphausiacea decreased in 254 

importance due to the increasing occurrence of teleost fishes, cephalopods, or other 255 

crustaceans. This result was in line with previous analyses of E. spinax diet in the Atlantic 256 

Ocean and Mediterranean Sea (Bengil et al., 2019; Isbert et al., 2015; Preciado et al., 2017, 257 

2009). In Rockall, the later shift toward the consumption of the decapod crustacean, 258 

Pasiphaea tarda, has been explained by larger individuals foraging closer to the sea bottom 259 

where prey availability is different (Mauchline and Gordon, 1983). Ontogenetic diet shifts are 260 

commonly observed in mesopredator fishes due to increasing body length, mouth gap and 261 

stomach size, hunting capacities and energetic demands, or to avoid intra-specific competition 262 

(Klimpel et al., 2003; Neiva et al., 2006). 263 

Stomach contents analysed in the Balearic Islands showed contrasting results between 264 

studies. E. spinax either foraged following the previously described ontogenetic shift from 265 

small Euphausiacea to teleost fishes (Fanelli et al., 2009; Macpherson, 1980) or fed on 266 

cephalopods throughout their entire size range in more recent studies (Valls et al., 2017, 267 

2011). A higher proportion of cephalopod consumption by E. spinax was previously observed 268 

in the adjacent Catalan Sea and has been linked to the high exploitation rate of the area, 269 

depleting fish stocks in favour of cephalopods (Barría et al., 2018; Doubleday et al., 2016). In 270 

deep-sea sharks, smaller adult size and earlier maturity due to oligotrophic conditions in the 271 
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Mediterranean Sea could also explain cephalopod consumption by small specimens (Catarino 272 

et al., 2015; Massutí et al., 2004). However, this trend was not yet observed in E. spinax 273 

(Coelho et al., 2010).    274 

4.1.2. Nitrogen and carbon isotope compositions (Δ15N and Δ13C)   275 

 Stable isotope values obtained in this study were measured in multiple laboratories 276 

which may result in a potential bias (Mill et al., 2008). The analysis of a reference sample (USGS 277 

40 glutamic acid) to ensure comparability was performed on two of the four instruments used 278 

in this study (i.e. for Elemtex and OEA laboratories). δ13C values were on average 0.23 ± 0.40 279 

‰ higher from Elemtex than those obtained from OEA Labs. This difference, although 280 

significant, is quite small in regard of isotope patterns interpreted in this study, and 281 

comparable to error estimates considered acceptable in many ecological studies using stable 282 

isotope tracers. Nevertheless, this difference was subtracted from all shark δ13C values 283 

measured by Elemtex. There were no observed differences in δ15N values. Specimens sampled 284 

in Norway in 2017 and in Portugal in 2015 were analysed in facilities where glutamic acid 285 

samples could not be measured. However, all facilities follow recommended procedures for 286 

stable isotope analyses, and use certified materials that are all calibrated against the same 287 

international references (Vienna Pee Dee Belemnite for δ13C, Atmospheric air for δ15N). 288 

Therefore, we argue that analytical biases are unlikely to have a major impact on stable 289 

isotope trends depicted here. 290 

Ecological differences in E. spinax isotopic niches between sites were analysed by 291 

standardising values (i.e. Δ15N and Δ13C) to mitigate baseline effects (Bird et al., 2018). The 292 

absence of significant differences in isotopic ratios between females and males suggests a 293 

uniform diet across sexes, as globally observed in stomach content analyses of the species.  294 
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Nitrogen isotope composition is commonly used as a proxy of trophic position in marine food 295 

web (Cabana and Rasmussen, 1994). M. norvegica, the main prey of E. spinax, is a low trophic 296 

level omnivorous species feeding on both phytoplankton and copepods (Gomes et al., 2001; 297 

Kaartvedt et al., 2002). It is therefore unlikely that divergences in food web length might have 298 

contributed to the marked Δ15N differences. Moreover, the suspected Δ15N switch with TL was 299 

not observed at all sites. The relevance of Δ15N as a good proxy of the trophic level could be 300 

conditioned by the occurrence of a clear ontogenetic change as observed in Portugal and 301 

Rockall sharks. Along the Iberian slope, the rapid sedimentation of phytoplankton (Lopez-302 

Lopez et al., 2017) results in a direct linear energy flow, with phytoplankton mainly consumed 303 

by Euphausiacea, themselves consumed by secondary predators such as juvenile E. spinax 304 

