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G E O P H Y S I C S

Semibrittle seismic deformation in high-temperature 
mantle mylonite shear zone along the Romanche 
transform fault
Zhiteng Yu1*†, Satish C. Singh1, Emma P. M. Gregory1, Marcia Maia2,3,  
Zhikai Wang1, Daniele Brunelli4,5

Oceanic transform faults, a key element of plate tectonics, represent the first-order discontinuities along mid-
ocean ridges, host large earthquakes, and induce extreme thermal gradients in lithosphere. However, the ther-
mal structure along transform faults and its effects on earthquake generation are poorly understood. Here we 
report the presence of a 10- to 15-kilometer-thick in-depth band of microseismicity in 10 to 34 kilometer depth 
range associated with a high-temperature (700° to 900°C) mantle below the brittle lithosphere along the Romanche 
mega transform fault in the equatorial Atlantic Ocean. The occurrence of the shallow 2016 moment magnitude 7.1 
supershear rupture earthquake and these deep microearthquakes indicate that although large earthquakes 
occur in the upper brittle lithosphere, a substantial amount of deformation is accommodated in the semibrittle 
mylonitic mantle that resides at depths below the 600°C isotherm. We also observe a rapid westward deepening of 
this band of seismicity indicating a strong lateral heterogeneity.

INTRODUCTION
Mid-ocean ridges (MORs) are segmented by seismogenically active 
oceanic transform faults (OTFs) (Fig. 1A), first-order discontinuities 
offsetting ocean spreading centers. As the plates move away from 
the MOR axis, the oceanic lithosphere cools, subsides, and thickens 
(1). Consequently, a large-offset OTF separates a cold lithosphere 
on one side from a hot lithosphere on the other side, producing a 
complex thermal regime. Although many thermal models have been 
proposed for OTFs (2–5), the deep thermal structure along very 
long-offset OTFs (for example, the Romanche OTF in the equatorial 
Atlantic) is still not constrained by any geophysical observations.

The strike-slip motion along OTFs generates seismicity, includ-
ing large earthquakes (Fig. 1A). Previous studies have indicated that 
temperature is the primary factor controlling the depth of the brittle 
to ductile transition along OTFs, approximately defined by the 
600°C isotherm (6–8). As a consequence, the maximum focal depth 
of seismicity deepens with increasing distance along the transform 
away from the ridge-transform intersection (RTI) following the 
600°C isotherm. However, some thermal models predict shallowing 
of the 600°C isotherm toward the center of the transform fault 
(4, 5, 9). Laboratory deformation experiments on olivine indicate 
that the 600°C isotherm marks the approximate brittle-ductile 
boundary in the oceanic lithosphere (10, 11). However, recent pe-
trological studies of peridotite mylonites from the Shaka and Prince 
Edward OTFs, which offset the ultraslow spreading Southwest Indian 
Ridge, suggest that the brittle-ductile boundary may extend down-
ward to higher temperatures up to 850° to 875°C (12, 13). Peridotite 
mylonites are usually formed by ductile deformation in a high 
shear strain regime and at high pressure-temperature conditions 
(11, 14, 15), giving rise to a semibrittle deformation behavior in 

mylonite shear zones (12, 13). Their exposures in the ocean may be 
attributed to the mantle uplift by transpressional motion, for exam-
ple, at the Romanche and St. Paul OTFs on the Mid-Atlantic Ridge 
(MAR) (16, 17). Meanwhile, material/physical properties of fault 
segments (including porosity, mineral alteration, permeability, fric-
tion stability, etc.) could also influence seismicity and rupture prop-
agations on OTFs (18–21). It is important to note that nearly 85% of 
plate motion on OTFs is accommodated aseismically (22) or during 
microearthquakes and earthquake swarms in the mantle (23, 24). 
Using microseismicity data from the Romanche OTF close to the 
eastern RTI, here we elucidate thermal states, seismic slips, and rup-
ture propagations on megatransform faults.

