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1.  Introduction
Surface current velocities play an important role in many ocean processes, including the flux of kinetic 
energy from the atmosphere to the ocean (Wunsch & Ferrari, 2009), air-sea fluxes (Cronin et al., 2019), and 
the transport of buoyant material (Maximenko et al., 2019). Different observation systems have been pro-
posed to measure the surface current in a wide range of conditions. Barrick (1977) and many others have 
developed land-based HF radars that rely on the dispersion relation of surface gravity waves, while open 
ocean conditions are very sparsely monitored by a wide range of techniques that differ in their effective 
depth of measurement, as illustrated in Figure 1. In situ moorings are typically limited to measurements 
at depths larger than 5 m, away from the layer where the Stokes drift of surface gravity waves is strong. In 
particular, surface velocity program (SVP) drifters have been designed to have the least influence of wave 

Abstract  The total surface current velocity (TSCV)—the horizontal vector quantity that advects 
seawater—is an essential climate variable, with few observations available today. The TSCV can be 
derived from the phase speed of surface gravity waves, and the estimates of the phase speeds of different 
wavelengths could give a measure of the vertical shear. Here, we combine 10-m resolution Level-1C of the 
Sentinel-2 Multispectral Instrument, acquired with time lags up to 1 s, and numerical simulation of these 
images. Retrieving the near-surface shear requires a specific attention to waves in opposing directions 
when estimating a single-phase speed from the phase difference in an image pair. Opposing waves lead 
to errors in phase speeds that are most frequent for shorter wavelengths. We propose an alternative 
method using a least squares fit of the current speed and amplitudes of waves in opposing directions to 
the observed complex amplitudes of a sequence of three images. When applied to Sentinel-2, this method 
generally provides more noisy estimate of the current. A byproduct of this analysis is the “opposition 
spectrum” which is a key quantity in the sources of microseisms and microbaroms. For future possible 
sensors, the retrieval of TSCV and shear can benefit from increased time lags, resolution, and exposure 
time of acquisition. These findings should allow new investigations of near-surface ocean processes 
including regions of freshwater influence or internal waves, using existing satellite missions such as 
Sentinel-2, and provide a basis for the design of future optical instruments.

Plain Language Summary  Measuring ocean surface current and its vertical variation is 
important for a wide range of science questions and applications. A well-known technique for measuring 
currents from ocean surface images is to follow the motion of wave crests from one image to another, 
measuring their celerity. The values obtained for different wavelengths give access to an estimate of the 
current at different depths. When using only two images, the technique breaks down if there are waves 
traveling in opposing directions with comparable energy levels. We show that this is generally a problem 
for shorter wave components because there are generally waves in opposing directions with significant 
energy for wavelengths shorter than 25 m. Here, we generalize the technique to a sequence of three 
images that allows to separate the waves in opposing directions. Applications of this method to existing 
data from the Sentinel-2 satellite is difficult due to short time differences between image acquisitions. 
Several improvements on the Sentinel-2 sensor are proposed for a specific instrument that would measure 
surface current and shear.
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motions in their measurements thanks to a drogue centered around 15 m depth (Lumpkin et al., 2017; Niil-
er & Paduan, 1995). In the absence of that drogue, the drifter measures a not so clear combination of wind 
and surface current speeds (Elipot et al., 2016). The surface drifts of Argo floats have also been used (Leb-
edev et al., 2007), and, for the lack of a better alternative, satellite remote sensing can be used, combining 
scatterometer winds, sea level anomalies from altimeters, and a combination of in situ drifters and satellite 
gravimeters for the Mean Dynamic Topography (Rio et al., 2014).

These estimates of the near-surface current can have significant differences, in part due to the sampling of 
different depths, as illustrated in Figure 1. Each measurement system provides a horizontal current velocity 
that is a convolution of the vertical profile of the velocity. For simplicity, it is convenient to define a “meas-
urement depth” that can be taken as the depth at which a linearly varying current takes the given value. 
We note that DopplerScatt involves an empirical Geophysical Model Function and thus the physics of the 
measurement are not completely understood but the backscatter dominated by short gravity waves suggests 
a measurement depth under 0.1  m, whereas near-nadir radar measurements, such as performed by the 
KaRADOC instrument (Marié et al., 2020) give a velocity that is weighted by the surface slope spectrum and 
corresponds to a measurement depth that does not vary much around 1 m. It is thus desirable to measure 
the vertical shear of the current in order to be able to compare or combine these estimates from different 
observing systems. The shear is also an important indication of mixing or lack thereof, giving information 
on possible upper-ocean stratification.

Shear estimates have used the wave dispersion modification due to the current vector, defined by the two 
components Ux(z) and Uy(z) of the horizontal current profile (Stewart & Joy, 1974). For completeness, a 
nonlinear wave correction should also be included (Ardhuin et al., 2009; Broche et al., 1983), which is al-
most the same as replacing the Eulerian mean current by the Lagrangian mean current (Andrews & McIn-
tyre, 1978). We thus expect, for kD ≫ 1,

    

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0
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Obtaining current shear from a sequence of images has been done from many sensors, including stereo-vid-
eo imagery (Fedele et al., 2013), X-band radar (Campana et al., 2016), or polarimetric imagery (Laxague 
et al., 2018). In all cases, it requires reliable estimates of U(k, φ), for different wavelengths, including the 
shortest components, and this is performed by identifying propagating waves in the three-dimensional (3D) 
Fourier transform of the measured signals (Peureux et al., 2018; Young et al., 1985). A great opportunity 
is offered by satellite imagery with accurately co-registered views of the same ocean surface with short 
time lags. This is particularly the case of Sentinel-2 imagery has been used to estimate surface current 
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Figure 1.  Left: typical day and night velocity profiles of the total current in the Atlantic at 26°N, 36°W (adapted from Sutherland et al. [2016]). Center: 
sensitivity kernels for surface gravity wave phase speeds. Right: depth of measurement of different instruments. From top to bottom: DopplerScatt (Rodríguez 
et al., 2018), CARTHE drifters (Novelli et al., 2017), HF radars at 12 MHz (Stewart & Joy, 1974), near nadir Ka-band radars such as KaRADOC (Marié 
et al., 2020). The depth of measurement for wave dispersion is taken as the depth where a linear velocity profile matches the contribution of the current to the 
phase speed, namely z = 0.08 L where L is the considered wavelength (Stewart & Joy, 1974; Teague et al., 2001).
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(Kudryavtsev et  al.,  2017b). The Sentinel-2 Multispectral Instrument 
(Drusch et  al.,  2012) has very strict co-registration requirements that 
make it possible to observe the signature of current velocities of the order 
of 1 m/s (Yurovskaya et al., 2019). Compared to methods that use a series 
of many images processed with a 3D Fourier transform, the analysis of 
only a few images is more difficult because of the very poor temporal 
resolution that does not give a full spectrum in the frequency domain. 
In particular, the linear wave signal is not so easily separated from other 
contributions to the measurement.