(Gomes et al., 2001). Older E. spinax fed on higher trophic level species such as Pasiphaea 305 

sivado or Micromesistius poutassou (Neiva et al., 2006; Santos and Borges, 2001) explaining 306 

the 15N-enrichment (Figure 4a). In Rockall the same phenomenon is suspected to occur, with 307 

M. norvegica being replaced by possibly 15N-enriched prey like the decapod crustacean P. 308 

tarda or the teleost M. muelleri (Mauchline and Gordon, 1983). However, more recent 309 

information on E. spinax diet are needed to confirm this effect as the only stomach content 310 

description available came from samples obtained between 1973 and 1981 (Mauchline and 311 

Gordon, 1983) and major environmental and anthropogenic changes could have modified the 312 

shark diet over time.  313 

In benthopelagic communities, the higher degradation of sinking particles is leading to higher 314 

δ15N values in deeper species (Trueman et al., 2014). Bathymetric segregation at the inter- 315 

and intra-specific levels is commonly observed among deep-sea sharks (Clarke et al., 2005; 316 

Neat et al., 2015) and has been reported for E. spinax (Coelho and Erzini, 2010). At each site, 317 
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changes in capture depth were not associated with an increase in δ15N or Δ15N values. 318 

However, differences in E. spinax vertical segregation of maturity stages or bathymetric 319 

constraint among sites could explain Δ15N differences and would need to be specifically 320 

addressed in the future. 321 

Except for the Balearic Islands, E. spinax likely shared a pelagic habitat owing to their lower 322 

Δ13C values (Figure 3b). This is in accordance with the high rate of phytoplanktonic production 323 

fuelling the deeper layers of Portugal and Rockall continental slope systems (Gomes et al., 324 

2001; Mauchline and Gordon, 1983). In the Raunefjord, E. spinax Δ13C values agree with a diet 325 

dominated by pelagic preys (Bergstad et al., 2003; Klimpel et al., 2003). 326 

E. spinax sampled in the Balearic Islands exhibited higher Δ13C values (Figure 3b), suggesting 327 

reliance on different forms of primary production, such as 13C-enriched benthic prey (Madurell 328 

et al., 2008). It could correspond to the higher occurrence of cephalopods in E. spinax diet at 329 

that site (i.e. mainly Teuthoidea and Sepioidea). These cephalopods exhibit an ontogenetic 330 

diet shift from benthic to pelagic prey (Valls et al., 2017, 2011). As scavenging was not reported 331 

in the area and because mature cephalopods exceed E. spinax length, sharks are expected to 332 

forage on juvenile early benthic life stages possibly explaining their Δ13C values.  333 

4.2. Habitat characteristics influence on isotope compositions  334 

E. spinax in the Iberian slope ecosystems and Rockall Trough, even if mainly relying on 335 

pelagic production, presented similarly high indices of isotopic diversity (Table 3). Both sites 336 

are large continuous continental slopes (Mauchline and Gordon, 1991; Ribeiro et al., 2005) 337 

and topographic similarities might drive these similitudes. Indeed, ichthyofauna inhabiting 338 

continental slope ecosystems are known to integrate nutrient from a mixture of pelagic and 339 
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benthic origins (Mauchline and Gordon, 1991; Trueman et al., 2014). This trophic diversity is 340 

possibly further enhanced by the access to different topographic features (e.g. canyons, banks 341 

or steep slopes) (Romero-Romero et al., 2016; Rowden et al., 2010). 342 

In Portugal, from spring to late summer, changes in wind-driven mesoscale currents induce an 343 

upwelling of nutrient-rich cold water (Loureiro et al., 2005) that influences shelf and slope 344 

ecosystems over great distances (Pérez et al., 2010; Ribeiro et al., 2005) and resulting in 345 

shifting isotopic signals. Due to upwelling seasonality and geographical influence, temporal 346 

and spatial variations in δ13C values are observed in species at the base of the food web (Lopez-347 

Lopez et al., 2017). The small-scale variability in the activity of the upwelling associated with 348 

the spatial scale at which individuals were fished might contribute to the overall isotopic 349 

variability, a dynamic also observed in Rockall where the pelagic production is seasonally 350 

stimulated over the shelf area (White et al., 2005). 351 

The Balearic Islands deep ecosystem is characterized by a smaller continental slope, deep 352 

escarpments and canyons (Acosta et al., 2003). While topographic conditions might be similar 353 

to large continental slope systems, the main difference resides in the oligotrophic nature of 354 

the Mediterranean Sea (Bosc et al., 2004; Estrada, 1996). Such conditions might result in the 355 

observed small isotopic niche due to limited Δ15N variations and high redundancy index (Table 356 