RESULTS
Microearthquake experiment and data
Our study region lies along the eastern part of the Romanche OTF 
in the equatorial Atlantic Ocean, which offsets the slow-spreading 
MAR by ~880 km, with a maximum age contrast of ~45 million years 
(Ma) old (Fig. 1) (25). In this area, the transform valley seafloor is 10- to 
20-km wide, up to 7300-m deep and the northern bounding fault 
wall rises up to 2000 m below the sea level (Fig. 1B). Thermal modeling 
indicates that the horizontal thermal gradient across the Romanche 
OTF could exceed >30°C/km at 20 km depth (26) beneath the RTI.  
Such a strong across-strike thermal gradient would result in a 
marked reduction in crustal thickness near the RTI and thickening 
of the brittle lithosphere beneath the OTF (17). Previous studies 
suggested that there are a large number of peridotites south of the 
OTF and the absence of basalts from dredges in this area (Fig. 1B) 
(17, 26), indicating a thin crust here.

In July and August 2019, we deployed 19 four-component short-
period ocean-bottom seismographs (OBSs) in the study region, 
with an average instrument spacing of ~30 km (Fig. 1B). The average 
continuous recording period for 17 OBSs is ~21 days but ~29 days 
for OBS12. Nine OBSs are located near the Romanche transform 
valley, covering a distance of ~100 km along its strike (Fig. 1B); 
five OBSs were deployed around the RTI and MAR (Fig.  1B); 
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three OBSs were located on the northern suspended transform val-
ley and transverse ridge (Fig. 1B) (17).

Both P- and S-wave arrivals picked from the seismometer re-
cords were used to locate earthquakes using a probabilistic, non-
linear earthquake location algorithm (27), and station corrections 
were calculated and iteratively updated to suppress the impact of 
the inhomogeneous three-dimensional (3D) structures (figs. S1 and 
S2) (see Materials and Methods). Travel times were calculated using 
a tested 1D velocity model (figs. S3 and S4 and table S1) constrained 
by a seismic refraction profile across the Romanche OTF (Fig. 1B) 
(28). We carried out extensive resolution tests by changing the 
velocity models (figs. S3 and S4) and initial depths (fig. S5), which 
show that microseismicity depths are robust (see Materials and 
Methods and figs. S3 to S5). In this study, we removed S-wave de-
lays caused by low-velocity unconsolidated sediments (fig. S6) (29). 
The S-wave delays range from ~0.1 s on OBS03 to ~1.3 s on OBS06 
(table S2) in the valley, and the hypocentral parameters were remarkably 

improved after removing these delays (figs. S7 and S8). We deter-
mined 209 earthquakes using at least six P- and S-wave arrivals, 
with depth uncertainties of ~1.8 km (fig. S4F) and local magni-
tudes of ML = 0.5 to 3.5 (figs. S9 and S10). In total, 155 of these 
events were also relocated using the double-difference location 
method (Fig. 2) (30), with a station gap of <270°. Both the average 
horizontal and depth uncertainties of these well-located events are 
~1.6 km (Fig. 2A). Focal mechanism solutions for three earthquake 
swarms were obtained (Fig. 3), which show normal faulting (fig. S11) 
instead of strike-slip faulting expected along the transform fault (6). 
The focal mechanism solutions were not sensitive to changes in the 
source depth (fig. S12) and the absolute velocity values (table S3), 
suggesting that the focal mechanism solutions are robust.

Microseismicity
In this study, most microearthquakes occurred at depths of ~10 to 
34 km below the seafloor (bsf), and only a few shallow events with 
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depths <10 km are observed near the RTI (Fig. 2). All events are 
located beneath the southern portion of the transform valley, within 
a 10-km-wide belt toward the warmer lithosphere (Fig. 2A); no events 
are observed beneath the central or northern portions of the valley 
(Fig. 2A). Their focal depths rapidly increase westward from ~10 km 
at the RTI to 34 ± 2 km at 70 ± 5 km distance along the transform 
fault (Fig. 2B). To the east (20 to 60 km), these events are focused 
beneath a bathymetric high in the transform valley (Figs. 1B and 
2A) in a 10 to 20 km depth range, whereas in the west (70 to 90 km) 
beneath a deep valley at an 18 to 34 km depth range, with an abrupt 
transition in between. Peridotites have been sampled from the sea-
floor in a ~50-km-wide zone south of the Romanche OTF close to 
the RTI (Fig. 1B) (31, 32), indicating that the bathymetric high here 
might be a peridotite hill formed near the ridge axis. Microearth-
quakes align along two steep (~80°) south-dipping planes extending 
down to 34 km (Fig. 2D), which are consistent with the dip inferred 
for the 1994 [moment magnitude (Mw = 7.0)] and 2016 (Mw = 7.1) 
earthquakes (6, 33), but extend much deeper than their hypocentral 
depths (~17 km bsf) (33), indicating that the deformation extends 