The objective of the present study is to discuss the influence of this lim-
ited time sampling on the accuracy of surface current estimates, in the 
presence of waves propagating in opposing directions, starting with the 
two-image method used by Kudryavtsev et  al.  (2017b), as discussed in 
Section 2. To demonstrate the different processing steps and the influence 
of the image properties, we rely on the comparison of true data and sim-
ulated images generated using the simulator described in Appendix A. 
Due to the possible corruption of phase speeds by waves in opposing di-
rections, we propose a new method using sequences of three images, as 
described in Section 3 with details given in Appendix B. Discussions and 
conclusions follow in Sections 4 and 5. This study does not address issues 

associated with systematic errors in the spatial registration on a global reference system with subpixel ac-
curacy. These are partly discussed in Kääb et al. (2016) and Yurovskaya et al. (2019) and will be the topic of 
future work.

2.  Effect of Waves in Opposite Directions With Two-Image Sun Glint Method
2.1.  Short Waves in Opposing Directions

Pictures of the sun glint reveal wave patterns that are caused by the tilting of the sea surface by waves 
with wavelength larger than the pixel, adding their long wave slope to the local slope probability density 
function, and thus changing the pixel brightness. This effect has been described in many studies including 
Kudryavtsev et al. (2017a), and the geometry of the measurement is defined in Figure 2. A key concept is 
that the surface can be decomposed in facets with a size of the order of 1 mm by 1 mm, scale at which the 
sea surface is well approximated by a plane. There are thus a large number of such facets in a typical image 
pixel (10 m by 10 m for some of the bands of the MSI sensor on Sentinel-2), but the number of those that 
correspond to the specular direction can be relatively small, of the order of 100, while their brightness also 
varies, introducing random fluctuations in the image brightness.

As shown in Figure 2b for a spherical Earth, the satellite position S and observation point O correspond to 
a zenithal angle θv, related to the off-nadir angle γ by the law of sines,

    sin / sin( ) / ( ).E v ER R H� (2)

The time of acquisition of the different pixels is not available in the Level-1C Sentinel-2 product, but it can 
be retrieved from the provided view geometry. For example, color band B01 is acquired at time t1 when B02 
is acquired at time t2, the time difference is given by the ratio of the angular distance α1,2 between the two 
nadir points N1 and N2, as depicted in Figure 2c, and the angular speed along the orbit Ω (in rad/s). The 
angular distance α1,2 is obtained from the law of cosines on the sphere,

        1,2 1 2 1 2 2 1cos cos cos sin sin cos( ).� (3)

This typically gives distances and time lags within 1% of the expression given by Equation 1 in Yurovskaya 
et al. (2019).

To illustrate the limitations of the two-image method, we start from the same image example that was 
used in Kudryavtsev et al. (2017a), acquired off the California coast in the region of San Diego. The image 
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Figure 2.  (a) Definition of viewing angles corresponding to a given sun 
and satellite sensor positions. The image brightness of a pixel is defined 
by the area of sub-pixel facets (in green) that gives a specular reflection 
and thus must have a given surface slope vector (sx, sy). That area is 
proportional to the probability density function within that pixel for the 
slope (sx, sy). This slope corresponds to the zenith angle β and azimuth φa. 
The perpendicular azimuths φb = φa ± π/2 are “blind azimuths” in which 
the waves contribute a second-order change to the pixel brightness and 
cannot be observed. (b) Position of satellite (S), observation point (O), and 
center of the Earth (c) in a vertical plane. (c) Triangle on the sphere joining 
the observation point O and the nadir positions N1 and N2 at observation 
times 1 and 2.
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processing method is illustrated in Figure 3. To understand the processing results, we also have generated 
simulated images and applied the exact same processing to them.

The image simulator is described in more detail in Appendix A, and corresponds to the forward model of 
Kudryavtsev et al. (2017a), combined with a noise model. For our first example, the model input parameters 
are the Sentinel-2 viewing geometry, an estimate of the surface wind vector given by satellite scatterometer 
data, and a directional wave spectrum that is estimated from an in situ buoy. The buoy is station number 
220 of the Coastal Data Information Program (CDIP) located at 32.752°N 117.501°W, also identified by the 
World Meteorological Organization with the number 46258.

To obtain a more robust estimation of the current speed, we used a phase estimated from the coherent 
sum of the complex amplitudes obtained from individual image tiles that are 500 m wide. We first sum 
the 162 = 256 tiles, and then add 152 tiles that are shifted by 250 m in each direction to use the signal that 
is otherwise much reduced by the two-dimensional Hann window, but is these shifted windows are not 
independent samples. This gives 256 independent estimates of the phase and associated current for each 
spectral component. The main information that we shall use is the phase difference ψi,j(k, φ) between the 
bands number i and j, for the spectral component with wavenumber k propagating in azimuth φ.

By definition the phase changes sign for opposite directions ψi,j(k, φ) = −ψi,j(k, φ + π), and this phase differ-
ence can be interpreted as the result of the propagation of a single wave component at speed

   ,( , ) ( , ) / [ ( )],i j i jC k k k t t� (4)

where ti is the acquisition time for band i. Most of our analysis of Sentinel-2 data is based on the bands B04 
and B02 giving a phase   4,2 ,k .