3). Still, their broad Δ13C rg, with some 13C-depleted specimens, might reveal the existence of 357 

resource partitioning within the population, which could be fuelled by a diversity of prey of 358 

both benthic and pelagic origin (Albo-Puigserver et al., 2015; Madurell et al., 2008; Newman 359 

et al., 2011). Such coupling between reservoirs and reliance on other habitat is probably a 360 

response to oligotrophic conditions reducing pelagic production and prey availability (Valls et 361 

al., 2014). Sharks could also forage inside canyons where higher benthic prey densities are 362 
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present (Massutí et al., 2004). Other 13C-enriched sources have been identified in the Balearic 363 

Islands such as food falls (Cartes et al., 2016) or seagrass exportation at deeper layers 364 

(Boudouresque et al., 2016) but this remains speculative and will need further studies to 365 

investigate. Water temperature, higher in the Mediterranean Sea compared to the other 366 

locations, could also have led to differences in isotopic values compared to the other locations. 367 

Indeed, temperature can affect isotopic turnover rates and discrimination factors (Bloomfield 368 

et al., 2011), beyond latitudinal baseline δ13C and δ15N variations (Magozzi et al., 2017). 369 

Fjords are narrow, deep ecosystems delimited by steep flanking slopes (Harris, 2012). 370 

Therefore, possible bathymetric constraints (Coelho and Erzini, 2010) might reduce E. spinax 371 

foraging habitat diversity and explain isotopic niche limited space and high redundancy. Δ15N 372 

values (Figure 3a) may result from the important particle residency time (Saino and Hattori, 373 

1980) in deep basins. Indeed, even if fjords are dynamic systems with quick surface water 374 

turnover (Asplin et al., 1999), they are stratified with sometimes limited exchanges between 375 

reservoirs (Aure et al., 1996). As sinking particles are trapped in deep layers, especially in 376 

fjords, they would exhibit higher baseline δ15N values than suggested by surface model values 377 

(Saino and Hattori, 1980; Trueman et al., 2014). Even if experiencing an ontogenetic shift 378 

toward higher trophic position preys, E. spinax Δ15N decreased with TL (Figure 4a). Sharks 379 

sampled in the Raunefjord were only mature individuals probably post-ontogenetic diet shift. 380 

This decrease could result from a shift in feeding habitat with early maturing sharks foraging 381 

strictly in fjords while larger sharks could forage outside in offshore areas. This hypothesis 382 

would ultimately lead to the observed decreasing Δ15N values with length, as modelled δ15N 383 

baseline was extracted from outside of the fjord. Another possibility is that large sharks 384 
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change their foraging behaviour towards active predation of smaller organisms with lower 385 

trophic positions, although this is not supported by the stomach content analysis. 386 

Finally, relatively small deep-sea sharks can exhibit important horizontal migrations (Catarino 387 

et al., 2015; Rodríguez-Cabello and Sánchez, 2014). E. spinax population structure suggested 388 

it might connect distant areas across the northeastern Atlantic with a potential isolation of 389 

Mediterranean individuals (Gubili et al., 2016; McMillan et al., 2017). Migrating E. spinax are 390 

likely to feed on different isotopic baselines and would integrate them throughout the course 391 

of their migration (Carlisle et al., 2012). In this study, a significant overlap in bulk isotope 392 

niches occurred between Portugal and Rockall samples (Figure 2), reinforcing the idea of 393 

potential large-scale migration of E. spinax in the Atlantic Ocean. Conversely, the non-394 

overlapping and reduced isotopic niche spaces observed in the Balearic Islands and in the fjord 395 

suggest a certain level of residency, even more when diet is found homogeneous among 396 

distant sites. This strengthens the hypothesis of a separated population in the Mediterranean 397 

Sea, probably due to the bathymetric limitation at the Strait of Gibraltar (Catarino et al., 2015; 398 

Gubili et al., 2016). In Norway, while changes in Δ15N values have been hypothetically linked 399 

to migrations outside the fjords, trophic redundancy and isotopic discrimination suggest E. 400 

spinax could be sedentary in the region. This hypothesis matches the separate stocks of E. 401 

spinax in Norwegian waters previously identified by vertebral chemistry variations (McMillan 402 

et al., 2017).   403 

5. CONCLUSION  404 

 At each location, including inside the fjords, Etmopterus spinax appears as a 405 

benthopelagic mesopredator, mainly feeding on aggregations of Meganyctiphanes norvegica 406 

at a juvenile stage with increasing consumption of larger prey, such as teleost fishes, with 407 
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increasing length. Nonetheless, isotopic niche spaces varied significantly among sampling 408 