to much greater depths. However, three focal mechanism solutions 
show normal faulting (Figs. 2 and 3, D to F), implying extensional 
stress here. Their dips vary from 40° to 50°, which is common 
for normal earthquakes but much lower than that for the 2016 Mw 
7.1 strike-slip earthquake (Fig. 2D) (33). These earthquake swarms 
are all located beneath the bathymetric highs (Fig. 2A), indicat-
ing that they might be linked with the uplift. The presence of a 
wide and deep transform valley supports the existence of normal  
faulting.

DISCUSSION
On the basis of the seismicity pattern, the study area can be divided 
into three zones, Zones 1, 2, and 3 (Fig. 2). These results highlight 
four key observations: (i) The absence of seismicity in the upper-
most 5 to 18 km from east to west; (ii) the seismicity lies in a band, 
11 to 18 km bsf in Zone 1 and 18 to 34 km in Zone 3, defining the 
seismogenic zone; (iii) the seismogenic zone in Zone 1 rapidly 
deepens more than 7 km in a narrow (25 km) transition Zone 2 to 
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18 to 34 km depth in Zone 3 (Fig. 2B); (iv) about 60% of the seismicity 
and most of the swarms occurred in the transition Zone 2.

Microseismicity and thermal structure
Our results indicate that the microseismicity occurred within three 
distinct zones: (i) Eastern Zone 1 between 0 and 30 km distance 
range, where the seismicity lies at ~11 to 18 km depth (bsf) roughly 
bounded by the 400° and 700°C isotherms, (ii) Transition Zone 2 
between 40 to 65 km distance, constrained by the 500° and 800°C 
isotherms with the upper bound of seismicity rapidly deepening 
from 12 km to 18 km, and (iii) Western Zone 3 between 65 and 
90 km distance with seismicity at 18 to 34 km depths limited by the 
isotherms of 520° and 900°C (Fig. 4). The temperature limit for 
earthquakes, defined by the maximum depth of earthquakes from 
global seismic observations, remains a matter of debate, ranging be-
tween 600° and 800°C (2, 6, 29, 34, 35). However, our results indi-
cate that the maximum depths of microseismicity along the OTF 
are not consistent with a fixed temperature isotherm but vary re-
markably along the OTF within 90 km of the RTI.

A similar observation has been noted for the Gofar (18), Discovery 
(36), and Blanco (24) OTFs between rupture patches and rupture 

barriers. There could be three possibilities to explain such a 
variation. (i) The classical thermal models used here (Fig. 2B) do 
not portray the true thermal structure of the lithosphere. More so-
phisticated numerical models (2–5, 9) indicate a somewhat deeper 
600°C isotherm away from the RTI. When the viscoplastic rheology 
and brittle weakening of the lithosphere are incorporated, the calcu-
lated 600°C isotherm would reach 22 km (9), which is still not deep 
enough for this deep microseismicity. On the other hand, some 
thermal models (4, 5, 9) show the shallowing of the 600°C isotherm 
toward the center of OTFs. Figure 2B clearly shows that even when 
complicated parameters are incorporated in the thermal models (3), 
these deep microearthquakes still occur at depths below the 800°C 
isotherm. However, it is possible that our short study region, which 
is just ~100 km long close to the vicinity of the RTI, may not be able 
to present the shallowing microseismicity corresponding to the ele-
vated temperatures (4, 5, 9). (ii) Because of the previous thermal 
control on the maximum depth of earthquakes is based on the global 
catalog of large earthquakes (6, 7), it is plausible that the depth lim-
it for large seismic ruptures is physically different from that for 
microseismicity and the associated transient slip. (iii) Furthermore, 
it is well known that the microseismicity is strongly influenced 
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by local dynamic processes, e.g., material properties of fault seg-
ment (18), dilatancy strengthening (21), hydrothermal circula-
tion (4), and brittle-fracturing within the mylonite zone (13), and 
these processes could introduce strong heterogeneities along 
the OTFs.