The shortest waves that propagate along the x or the y axis in the image have a 20 m wavelength. Their phase 
speed, for zero current, is expected to be 5.6 m/s and thus the wave patterns should be displaced by 5.6 m 
between the red and the blue channels that are separated by 1.0 s, and only 2.8 m between the red and green. 
This distance is shorter than the 10 m pixel size, but comparable to the requirement for co-registration of the 
MSI sensor set to 3 m for 3 standard deviations (Drusch et al., 2012). In other words, Sentinel-2 can detect 
wave motions, but is the instrument and processing accurate enough to detect the generally smaller varia-
tions in phase speed associated with currents? In fact, Figure 3 shows that the phase speeds down to 25 m 
wavelength are consistent with linear wave theory but large fluctuations of the order of 1 m/s are found 
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Figure 3.  Example of processing from Level-1C images to phase speeds, using 500 × 500 m2 tiles over an 8 by 8 km area. Top: data from Copernicus Sentinel-2 
on April 29, 2016, off California (see Figures 3–9 in Kudryavtsev et al. [2017a, 2017b]), with β = 9°, U10 = 6 m/s. Bottom: simulated Sentinel-2 data based on 
in situ wave spectrum determined from directional moments using the maximum entropy method (MEM), and with random phases. The multiplicative noise 
amplitude is set to Nt = 0.15. The present paper was motivated by the phase speed anomalies, highlighted with the dashed magenta circle near the Nyquist 
wavelength L = 20 m.
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between 25 and 20 m wavelengths, and these vary strongly with the choice of azimuth φ. Such fluctuations 
are not included in the surface current estimates made by Yurovskaya et al. (2019), because these authors 
exclude spectral components with a coherence under 0.8. This coherence, denoted “coh” in the following 
equations and figures, is also called magnitude-squared coherence. We note that this threshold is equivalent 
to a standard deviation of the co-spectrum phase ψ of 40°, because for small values of the phase ψ in radians, 
std ( ) 2 1 coh .

If the vertical shear in the top few meters is to be measured, we have to use these shorter wave compo-
nents. Presumably, we could use spectral components with a lower coherence, hence a larger uncertainty, 
and use the averaging over a larger number of spectral components to mitigate this larger uncertainty. For 
the shorter components, with k ≃ 40 cpkm, the coherence is under 0.35 for all directions, and highest for 
110° < φ < 120°, with a corresponding fluctuation of the phase std(ψ) ≃ 70°. Interestingly, the same low 
coherence and high level of phase fluctuations are also present in the simulated data, even when the noise 
level is reduced to zero. We found that this pattern was not associated to the amplitude nor to the additive 
or multiplicative nature of the noise in Equation A1, nor even the nonlinear modulation transfer function. 
The low coherence persists as long as some energy remains for waves in opposing directions.

These fluctuations in the phase speed for the shortest wave components disappear in the simulation when 
the input spectrum is “chopped” to remove waves propagating from the east (with kx < 0, see Figure 4). 
Clearly, the spurious large values of phase speeds for wavelengths 20 < L < 25 m are associated with a sig-
nificant level of energy in opposing directions.

Any spectral component (k, φ) contains information that propagates in both directions φ and φ + π. By in-
terpreting the phase difference ψ1,2 as the phase of a single traveling wave, in direction φ if the phase speed 
is positive, we are assuming that we can neglect the waves in the opposite direction. In fact, the data is in 
general the sum of two wave trains traveling in these opposite directions, each giving a different contribu-
tion to the phase difference ψ1,2, one of these two can be neglected if its energy is much weaker (typically 
with a difference of 20 dB or so), which is not the case in our example for L < 25 m. The magnitude of wave 
energy in opposing directions for wavelengths under 20 m has been particularly studied for the retrieval 
of surface wind direction using HF radar (e.g., Kirincich, 2016), but few studies have been performed for 
longer wavelengths (Tyler et al., 1974).

To quantify the magnitude of waves in opposing directions, we define an “opposition spectrum,”
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Figure 4.  (a) Phase speeds for the simulated image in which either the full spectrum F(kx, ky) is taken or the right half of the spectrum F(kx ≥ 0, ky) is set to 
zero to have zero opposing wave energy, for directions 130° ≤ φ ≤ 140°. (b) Wave spectrum estimated from buoy data and used in the simulation, energy is 
represented in the direction from which waves are coming, that is, corresponding to negative frequencies.
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As defined, H ranges from 0 for waves propagating only in direction φ, to 1 for equal amplitudes in opposing 
directions φ and φ + π. This is the directionally distributed counterpart of the “overlap integral” I(k) defined 
by Farrell and Munk (2008). I(k) was first used by Hasselmann (1963) and Brekhovskikh et al. (1973) for 
the theory of generation of secondary microseisms and microbaroms (see Ardhuin et al., 2015; De Carlo 
et al., 2020, for recent reviews). If H(k, φ) is independent of φ then I(k) = H(k, φ).

Starting from the same wave spectrum as in Figure 4, we have simulated images with different noise levels 
Nt and replaced the spectral level in the left-propagating components (0° < φ < 180°) with values given by 
a constant r times the values at φ + π, giving a constant H = 4r/(r + 1)2. The result of these academic tests 
is shown in Figure 5. Looking at the mean error for the current U and the standard deviation of the value 
of U, it is clear that a larger opposition spectrum gives a larger error. Part of the larger error comes from a 
larger number of spectral bins for which the standard deviation of the cross-spectral phase is larger than 
60° and is thus not included in the average. That effect also explains why no value is shown for Nt = 0.2 and 
H > 0.41: all spectral bins in that case had a std(ψ) > 60°. Even for Nt = 0, the presence of opposing waves 
leads to very large biases on U that cannot be detected by inspecting only std(ψ). In other words, it may not 
be feasible to flag errors caused by the presence of waves in opposing directions when using the co-spectrum 
phase to estimate the surface current. For the case shown in Figure 5a, the error can be up to 0.25 m/s for 
H = 0.2, which would be the value given right off the coast by a 5% coastal reflection, which is a typical value 
for steep beaches or rocky shores (Ardhuin & Roland, 2012). These results are very robust and do not change 
qualitatively when changing the shape of the wave spectrum. We suspect that the general larger errors for 
smaller wavenumbers are associated with the smaller phase shift of the longer waves, corresponding to a 
lower signal-to-noise ratio.

2.2.  Coastal Reflections and Longer Wave Components

We may look for further evidence for the effect of waves in opposing directions by looking at recent images 
acquired off the Oahu north shore, Hawaii on May 23, 2020, as shown in Figure 6. Error bars on the phase 
speeds in Figures 7b, 7d, 7f and 7h correspond to ±1 standard deviation of the phase speed, divided by the 
square root of the number of independent spectral estimates, giving an uncertainty on the average assum-
ing a Gaussian distribution.

Previous study by Ardhuin and Roland (2012) has found evidence of significant coastal reflection, with an 
energy reflection coefficient of the order of 10%, that would give H ≃ 0.3 right at the shoreline, a value that 
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Figure 5.  Errors in current retrieval for directions 110° < φ < 120° as a function of the opposition spectrum H using the same simulated spectrum as in 
Figure 4. (a) Mean current value (and thus error since the input current is zero) (b) standard deviation of the current.
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decreases away from the shore as the reflected part of the wave spectrum is broadened by the variability of 
the shoreline direction and refraction. Numerical simulations of the sea state typically give H < 0.1 in Box 
2. As a result, the effect of shoreline reflection is rather weak.