sites. Observed differences in carbon and nitrogen isotope compositions are likely to be 409 

explained by differences in habitat features (e.g. productive continental slopes vs oligotrophic 410 

conditions in the Mediterranean Sea) and other oceanographic characteristics (e.g. upwelling 411 

regime). Resulting variations in pelagic primary production rates and sequestration across the 412 

water column are likely to affect the strength of mesopelagic linkage toward deep reservoirs 413 

and subsequently E. spinax trophodynamic and isotopic values. Our results suggest that 414 

considering the influence of nutrient cycle on isotopic baselines allows a better understanding 415 

of the trophic ecology of predators in deep-sea habitats.  416 
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Table 1: Number (N), numeric index (%N), gravimetric index (%W), occurrence index (%O) and 

index of relative importance (%IRI) for each prey item found in stomachs of Etmopterus spinax 

sampled from 2008 to 2012 in the Raunefjord (Norway). 

Prey items N %N %W %O %IRI 

Euphausiacea 39 41.94 7.04 55.10 45.55 
   Meganyctiphanes norvegica 12 12.90 3.29 18.37 7.63 
   Euphausiacea unidentified 27 29.03 3.75 44.90 37.75 
Decapoda  7 7.53 17.17 14.29 5.95 
   Pasiphaea sivado 2 2.15 1.71 4.08 0.40 
   Pasiphaea multidentata 1 1.08 1.28 2.04 0.12 
   Pandalus montagui 1 1.08 11.78 2.04 0.67 
   Decapoda unidentified 3 3.23 2.40 6.12 0.88 

Crustacea unidentified 10 10.75 5.92 20.41 5.74 
Teleostei 7 7.53 52.76 14.29 14.54 
   Scomber scombrus 1 1.08 50.00 2.04 2.67 
   Maurolicus muelleri 2 2.15 2.32 4.08 0.47 
   Teleostei unidentified 4 4.30 0.45 8.16 0.99 
Cephalopoda 10 10.75 4.53 18.37 4.74 
   Rossia macrosoma 5 5.38 1.18 10.20 1.72 
   Cephalopoda unidentified 5 5.38 3.35 10.20 2.28 
Unidentified prey 20 21.51 12.57 40.82 23.48 
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Table 2: Summary of stable isotope data from white muscle tissue of E. spinax, from different locations, showing sampling depth (in meters), 

number of samples analysed (including male:female sex ratio) and individual total length (TL). Sampled depth and TL are expressed in mean 

(minimum-maximum values). Carbon and nitrogen ratios are given as mean (± standard deviation). All isotopic values are expressed in ‰ with 

δ13C/δ15N representing E. spinax muscle isotopic composition, δ13Cphyto and δ15Nphyto the phytoplankton values extracted from predictive models 

and Δ13C and Δ15N the difference between shark muscle isotope values and phytoplankton modelled isotopic baselines. 

 

Location Depth (m) N (M:F) TL (cm) δ13C δ15N δ13Cphyto δ15Nphyto Δ13C Δ15N 

Balearic Islands 589 (230-754) 33 (17:16) 26.2 (11.0-57.4) -17.8 (0.5) 10.0 (0.4) -27.7 4.0 9.9 (0.5) 6.0 (0.4) 
Norway 243 (230-250) 51 (18:33) 43.4 (33.0-53.0) -18.6 (0.3) 12.5 (0.7) -25.0 0.2 6.4 (0.3) 12.3 (0.7) 
Portugal 569 (490-670) 44 (19:25) 28.3 (18.6-49.0) -18.4 (0.5) 11.1 (0.6) -25.1 (0.6) 5.9 (0.4) 6.7 (0.7) 5.3 (0.8) 
Rockall 634 (500-850) 19 (11:8) 41.6 (19.5-55.0) -18.3 (0.5) 11.6 (0.8) -25.2 (0.1) 0.4 7.0 (0.5) 11.2 (0.8) 
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Table 3: Summary of Layman metrics calculated on E. spinax isotopic niches (Δ13C/Δ15N values) 

and based on convex hull areas. Δ13C rg and Δ15N rg represent both isotopic ranges, TA the 

total area, CD the mean distance to centroid, NND (as mean ± standard deviation) the nearest 

neighbor distance (details of Layman metrics calculation can be found in Materials and 

Methods). All values are presented in ‰ except for TA (in ‰²). 