The absence of shallow microseismicity
In Zones 1 and 2, the absence of seismicity in the uppermost 5 to 
16 km (Fig. 2B) indicates that the lithosphere is either completely 
locked or slipping aseismically at these depth ranges. The absence of 
seismicity here is located beneath the two bathymetric highs (~200 
to 300 m in height) on the seafloor (Figs. 1, 2C, and 4). Peridotites 
were sampled here during the SMARTIES cruise (37) and dredges 
(17, 26) south of the transform valley (Fig. 1B), which suggest that 
the upper parts of Zones 1 and 2 might consist of serpentinized per-
idotites. However, a recent seismic study just west of Zone 2 indi-
cates the presence of a 6-km-thick normal oceanic crust (Fig. 1B) 
(28), suggesting the existence of magmatic crust. It is difficult to say 
the lateral extent of this magmatic crust, but the few events observed 
in Zone 1 at ~6 km depth might be at the crust-mantle boundary 
(Fig. 4). Altered gabbro under supercritical water conditions would 
change from velocity-weakening to velocity-strengthening behav-
ior (38) and may not be able to host microearthquakes. The mantle 
underneath is likely to be serpentinized peridotite, which results in 
velocity-strengthening behavior that inhibits earthquake nucleation 
(19), possibly linked to hydrothermal circulation (Fig. 4).

In Zone 3, the absence of seismicity down to 18 km depth coin-
cides with the occurrence of the 2016 Mw 7.1 earthquake that initi-
ated at 17 km depth bsf (33), propagated eastward up to 10 km 

depth at the western boundary of Zone 2, and then reversed direction 
and propagated westward at a supershear speed (Fig. 4). The pres-
ence of gabbroic crust as revealed by seismic refraction study might 
have enabled the supershear rupture during the 2016 earthquake. 
The absence of seismicity could be explained by the release of 
stress during the 2016 earthquake, and the region is now in the in-
terseismic stage of the seismic cycle following the 2016 Mw 7.1 
earthquake.

Model of deep microearthquakes
The eastern Zone 1, close to the RTI, has a subhorizontal band 
of seismicity in an 11 to 18 km depth range (Figs. 2 and 4) that ex-
tends to 700°C isotherm. This depth extend and the flat base of the 
seismogenic zone could be influenced by two different processes: 
(i) heat diffusion from the young (0 to 4 Ma) extremely hot litho-
sphere to the 45-Ma-old thick and cold lithosphere (Figs. 1 and 4) 
(26, 31, 39) or (ii) efficient hydrothermal circulation that will steepen 
the isotherm (40) downward near the ridge axis over a short dis-
tance, and consequently, the brittle lithosphere will thicken and 
flatten (40) in Zone 1 (Figs. 2 and 4). A recent seismic study from 
the equatorial Atlantic Ocean suggests that the lithosphere younger 
than 4 Ma is influenced by hydrothermal circulation (41), and 
therefore, we interpret that the band of seismicity between 11 and 
18 km depth in Zone 1, which lies in the 400° to 700°C temperature 
range, is being affected by active hydrothermal circulation and sub-
sequent serpentinization and mylonitization (Fig. 4).

In Zone 2, the steeply dipping seismicity band contains the larg-
est number of earthquakes and swarms (Fig. 2B). The earthquake 
swarms in Zone 2 have similar epicenter locations but different 
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depths (Figs. 2A and 3A), indicating that they may be produced by 
brittle failure through the creep of the aseismic serpentinized mantle 
activating frictionally velocity-weakening asperities as observed on 
the Blanco OTF (22, 24). However, in this study, these microearth-
quake swarms mostly occurred around the 800°C isotherm in-
stead of the speculated 600°C isotherm (24), indicating higher 
temperature and deeper deformation. Zone 2 might have acted as a 
rupture barrier for the 2016 Mw 7.1 earthquake propagation (33). 
Both the potential extension indicated by the normal earthquake 
focal mechanisms (Figs. 2 and 3) and the wide transform valley 
(Fig. 2B) would support the dilatancy strengthening in Zone 2, re-
sulting in a barrier for rupture propagation (21). Similar barriers 
have also been observed along the Discovery and Gofar OTFs 
(18, 19, 36) and have been interpreted as evidence for the presence 
of an active damage zone. We suggest that the earthquake swarms 
in Zone 2 are induced by active faulting, resulting in a large amount 
of fractures, similar to damage zones observed on continental strike-
slip faults (42, 43), allowing the percolation of enhanced hydrothermal 
fluids to a greater depth (Fig. 4) (4, 12, 13). The seawater interacting 
with mantle peridotite would foster the mantle serpentinization and 
the active faulting would extend it deeper.