Looking at the dispersion of 250–300 m wavelengths from the North-West, there is a narrow spectral peak 
(Figure 7a) with phase speeds ranging from 10 to 20 m/s (Figure 7b). However, Box 2 has very similar noise 
levels and phase speeds. In both cases, the estimated phase speed is very far from the linear phase speed, and 
the O(5 m/s) difference cannot be reasonably attributed to the current. Our interpretation is that the phase 
difference between the B04 and B02 images is biased low because some of the estimates are dominated by 
noise, even though our coherent sum of the co-spectra was weighted by the spectral energy. In this case, the 
strongest spectral component in (Figure 7e) with kx = 2.5 cpkm and ky = −2.5 cpkm is the one with the larg-
est velocity magnitude (17 m/s) in (Figure 7f), but the random distribution of phases gives an uncertainty 
of ±3 m/s, and the coherence is 0.94.

Looking at the full spectrum, we find that all the velocities are also probably biased by an error in the rela-
tive position (co-registration error) of the two bands B04 and B02, and/or an error in the time lag. Whereas 
the given geometry of the measurements gives a time lag of 1.00 s, it would take a roughly 1.0 m/s current 
in azimuths 20° < φ < 80° to explain the measured phase speeds for k in the range 30–40 cpkm, and the 
estimated current should vary like cos(φ − φU). Instead, the observed wave dispersion is more consistent 
with a time lag of 0.87 s and a much weaker current. That time lag difference of 0.13 s, with a phase speed 
of 7 m/s is also equivalent to a bias of 0.9 m in the location of the pixels, that could be caused by a bias of 
1 microradian in the knowledge of the relative pointing of the different bands for the same detector. We 
also note that the 1 m/s order of magnitude of the possible error on the current velocity is consistent with 
the spurious stripes appearing in maps of surface current estimated by Yurovskaya et al. (2019) and O(1 m) 
co-registration errors found by Kääb et al. (2016).
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Figure 6.  Sentinel-2 image off the North Shore of Oahu. (a) True color image and location of analysis boxes 1 and 2. 
(b) Wind speed and direction from ASCAT. (c and d) are the channel B04 values for Box 1 and Box 2, respectively.
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More interestingly for the purpose of the present study, the variation of phase speed as a function of wave-
number has an O(50 cm/s) anomaly in Box 2 for k around 20 cpkm. Could that be the signature of a current 
maximum at a depth around 10 m? In the absence of verifying measurements, we cannot explore this with 
any certainty.

3.  Least Squares Method Applied to a Sequence of Three Images
Going back to the problem of estimating phase speeds for the shorter wave components that often have rela-
tively large values of H, we propose to try to separate the waves in opposing directions, and for this, use more 
than two images. This problem is very similar to the problem of separating waves in opposing directions in 
wave laboratory experiment, which is necessary for implementing absorbing boundary conditions at paddle 
wave makers. The founding paper in this line of work was the method of Mansard and Funke (1980) for 
computing wave reflection using a series of three wave gauges with a least squares method. It was later 
improved on by Zelt and Skjelbreia (1993). We are not aware of an adaptation to image processing and gen-
eralization of the method to estimate currents at the same time as the amplitudes of the two opposing wave 
trains. As detailed in Appendix B, this generalization is straightforward.

We first tested the method for simulated monochromatic waves of 50 m wavelength propagating in one 
dimension and resolved at dx = 10 m resolution with time lags of 0.5 and 1.0 s similar to the red, green, and 
blue bands (B04, B03, and B02) of Sentinel-2. We found that adding one extra measurement at a 0.8 s lag, 
similar to band B08 on Sentinel-2, had a limited impact on the results. The method is illustrated in Figure 8 
with spatial series, with or without noise.
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Figure 7.  Analysis of two pieces of the S2 image shown in Figure 6. For Box 1, (a) shows the power spectral density of the image intensity obtained with 2 km 
by 2 km tiles to give a better spectral resolution for wavelengths around 300 m, with dots marking the “low noise spectral components” that give a standard 
deviation of the co-spectrum phase under 60° and (b) the phase speed of long wave components with directions between 130° and 150°, with blue bars 
corresponding to those low noise spectral components. (c and d) were obtained with 500 m by 500 m tiles focusing on shorter waves with directions between 
45° and 55°. (e–h) show the same quantities for Box 2. The dashed lines in panels (a, c, e, and g) indicate the blind azimuth (see Figure 2 for its definition) and 
the blue dots in (a and e) indicate the spectral components for which the std (phase) is less than 60°, with velocity estimates shown with blue symbols in (b and 
f).
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With a small value of the opposition spectrum, here A = 1, B = 0.1 and thus H ≃ 0.04 (except for B = 0.2 in 
Figure 8a), the wave field looks like a single propagating wave with a modulated amplitude, changing from 
1.1 to 0.9 over half a wave period, here 2.8 s, due to the partial standing wave. When multiplicative noise 
is added, the distribution of current estimates from phase differences is Gaussian for waves propagating in 
only one direction (Figure 8c). In the case of the least squares method, the distribution has heavier tails than 
a Gaussian distribution and thus requires a very broad range of velocities to be properly characterized. In 
our example, the uncertainty is 20 times larger when using the least squares method (see Figure 8b com-
pared to Figure 8c). In contrast to A and B, we do not have an analytical expression for U and it is difficult 
to predict its distribution. In practice, we find that the median of the distribution of U is apparently not 
biased (Figure 8b, 8d and 8f), and the mean of M estimates of this median apparently converges following 
the central limit theorem with a standard deviation reduced by 1 / M . One may thus hope to retrieve the 
current with this method, even for noisy data.
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Figure 8.  (a) Example of three spatial series at three different times in the presence of rightward propagating and leftward propagating waves of wavelength 
L = 50 m, amplitudes A = 1 and B = 0.2, and a U = 0.2 m/s current. The time lags of 0.5 and 1 s are typical of Sentinel-2 data for the 10 m resolution R, G, and 
B channels. (b–g) Monte Carlo simulations of the estimation of the current velocity U from 50,000 monochromatic spatial series with white multiplicative 
noise of amplitude Nt, using least squares in (b, d, f), and using the phase difference between two images in (c, e, g). For reference, the distribution of estimated 
currents is also shown in (b, c) when the amplitude of leftward propagating waves is zero.
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We note that the uncertainty on the current U, as measured by the standard deviation of the distribution of 
U, is not affected by the presence of waves in both directions when using the least squares method: changing 
the value of B from 0 (Figure 8b) or 0.05 (Figure 8d) to 0.1 has no influence on the distribution (not shown). 
With the least squares method, the current uncertainty generally decreases when reducing the noise (Fig-
ure 8d) or increasing the signal, for example, when increasing the time differences between the measure-
ments (Figure 8f). In contrast, when waves in opposing directions are present, the error reduction in the 
phase method is very limited when the noise is reduced (Figure 8e). Both methods are improved when the 
time lag is increased by a factor 10, as shown in Figures 8f and 8g.