 

Location Δ13C rg Δ15N rg TA CD NND 

Balearic Islands 2.19 1.53 1.85 0.51 0.16 ± 0.16 
Norway 1.18 2.88 1.95 0.66 0.12 ± 0.07 
Portugal 3.45 2.88 5.88 0.95 0.21 ± 0.14 
Rockall 1.71 3.04 2.84 0.79 0.28 ± 0.21 
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Table 4: Summary of E. spinax feeding habits. For each study, total length of sampled 

individuals (TL), length at which ontogenetic diet shift occurred (TL OS) and major prey before 

and after E. spinax ontogenetic diet shift (except for two studies describing constant diet) are 

reported. Prey groups accounting for more than 50% IRI (Index of Relative Importance) are 

given in bold character. 

Location TL (cm) 
TL OS 
(cm) 

Major prey  
before OS 

Major prey  
after OS 

Publication 

Balearic Islands 

10.0-49.0 ~20.0 
Euphausiacea (M. 

norvegica), 
Cephalopoda 

Osteichthyes, 
Cephalopoda 

Macpherson, 
1980 

15.0-45.0 
~25.0 

(*) 

Natantian decapods, 
Euphausiacea, 
Cephalopoda 

Osteichthyes 
(Stomiidae, 

Myctophidae), 
Cephalopoda 

Fanelli et al., 
2009 

11.0-47.0 - Cephalopoda, Telesotei, Natantids 
Valls et al., 

2011 

10.2-48.3 
~22.0 
(**) 

Cephalopoda, 
Telesotei, Decapods, 

Euphausiacea 

Cephalopoda, 
Telesotei, Decapods 

Valls et al., 
2017 

Norway 31.0-52.0 ~36.0 
Euphausiacea (M. 

norvegica) 

Euphausiacea (M. 
norvegica), Teleostei, 

Cephalopoda 
This study 

Portugal 

11.0-33.0 - 
Euphausiacea (M. norvegica), Teleostei, 

Cephalopoda 
Santos & 

Borges, 2001 

9.1-40.1 
~28.0 
(***) 

Euphausiacea (M. 
norvegica), 

Natantids, Teleostei 

Natantids, Teleostei 
(Gadoids mainly), 

Euphausiacea, 
Cephalopoda 

Neiva et al., 
2006 

Rockall 12.6-53.0 ~39.0 

Euphausiacea (M. 
norvegica), Teleostei 

(M. muelleri), 
Cephalopoda, 

Decapoda 

Decapoda (Pasiphaea 
tarda), Cephalopoda, 

Other Teleostei 

Mauchline & 
Gordon, 1983 

(*) Specimens < 15.0 cm presented a diet focused on Euphausiacea, fishes and to a less extend 

Decapoda, specimens between 15.0 and 25.0 cm had a diet mainly focused on Cephalopoda 

and to a less extend Decapoda and specimens > 25.0 cm focused mainly on fish. (**) OS 

corresponded to the absence of Euphausiacea in the diet after 22.0 cm. (***) Two OS with the 

first one observed around 17.0 cm when E. spinax individuals evolved from a diet focusing at 

95.11 % (IRI) on Euphausiacea to a diet with 50.31 % (IRI) of Euphausiacea completed with 

Natantids (39.98 % IRI) and teleost fishes (9.03 % IRI). The second OS is described in the Table. 
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Figure 1: Sampling locations of velvet belly lantern sharks, Etmopterus spinax. Sampling area 

in Norway both corresponds to specimens analysed for stomach content and stable isotopes 

analysis. 
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Figure 2: Muscle δ13C and δ15N values of E. spinax. Brown square points correspond to the 

Balearic Islands, blue circle points to Norway, green triangle points to Portugal and red cross 

points to Rockall samples. Solid lines delimit the standard ellipse areas (SEA) and dashed lines 

the convex hull areas for each sampling location. The only overlapping regions between SEA 

occurs between Portugal and Rockall individuals (39.89%). 
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Figure 3: Boxplots of Δ15N (a) and Δ13C (b) values of E. spinax at each location. Significant 

differences are indicated by letters (p < 0.05). 
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Figure 4: Relationships between individual Δ15N (a)/Δ13C (b) values and total length (TL) of E. 

spinax. Pearson linear regressions were applied for each location with their corresponding R² 

and p-value reported in the figure.  
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HIGHLIGHTS 

 E. spinax were sampled across the northeastern Atlantic and Mediterranean Sea.  

 Stomach contents suggested a similar diet. 

 E. spinax fed mainly on Euphausiacea with an ontogenetic diet shift. 

 Muscle carbon and nitrogen isotope compositions differed between locations. 

 Isotopic differences probably resulted from mechanisms affecting the baselines.   
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