Similarly, in Zone 3, the deepest band of seismicity lies under-
neath the 2016 earthquake rupture zone at 18 to 34 km depth 
(Fig. 2B), bounded by the 520° and 900°C isotherms (Fig. 4), far 
exceeding the 600°C isotherm as the suggested boundary for the 
brittle-ductile transition (6, 10). The downward propagation of 
fracturing into the high-temperature (HT) mantle mylonitic shear 
zone below the 2016 earthquake rupture zone (12, 13) could explain 
the band of microseismicity (Fig. 4). Large amounts of peridotite 
mylonites have been collected on the OTF and ridge systems (11). 
Recent studies found that semibrittle deformation did occur at HT 
(> 850° to 875°C) mylonitic shear bands at the Shaka and Prince 
Edward OTFs (13), leading to the formation of fractures overprint-
ing the ductile deformation. It is possible that the mantle at 18 to 
34 km depth range may not only deform ductilely but have brittle 
fractures in the HT peridotite mylonites. This means that the brittle-
ductile transition can extend into mantle mylonite at a HT of ~900°C 
due to high strain rates within the shear bands (13) rather than the 
currently assumed 600°C (11). The presence of mylonitic peridot-
ites (Fig. 1B) (37) supports this possibility. Therefore, we propose 
that Zone 3 has an 18-km-thick seismically coupled lithosphere that 
supports the nucleation and rupture of large earthquakes, underlain 
by large amounts of mylonites with brittle fractures that contribute 
to deep microearthquakes (Fig. 4), creating a semibrittle zone.

This model can also support the deep microseismicity above the 
800°C isotherm in Zone 2, which is influenced by both the down-
ward extend of serpentinization of peridotites and HT fracturing in 
the semiductile mylonites (Fig. 4). Our observations of earthquakes 
in the deep mantle associated with the mylonite shear zone may be 
prevalent on other OTFs. Deep microseismicity has also been reported 
for the Blanco (24), Chain (44), Discovery (36), and Gofar OTFs 
(18) and has been interpreted to be caused by enhanced cooling, 
serpentinization, or hydrothermal circulations (36) but may be caused 
by the semibrittle deformation within the mantle mylonitic shear 
zone as suggested here.

We also found that the microearthquakes are all located on the 
younger side of the transform valley on a southward-dipping fault 
plane (Fig. 2, A and D), indicating that earthquake slip and rupture 
propagation along the long-offset OTF are more influenced by the 

young (hot) plate rather than the old (cold) plate (Fig. 4). It is pos-
sible that the colder part of the OTF in the north is either highly 
fractured or hydrothermal alterations have filled the fractures, lead-
ing to velocity strengthening, and microseismicity occurs at the 
transition. Together, these findings suggest that earthquake slip 
and rupture processes on an OTF can be affected by the com-
bined influence of temperature, fluid circulation, and lithology of 
the lithosphere.

It is important to note that our relatively short time period data-
set, compared to the time scale of a seismic cycle, can only provide 
a snapshot of the microseismicity here. Over a longer period, the 
long-term strain release dynamics might be significantly different. 
However, the link between the band of deep microseismicity, mantle 
shear deformation, and HT mylonitization might extend all along 
the OTF, which could only be addressed by future longer-period 
transform-scale studies.

MATERIALS AND METHODS
Data acquisition and arrival detection
During the SMARTIES cruise (45) in July and August 2019, an array 
of 19 OBSs was deployed at the intersection of the eastern part 
of the Romanche Transform Fault and the MAR in the equatorial 
Atlantic Ocean. Eighteen OBSs were successfully recovered, one of 
which recorded no data because the logger tube was flooded 
(Fig. 1B). The OBS positions on the seafloor were determined by a 
triangulation exercise (46) during the deployment, and the linear 
clock drifts were applied and removed after the OBS recovery.