We now apply the least squares method to actual Sentinel-2 imagery, with three bands (B02, B03, and B04). 
We first note that the image amplitude and standard deviations are different for the different bands, so that 
the shift from one band to another is not just a propagation but also includes a change in mean value and 
amplitude. To mitigate the effect, we have shifted and rescaled the pixel values so that each image has a zero 
mean and unit standard deviation before computing Fourier transforms.

We first take up our example off California, with results shown in Figure 9. Noisy parts of the spectrum gen-
erally correspond to a low coherence in image pair (Figure 9a) and a high uncertainty for the co-spectrum 
phase (already shown in Figure 3) and hence current velocity. When using a least squares fit, an obvious 
candidate for quantifying the noise is the residuals that we have normalized by the sum of the spectral 
densities of the images.
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Figure 9.  All the panels show quantities in spectral space (0 < kx < 50 cpkm, −50 < ky < 50 cpkm). Top panels (a, b, e, f, g): Error metric (coherence for phase 
method, standard deviation of normalized residual for least squares method). Middle panel (c, d, h, i, j): Estimate of velocity in φ direction. The dashed circle 
corresponds to k = 50 cycles per km. The simulated images include a non-zero current vector U = (−1, 0) m/s, so that the current component in direction φ 
should be −sin(φ), very close to what is retrieved in panel (i).
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For each spectral component (k, φ) and each m-index subimage of 100 by 100 pixels we fit the amplitudes 
ZA,m(k, φ) of a wave train traveling in direction φ and ZB,m(k, φ) traveling in direction φ + π and the current 
velocity Um(k, φ) that minimizes the sum of square residuals that is the difference between the image spec-
tral density Bn,m(k, φ) and our model of two counter-propagating components (see Appendix B). We only 
keep values of U that fall in the range from −5 to 5 m/s, for which there is a number M(k, φ) of estimates. 
For each spectral tile we have a normalized residual,

      
2 2

( , ) ( , ) / ( , ) .m n n
n n
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From these “successful fits,” their number is M(k, φ), we take the current to be the median of the Um(k, φ) 
values and we define a root mean square residual,
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Inspecting (Figure 9b), we propose that a first not-too-conservative but reasonable threshold for acceptable 
results is ɛr < 0.4, giving the current values shown in Figure 9d. This choice was motivated by the desire to 
include the spectral components for which we found that waves in the opposite direction were a significant 
source of error for the phase method, but this also keeps spectral components with very low signals (with 
azimuth directions between 0° and 30°, and between 135° and 180°).

In addition to the current, we also estimate the opposition spectrum as
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Although we have no direct measurement of the true directional spectrum E(k, φ) and thus of H(k, φ) using 
Equation 5, we may compare estimates Hi to the values shown in Figure 10a and given by the wave spec-
trum estimate E(k, φ) using the maximum entropy method (MEM), which is used in the image simulations. 
It is not clear at all if the MEM derived spectra give values of H(k, φ) that should have the same order of 
magnitude as those given true directional spectrum. This question could be investigated with stereo-video 
data (e.g., Guimarães et al., 2020).

When using the least squares estimate of ZA and ZB that correspond to the least squares estimate of U for 
each image tile, the values recovered from the S2 image are typically much higher than those estimated 
from the buoy as shown in Figure 10a): in the range 0.2–0.4 for the part of the spectrum that has a coherence 
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Figure 10.  Estimates of the opposition spectrum H(k, φ), for the spectral range (0 < kx < 50 cpkm, −50 < ky < 50 cpkm). Panel (a) shows the H spectrum based 
on the MEM-estimated spectrum from the in situ buoy, (b and c) show two estimates from the Sentinel-2 image using either the current estimated from phase 
differences or the current also given by the least squares method. (d and e) are the results for simulated images with different levels of noise.
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squared higher than 0.64 which is already lower than the 0.8 threshold in Yurovskaya et al. (2019). This 
value of H is probably at least 10 times too high around the spectral peak. These would typically give a back-
ground level of microseism sources that is too large by a factor 10 or more. What happens is that the fitting 
procedure puts some of the noise in the amplitude of the opposing waves. As a result, a lower threshold 
than ɛr < 0.4 is necessary to give accurate estimates of the opposition spectrum H. But we can also force the 
current to the value estimated from the phase method and only fit ZA and ZB, in that case, the values of H 
are more realistic, as shown in Figure 10b.

For that estimate, we have also modified the equations in Appendix B to allow for a different current at 
times t2 and t3 to absorb the biases in the image position (δX,δY)i,j = (Uij, Vij) × (tj − ti). Indeed the phase dif-
ference ψ2,3 gives a velocity vector close to (−1.8,0.) while ψ2,4 gives (−1,0) corresponding to a 1 m eastward 
erroneous shift of the B02 image relative to B03 and B04. This inconsistency in the data is not included in 
the fitted model proposed in Appendix B and thus contributes to higher errors in the estimate of U. One 
possibility may be to recompute the least squares with different velocities over the different time lags, or to 
use the phase difference method on all image pairs to estimate deviations from a constant speed and shift 
the image before applying the least squares method.

For our test image, it is thus dubious that the least squares method, as implemented here, has provided any 
additional reliable information for short waves compared to the phase method. Using a more conservative 
threshold ɛr < 0.2, it is possibly able to slightly extend the part of the spectral plane from which a velocity 
can be derived to directions that are further away from the mean wave direction.

Looking beyond the particular case of the bands B02, B03, and B04 of the Sentinel-2 sensor, it is interesting 
to know how well this method may work. We have thus simulated the image and its processing, and reduced 
the noise level from Nt = 0.15 (which looks similar to the true Sentinel-2 image) to no noise at all with 
Nt = 0. Without any noise, the least squares fit is very good with ɛr < 0.1 for the full spectral domain, except 
around the blind azimuth. As a result, the input current vector U = (−1, 0) m/s is very well recovered. This 
would not be the case for the shortest components using the phase method except in the mean direction, 
giving only one component of the current vector.