Initial P- and S-wave arrivals were detected automatically in the 
continuous time series using a short-term-average/long-term-average 
trigger algorithm in the SEISAN package (47), and arrival times were 
refined with a kurtosis-based picking tool written in MATLAB (48). 
The arrival times of events were then checked manually. An event 
was considered to be an earthquake when five or more stations were 
triggered coincidently. The estimated picking errors were assigned 
at 0.05 to 0.1 s and 0.1 to 0.2 s for P- and S-wave arrivals, respectively.

Earthquake location
For the initial location, five travel time arrivals, including one S-arrival, 
are required. We used the nonlinear oct-tree search algorithm: 
NonLinLoc program (27). The maximum likelihood location is cho-
sen as the preferred hypocenter for each event. NonLinLoc esti-
mates a 3D error ellipsoid (68% confidence) from the posterior 
density function scatter samples (27). Iterative calculations were used 
to find the best solution when the average RMS misfit yields a min-
imum, which was ~0.08 s after nine iterations in this study (fig. S1). 
At each iteration, the average residuals for P- and S-phase at each 
station were calculated, and then they were used as the station cor-
rections for the later run of the location algorithm (27). The cumu-
lative delay times were given by the sum of the average residuals 
calculated and the input station corrections at each iteration (fig. S2).

Reference velocity model and focal depth resolution
Our earthquake locations were made using a 1D P-wave velocity 
model, which was constructed through a large number of tests, us-
ing various crustal thicknesses as well as velocities in the crust and 
mantle (fig. S3). The crustal thicknesses ranged from 3 to 7 km. The 
velocity of the top 1 km and the depth (50 km) of the lower end of 
the velocity profile were kept fixed (fig. S3). The P-wave velocity 
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structure in these models was derived from an active-source wide-
angle seismic refraction profile (Fig. 1B) (28). We constructed a 
subset of 85 earthquakes that occurred on at least 10 stations, with 
RMS of <0.4 s, which subsequently was repeatedly located using 
various velocity models. We then selected the best one (table S1) 
exhibiting the best possible combination of a large number of 
located events, a low average RMS residual, a small average semi-
major axis, and a large number of phases used in localization, which 
was then used to locate the hypocenters by the NonLinLoc (27), 
hypoDD (30) programs, as well as to calculate mechanism solutions. 
The selected velocity model is continuous, without the Moho discon-
tinuity. The statistic table S1 shows that the continuous models seem 
to result in a better result but not obvious. Also, fewer PmP phases were 
identified beneath the transform valley from the seismic refraction 
profile (28), all probably indicating a weak Moho interface here.

For the full dataset, the selected velocity model also leads to more 
well-located events, fewer depth uncertainties, and lower RMS re-
siduals than the fastest and slowest ones (fig. S4, C to E). However, 
when using the end-member models, absolute focal depths of most 
events changed between 20 and 30 km, which is significant (fig. S4, 
C to E). Notice that the fastest and slowest models are not very rea-
sonable due to the too-thin crust (3 km) or too-slow velocity at the 
base of the lower crust (5.7 km/s) (fig. S4A). The shallow events 
show larger vertical uncertainties than the deep events. To validate 
the robustness of the focal depths of these deep earthquakes, we 
constructed a subset of 90 events at depths of 20 to 25 km (fig. S5). 
We forced their depths to be fixed at shallower depths (5 and 10 km), 
and then the results show that the RMS residuals were significantly 
increased (fig. S5A), which, in turn, demonstrates that the synthetic 
shallow depths are not reasonable. In addition, the S-P times of 
these earthquakes with vertically propagating rays can testify the 
reliability of our earthquake depth. Unfortunately, in our dataset, 
we lack earthquakes occurring directly beneath any of the stations 
(Fig. 2). But waveforms of OBS04 show small S-P time differences 
for earthquake swarms (nos. 1, 4, 5, 7, and 8) with similar focal 
depths (20 to 25 km) and epicenters (Figs. 2 and 3), which share 
similar ray paths. All the evidence indicates the reliability of our 
earthquake depth determination. Even using very different 1D ve-
locity models, these deep earthquakes between 70 and 90 km dis-
tance were well located, with small uncertainties (fig. S4, C to E). 
Therefore, we believe that the deep events are not an artifact of 
the network geometry. All 209 earthquakes have RMSs less than 0.3 
s with the mean semimajor axis of ~3.9 km (fig. S4).