The precision on the retrieval of the surface current is further illustrated in Figure 11, focusing on a narrow 
range of azimuths, between 110° and 120°. The error bars give an estimate of the precision of the mean 
within each spectral bin that are all completely independent. For the phase-difference method, the smooth 
variation of the estimates across the spectra (within the error bar) confirms that the O(15 cm/s) precision 
for each spectrum estimate is realistic. This does not say anything about the accuracy of the estimate that is 
dominated by an O(1 m/s) error due to relative pixel co-registration errors of the different bands.

For the least squares method, the error bars are more difficult to define given the heavy tails of the U distri-
bution and the sample size (256 independent spectra giving 256 estimates of U). It might be possible to use 
the distribution of residuals ɛm obtained for the M spectra as given by Equation 6, because they are corre-
lated with errors on U, but we have not found a satisfactory parameterization that would work for both the 
academic 1D case of Figure 8 and the true images. If needed, the only robust uncertainty we can propose 
is to compute the standard deviation across neighboring spectral components, for example, in a 10 cpkm 
band of wavenumbers.

Both the phase and least squares method agree in the range 25–35 cpkm, but there are large biases of the 
least squares method for both short and long components, as shown in Figure 11a. Although some of these 
errors could be caused by instrument errors (such as errors in the retrieved observation angles that could 
change the estimate time lags and distort the dispersion relation), it is striking that the simulated data 
shown in Figure 11b gives similar errors, but slightly weaker, which leads us to think that the biases in the 
least squares method may be dominated by artifacts of the processing method. We have not yet identified 
the source of these errors. We also note that the phase method, in contrast, has no trend in the simulated 
data for which the standard deviation of the phase is under 60°.

We generally expect that errors can be reduced by increasing the time separation of the images so that 
the mean phase difference is much larger, making random phase differences comparatively smaller. Fig-
ures 11c and 11d show that realistically noisy images with a doubled time lag are preferable to a noise-free 
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image with the same time lag. This is easy to understand in the case of the phase difference method: the 
larger phase difference makes the random-phase noise a relatively smaller term in the phase difference. The 
uncertainty on U is inversely proportional to the time difference.

The first verification of this advantage of larger time lags is provided by using the B12 and B11 band, that 
are acquired 1.1 and 0.5 s before B04, which is here 1 s before B02 (this ordering correspond to the even de-
tectors on S2, it is reversed for the odd detectors). Hence combing B12 with B11 and B02, giving a maximum 
time lag of 2.1 s. Because the spatial resolution of B12 is only 20 m, we have averaged B02 over 2 by 2 pixel 
boxes to provide images at the same resolution, including a 1 m westward shift of B02 to correct for the error 
noted above. These results are illustrated in Figure 12.

We first note that the shape of the spectrum, here resolved at higher spectral resolution, shows a 3-lobe 
structure with minima of the image power spectral density and coherence for the azimuths 100° and 125°, 
these are probably due to artifacts of the Level 1-C processing. For the waves in the direction of highest co-
herence, 108° < φ < 118°, the uncertainty on U obtained in the range of wavenumbers 10–20 cpkm is as low 
as 0.1 m/s in spite of the average of only 64 independent tiles (compared to 256 for Figure 11a). Combining 
all the 25 spectral components available from 10 to 20 cpkm gives an uncertainty of 3.4 cm/s, which we esti-
mated from the mean of the uncertainties divided by the square root of the number of spectral components. 
Performing the same analysis on 20 m box averages of B03 and B02 gives a 5.8 cm/s uncertainty. It is there-
fore beneficial to use the largest time lags for estimating the current speed from wavelength between 50 and 
100 m. We note that the least squares method gives rather puzzling results that we do not understand, with 
a variation of the estimated current as a function of wavenumber that is large and not random.

In the case of the waves shorter than 40 m wavelength, that are only resolved in the 10 m images such as 
given with bands B02 and B04 with 1 s time lag, the uncertainty of U from the phase difference method for 
wavenumbers from 30 to 40 cpkm is larger at 4.8 cm/s due to the opposing effects of a lower coherence and 
a larger number of spectral estimates.
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Figure 11.  Comparison of different current estimates for waves in azimuths 110°–120° for (a) Sentinel-2 data using bands B04, B03, and B02, and simulated 
data with the (b) same time lag and similar noise level, or (c) no noise, or (d) a doubled time lag. For the phase difference method (red and blue symbols), 
the error bars show the mean value obtained for each spectral component plus or minus one standard deviation divided by the square root of the number of 
estimates. We have also tested (in green) using a subsample of the least squares, keeping only those with small values of the residual ɛm.
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4.  Discussion: Consequences for Surface Current Velocity and Shear Retrieval
4.1.  Application to Sentinel-2

From the consistency of the velocity estimates for all spectral components, and in the particular case of 
the image analyzed in Figures 2 and 11, we find that Sentinel-2 imagery is capable of providing a velocity 
precision of the order of 5 cm/s for spectral ranges of 10 cycles per kilometer. These uncertainties are of the 
order of the differences in the advection speed of the different spectral components due to a typical verti-
cal current shear in the top 20 m of the ocean. Along the equator with differences of the order of 50 cm/s 
between can be found between 1 and 15 m depth and these should be detectable by Sentinel-2. A probably 
more typical shear, from subtropical Atlantic measurements, is shown in Figure 13 and measuring it re-
quires detecting 3 cm/s differences between k = 20 and k = 40 cpkm. Resolving this demands a reduction of 
the uncertainty by at least a factor 3, possibly obtained by averaging over at least 24 by 24 km.

At that level of accuracy, other phenomena may be involved, such as nonlinear wave effects, that include 
both an advection of short waves by long waves (Broche et al., 1983; Weber & Barrick, 1977) which corre-
sponds to a fraction of the Stokes drift (Ardhuin et al., 2009), and the presence of harmonics (i.e., Leckler 
et al., 2015). To test that latter effect, we have made some simulations by replacing the linear wave model 
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Figure 12.  Example of results with a larger time lag of 2.1 s but coarser (dx = 20 m) using B12 and B02 bands. To 
better resolve the longer waves, the spectral analysis was done here with 1 km by 1 km tiles.
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with the Choppy Wave Model (Nouguier et al., 2009), which is a first-order Lagrangian theory. We use a 
current (Ux = −1 m/s, Uy = 0.) in our simulations.

Following (Yurovskaya et al., 2019), we estimate Ux and Uy by a least squares fit to the measured phase dif-
ferences after removing the linear wave dispersion,

  
   
 

2 2( , ) ( , ) /a x y x y x yk k k k dt g k k dt� (9)

which is related to the current vector (Ux, Uy) by
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where ɛ is a small residual. We only keep the M spectral components with index m corresponding to one 
pair (kx, ky) such that |km| > 10 cpkm, |km| < 40 cpkm and with std(ψ) < 60°. This gives a length M vector 

   , 1( )a m m MY . We invert Equation 10 for all m to find the vector X = (Ux, Uy) that gives the smallest 
sum of square residuals weighted by 1/std(ψ)2. The resulting uncertainty σU is the square root of the first 
term of the matrix (A′CA)−1 where A(m, 1) = kx,m, A(m, 2) = ky,m and C is the diagonal matrix such that 

 2( , ) 1 / std( )mC m m  (Hogg et al., 2010).

In our case, we take as a reference σU,l = 0.018 m/s the uncertainty on retrieved U for the case of a linear 
MTF and linear surface. This uncertainty is not zero due to all the processing steps: use of subimages, win-
dows, and so on. Presumably the effect of non-linearities or waves in opposing directions are independent 
from these processing effects and we estimate the excess uncertainty due to effect Z, as

   2 2
, , .U Z U U l� (11)

The retrieved current and excess uncertainty are reported in Table 1 for 
four different simulations.

We find that the effects of nonlinearities introduced by the Choppy Wave 
Model for wavelengths larger than 20 m and in the case considered here, 
are comparable to the effect of the nonlinear MTF and nine times small-
er than the effect of waves in opposite directions. Possibly nonlinearity 
becomes more important when waves much shorter than L = 20 m are 
taken into account.
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Figure 13.  (a) Example of typical current profiles of summertime subtropical gyres. Profiles 1 and 2 correspond to Figure 1, while profile 3 would be a 
hypothetical total current profile without Stokes drift. (b) Resulting variation of the effective current U(k) as a function of the wavenumber.

Simulation U value σu,Z

Linear model −0.974 0.000

Choppy wave model −0.976 0.011

Nonlinear MTF −0.975 0.004

Opposing waves −0.899 0.107

Table 1 
Effect of Nonlinearities and Opposing Waves on Retrieved Current
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Also, waves are not homogeneous in space, with gradient driven by the horizontal shear of small-scale 
currents (Ardhuin et al., 2017; Quilfen & Chapron, 2019; Villas Bôas et al., 2020). If the shorter waves cor-
relate with currents in a way different from the longer waves, which can be the case at the smallest scales 
(Suzuki, 2019), what appears like a vertical shear in the difference of phase speed could be the effect of 
the horizontal shear. Detailed simulations of these effects will be needed to find the order of magnitude of 
horizontal shear contributions to the mean phase speed difference.

In general, the vertical shear of the current is a priori not sensitive to image co-registration errors because 
all wavelengths are affected by these errors in the same way, and the shear is associated by a difference in 
phase speed of the different wave components. We find that a 10 cm/s difference in phase speed between 
50 and 25 m wavelengths (k = 20 cpkm and k = 40 cpkm) should be detectable with Sentinel-2 using data 
from an 8 km by 8 km region of the ocean. Such a difference corresponds to a fairly large current shear in 
the top 10 m of the ocean.

4.2.  Beyond Sentinel-2: A Possible STREAM-O Instrument

Resolving weaker and more typical shears would require more sensitive measurements, such as provided 
with larger time lags and higher spatial resolution. Figure 13b shows that extending the spectrum to 100 
cpkm (10 m wavelengths) would double the difference in velocity that can be detected. Such capability will 
be available with the next generation Sentinel-2. Using these shorter components will probably require 
methods that are less sensitive to the presence of waves in opposite directions, such as the least squares 
method proposed here.

Based on the results shown in Section 3, increasing time lags is probably the most important feature needed 
to obtain more accurate currents using both the phase difference or the least squares method, with or with-
out waves in opposing directions. Due to data downlink constraints and cloud cover, optical monitoring of 
currents using wave dispersion cannot compete with the possible coverage given by radar systems (Ardhuin 
et al., 2019). Yet, optical imagery is uniquely capable of providing estimates of vertical current shear, and 
may provide very useful data for reducing pointing errors. With these two goals in mind, the “ocean Surface 
Transport kinetic Energy, Air-sea fluxes and Mixing” (STREAM) concept combines a Ka-band Doppler 
scatterometer radar STREAM-R with a 1,000-km wide radar swath, with a optical system STREAM-O that 
takes sequences of five ocean images at 5 m resolution with time lags of 1, 4, 9, and 10 s, overlapping over 
a 10-km wide strip along the orbit. This concept was proposed for the 11th Earth Explorer of the European 
Space Agency.

In addition to the increased time lag, the STREAM-O design uses a push-frame acquisition system, instead 
of the push-broom of the MSI sensor on Sentinel-2. Namely, the raw data for one band consists of 2-D imag-
es with large overlaps instead of a single line. Such a feature makes on-board averaging possible, increasing 
the integration time to a value larger than several times the life time of specular points, that is, 10 ms or 
more. This is clearly not feasible for a pushbroom system in which the duration of acquisition of each pixel 
is less than the pixel size (10 m) divided by the ground velocity (7 km/s), that is, 1.4 ms. Future work is need-
ed to understand the parameters that control the phase difference noise in optical imagery. It is possible that 
other parameters are relevant besides the number and life time of specular points. Also, the present study 
considered images in the sun glint, but several useful applications (in particular for water depth retrieval) 
have been made with different observation geometries, with different noise characteristics.

5.  Conclusions
To retrieve a surface current vector and current shear from observed wave dispersion, it is necessary to ob-
tain separate and robust estimates of the phase speed of different components of the wave spectrum, with 
different directions to obtain a current vector, and with different wavelengths that have different sensitivi-
ties to different depths.