S-wave delays
The unconsolidated sediments at MORs can cause large delays in 
S-arrivals (29, 35), which usually affect the focal depths in the earth-
quake location process. Here, we assume that the direct S-wave de-
lays caused by sediments share the same values with that between 
the converted S-wave from the basement sediment interface and 
first P-wave arrival times, where the P-arrivals are strong on the 
vertical component and the corresponding S-arrivals on the hori-
zontal component (fig. S6). The S-wave delays range from 130 ms 
(OBS03) to 1280 ms (OBS06) (table S2). In comparison with the 
initial location results, after removing the S-wave delays from the 
original S-onsets, Wadati diagrams show a better fit (fig. S7), more 
phases are used (2609 versus 1621) (fig. S8), and lower residuals are 
obtained (fig. S8). The S-wave velocity can be approximated from 
the Vp/Vs ratio by the Wadati diagram (Vp/Vs ~1.7) (fig. S7).

Double-difference hypocenter relocation
To improve the relative location accuracy, we relocated the NonLinLoc 
hypocenters using the hypoDD double-difference earthquake loca-
tion algorithm (30) for the 177 microearthquakes detected on more 
than six OBSs, with RMS residuals of <0.25 s and azimuthal gaps of 
<270°. The differential travel times for both P- and S-phases 
were calculated from the catalog. Station corrections calculated by 
the NonLinLoc program were successfully applied. A minimum of 
eight catalog links per event pair was required to form a continuous 
cluster, with a solution obtained using a method of LSQR (49). Five 
iterations were carried out, with a maximum event separation  
of 4 km.

Magnitude
Earthquake magnitudes were calculated using the local magnitude 
scale ML (50): ML = lgA + 1.11 lg(D) + 0.00189 D − 2.09. The maxi-
mum amplitude A is measured on a seismogram simulating the 
original Wood-Anderson seismogram using the SEISAN program 
(47). D is the hypocentral distance in kilometers. Figure S9 shows 
the most frequent magnitudes are ~1 to 2. We calculated the resid-
ual magnitudes, which were given by subtracting the average mag-
nitude of all stations from the absolute magnitudes at each station 
(fig. S10). Magnitude results at stations OBS12, OBS16, and OBS19 
were removed on the basis of the observed bias in individual mag-
nitude distribution diagrams (fig. S10).

Focal mechanism solutions
We determined P-phase first-motion polarities from unfiltered 
earthquake waveform data on the vertical component, which were 
subsequently used to calculate the focal mechanism solutions using 
the HASH software package (51). We believe that those eight small 
earthquake swarms show similar focal mechanisms, so we deter-
mined focal mechanism solutions for each earthquake swarm. Using 
a selection criterion based on P-wave polarities of >8, an azimuthal 
gap of <120°, an RMS fault plane uncertainty of <40°, average misfit 
<20%, station distribution ratio of >0.4, and mechanism probability 
>70%, we obtained well-constrained focal mechanisms for three 
earthquake swarms (Fig. 3, D to F, and table S3). But fig. S11 shows 
that the solutions are not very clustered, which may be caused by 
the limitation of our observation network. To validate the influence 
of the depth uncertainty, we forced their focal depths to be at shal-
lower or deeper depths (fig. S12). The angular difference will change 
larger at shallow depths than that at deeper depths, which also indi-
cates that the results for our deep earthquakes are robust. To validate 
the influence of the 1D velocity models, we calculated mechanism 
solutions using different 1D velocity models in fig. S4A. Table S3 
shows that the solutions did not change much, which agrees with 
the fact that the focal mechanism calculations are not sensitive to 
the absolute velocity values (51).

Estimates of isotherms
The temperature contours in Fig. 2B were calculated using a plate 
cooling model (52–54), with a lithospheric thickness of 106 km (8). 
We assumed the mantle potential temperature is 1350°C (54). The 
half spreading rate of the lithosphere in this region is 16 mm year−1. 
We calculated the temperature of ridge segments north and south 
of the Romanche transform fault using the plate cooling model, and 
then the temperature within the fault zone was estimated by averag-
ing the temperature on both sides. A 1D profile along the middle of 
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the fault valley was extracted and used as the temperature in the 
transform fault, as shown in Fig. 2B.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/7/15/eabf3388/DC1
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