Although the present study did not demonstrate a full solution method, we have highlighted difficulties 
associated to the retrieval of phase speed from a small number of ocean surface images using either a phase 
difference method or a least squares fitting of the current velocity and the amplitude of waves in opposing 
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directions. Both methods have complementary advantages and should probably be combined and modified 
for further improvements. We particularly highlighted how the presence of waves in opposite directions 
causes an error in the phase difference method. In one specific case analyzed here, this is particularly a 
problem for retrieving phase speeds from waves with wavelengths shorter than four times the dominant 
wind sea. The least squares method using three or more images is not sensitive to waves in opposing direc-
tions, but it provides relatively noisy estimates of the current velocity when applied to Sentinel-2, due to the 
short time lags (about 1 s). As a result, the least squares method may not provide much more useful addi-
tional information on the current velocity than the phase difference method. We also note that anomalously 
low coherence in image pairs may be an indication of the presence of waves in opposite directions, which 
may have an application to the identification of strong microseism or microbarom sources.

Our simulations show that when applied to other sensors with lower image noise and/or larger time lags, 
the least squares method may allow to use the shortest wave components that are more likely to be associat-
ed with high levels of energy propagating in opposing directions. We find that a 2 s time separation and the 
same pixel noise as Sentinel-2 should be sufficient to retrieve reliable phase speeds of shorter waves, all the 
way to the Nyquist wavelength. In that case, it should be viable to reliably estimate the magnitude of waves 
in opposing directions as quantified by the opposition spectrum introduced in Section 2. Future work will 
be needed to refine and verify the error model for the two methods and their possible combination.

Appendix A:  Image Simulator
The first five directional moments are converted to a 5-degree resolution directional frequency spectrum 
using the MEM (Lygre & Krogstad, 1986). This spectrum is then interpolated onto a regular grid in (kx, ky) 
space to obtain power spectral densities of wave-induced surface elevation with a spectral resolution of 
1/16,000 cycles per meter, that is, with a largest wavelength of 16 km, two times as large as the region ana-
lyzed. Drawing random phases for each spectral component, the wave power spectral density is used to de-
fine complex amplitudes that are inverse-Fourier transformed to generate 8 km square grids of the surface 
elevation and long wave slopes,  ( , , ), ( , , )x i y is x y t s x y t , with x and y regularly discretized at 10 m resolution, 
and ti the discrete-time sampling corresponding to the time of image acquisition.

The input to our image simulator are thus

•	 �the wave spectrum F(f, θ) is transformed to F(kx, ky) using linear dispersion with a maximum frequency 
f ≃ 0.7 Hz corresponding to a cut of wavelength of 3.2 m. This spectrum is then interpolated on a regular 
grid in (kx, ky) space, covering the range [−kN, kN] for each dimension where kN is the Nyquist frequency 
(i.e., corresponding to a 20 m wavelength when simulating 10 m resolution images). This avoids any 
aliasing;

•	 �the direction of the dominant slopes φmss (which is generally close to the wind direction);
•	 �the mean square slope in that direction mssu and the mean square slope in the perpendicular cross-di-

rection mssc;
•	 �the bistatic view angles β and φa for each image (see Figure 2 for a definition), which we assume spatially 

uniform as we are only representing a small piece of the ocean.

Ideally, a full-wave spectrum including short gravity waves, for example, such as parameterized by Elfouhai-
ly et al. (1997) or extending the model range of WAVEWATCH III to short gravity waves, would also contain 
the required slope parameters (items 2 and 3 of the above list), but such spectra are not yet realistic enough.

The forward model described in Kudryavtsev et al. (2017a) is used to compute a mean luminance B0 for a 
locally rough but flat surface, and the local luminance B(x, y) from the same rough surface tilted by the long 
wave slopes. Detected luminance fluctuations are caused by the true luminance fluctuations caused by the 
finite number of specular points that contribute to the signal in each pixel (Longuet-Higgins, 1960).

The image pixel value is then taken as the nearest integer of a mean intensity I  times (1 + nt)B/B0 where nt 
is a random white noise of an amplitude Nt that parameterizes the “twinkle” of the sea surface.

The noise of the detector is treated as an additive noise nd, represented as a Gaussian noise of standard de-
viation Nd. For each channel j which corresponds to a time tj we have the pixel value
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 0( , ) E( ( , , ) / (1 )),j j j tI x y I B x y t B n� (A1)

where the value E(x) is the largest integer value that is less or equal to x. The quantization effect of rounding 
to an integer pixel value is not very relevant in the present paper with examples that have a relatively bright 
sea surface. In contrast, the twinkle noise has a very important influence on the estimation of the surface 
current, as discussed in Sections 2 and 3.

Appendix B:  Adaptation of Three-Probe Least Squares Method to an 
Unknown Current
Let us have A and B the complex amplitudes of the waves propagating in the φ direction and the opposite 
direction φ + π, and N is the number of measurements at times tn. In the case N = 3, the system of equations 
for the three measured complex amplitudes F1, F2, F3 at times t1 = 0, t2, t3 is, for each spectral component 
(k, φ), with U the current component in direction φ,   gk ,

  1 1,A B F� (B1)

       i( ) i( )2 2 2 2
2 2e e ,t kUt t kUtA B F� (B2)

       i( ) i( )3 3 2 2
3 3e e .t kUt t kUtA B F� (B3)

� (B4)

We look for the solution that minimizes the sum of the modulus of ɛn squared,

                 
2 i( ) i( ) i ( ) i( )e e e et kUt t kUt t kUt t kUtn n n n n n n n

n n n
n n

A B F A B F� (B5)

where the overbar corresponds to the complex conjugate. Taking derivatives with respect to the real and 
imaginary parts of A and B and taking derivative with respect to U gives, respectively,

n

tn kUtn tn kUtn tn kUtn
n

A B F         e e e
i i i( ) ( ) ( )  
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0� (B7)

n

n

tn kUtn tn kUtn tn kUtn t
t A B A B        Im e e e e

i i i i( ) ( ) ( ) (    nn kUtn
n

F
  





)
,0� (B8)

where Im(X) is the imaginary part of X.

Using t1 = 0, this can be re-arranged as

   A B� (B9)

    A B� (B10)

   
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where we have defined

       
i(2 2 )i(2 2 ) 321 e e kU tkU t� (B12)
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We may eliminate A and B from the first two equations giving

     / ,A B� (B21)

and

       2( / ) / ( / ).B� (B22)

replacing these expressions for A and B in Equation B11 gives one equation for U,

   
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Finding the solution for f = 0 gives an estimate of the value of U. This operation can be repeated for each 
Fourier transform (each tile) and each spectral component. Different averaging procedures are discussed 
in Section 3. In particular, we find that the square root of the sum of |ɛn|2 is linearly correlated to the error 
on U, in particular when the phase differences are large. Finally, this approach is easily extended to more 
than three images.
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