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A B S T R A C T   

Restrictions in empirical research of biological communities have limited our understanding of the combined 
influence of environmental variability and system structure on community composition. Spatial patterns of 
community composition in less accessible systems, such as marine benthos, can often not be explained by many 
factors beyond the direct impact of the environment on community members. We present a method that com-
bines commonly collected data of community composition with analyses of qualitative mathematical models, to 
assess not only direct impacts of environmental variability, but also the propagation of impacts through complex 
interaction networks. Transformed spatial data of community composition describe the community members’ 
observed similarity of response to an external input. The output of qualitative mathematical models describes the 
community members’ predicted similarity of response to input entering the system through any of its variables. A 
statistically significant agreement between the observed and any of the predicted response similarities indicates 
the respective system variable as a likely gateway for environmental variability into the system. The method is 
applied to benthic macroinvertebrate communities in the Rance estuary (Brittany, France). Organisms identified 
as likely gateways have traits that agree with their predicted response to documented spatially and temporally 
structured environmental variability. We suggest use of this novel framework for more comprehensive identi-
fication of environmental drivers of community change, including gateway community members and cascades of 
environmentally driven change through community structure.   

1. Introduction 

Fluctuating abiotic conditions, also known as environmental vari-
ability, and interactions among community members, outlined as system 
structure, are central to the study of biological communities. Under-
standing the combined effect of these two elements on community 
composition remains a difficult challenge for ecological research 
(Sutherland et al., 2013). Logistical restrictions often limit controlled 
community experiments that jointly investigate environment and 
structure to small subsets of natural systems. Such experiments have 
provided valuable theoretical insight, but their inference potential 
regarding the behaviour of complex real-world systems remains limited 
(Wernberg et al., 2012). Observational studies can produce more 
comprehensive community descriptions, but these are typically based on 
snapshots of a system that are restricted in space or time. Statistical 

analysis of such sample data can reveal environmental drivers that shape 
community composition. Nevertheless, most multivariate statistics 
detect patterns shaped by organisms’ requirement niche, ignoring the 
influence of biotic interactions, or impact niche components, sensu 
Leibold (1995). Consequently, indication of environmental variability 
based on its direct effects on a community is not robust against con-
founding spatial and temporal dynamics controlled by community in-
teractions (James and McCulloch, 1990; Gotelli et al., 2009). Structural 
equation models are increasingly used to investigate networks of biotic 
interactions (Grace et al., 2010). However, representation of feedback 
cycles and the resulting dynamics is still challenging (Hayduk, 2009). As 
a result, this crucial property of biological communities is often dis-
regarded in favor of acyclic representations (Fan et al., 2016). 

The study of benthic macroinvertebrates in the Rance estuary (Brit-
tany, France) exhibits some typical challenges of linking environmental 
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variability and community structure. The estuary’s macrobenthos was 
comprehensively sampled twice, in 1976 and 1995 (Kirby and Retière, 
2009). Spatial patterns of community composition in each year are 
explained as the direct effect of the environment independently on each 
species (Desroy, 1998). Differences in population abundances between 
these observations, separated by almost twenty years, are linked to 
short- or long-term environmental variability (Desroy and Retière, 
2004). A portion of the observed variation in community composition is 
explained by direct environmental impacts, but a large portion is also 
left unresolved. Undetermined variation in community composition 
could result from the propagation of impacts of external drivers through 
complex interaction networks. The signal of such drivers may be 
confounded by internal community dynamics, but likely not in a random 
manner. We, instead, expect this signal to be shaped deterministically by 
system structure. Control observations that can isolate this signal from 
other sources of variation, or enough knowledge and data to develop 
dynamic models of benthic communities, are lacking. Consequently, 
there is currently no means to test hypotheses regarding structure- 
modulated impacts of environmental variability, or predict perturba-
tion responses of benthic communities in the Rance and other similar 
systems worldwide (Alexandridis, 2017). 

Here, we present a new approach to identifying environmentally 
driven community change, by detecting system-wide perturbation ef-
fects and organisms that act as their points of entry into a community. 
We argue that comprehensive assessment of perturbation impacts, not 
only directly on community members, but also through cascading 
community responses, increases the robustness of environmental vari-
ability indication. Our approach combines widely available snapshot 
community observations and relatively easy-to-build qualitative math-
ematical models that represent both requirement and impact niches of 
community members (Levins, 1998). Qualitative predictions of popu-
lation responses are compared with transformed observations of species 
abundances. When predicted community responses to perturbation 
affecting the system through a specific variable agree with observations 
of community composition under perturbation, this variable is identified 
as a likely point of entry, or gateway, for environmental variability into 
the system. We provide an example application of this framework based 
on recent functional grouping and qualitative modelling of benthic 
macroinvertebrate communities in the Rance estuary (Alexandridis 
et al., 2017a, 2017b), and discuss results in relation to the environ-
mental history of the system. We identify research directions that can 
employ this framework to improve understanding of the combined role 
of environmental variability and community structure. 

2. Theory 

Qualitative mathematical modelling allows incorporation of com-
munity structure, especially complex feedback cycles, in assessment of 
the impacts of environmental variability (Levins, 1998). In this context, 
sustained environmental variability can be considered as a press 
perturbation, or external input into a system through any of its variables. 
Given a specific input, a qualitative mathematical model generates 
predictions about the direction of change of each system variable. Puccia 
and Levins (1985) suggest using these predictions to identify the source 
of an external input, by examining observed correlation patterns among 
species populations in a system that is suspected to have received an 
input. Populations that change in the same direction in response to this 
input will show positive correlations over a range of the input’s 
magnitude, while those that change in opposite directions will show 
negative correlations. No correlation will be observed between two 
populations if any of them have a zero response to this input. Similarly, 
qualitative predictions for a modelled system regarding responses to 
each potential input can be translated into positive, negative or no 
correlations between the model variables. Predicted correlation signs 
that agree with those observed should, in theory, provide evidence for 
the source or cause of the actual input into the system. While this 

approach has the potential to identify unknown perturbation sources, it 
requires a definitive set of model predictions. In complex systems, 
however, these predictions can be difficult to obtain, as an input can 
propagate both positive and negative effects to a response variable, 
rendering ambiguous qualitative predictions (Dambacher et al., 2002). 
Furthermore, natural variability and sampling error can easily limit the 
agreement between predicted and observed correlation patterns (Puccia 
and Levins, 1985). 

3. Material and methods 

3.1. General assumptions 

1) A system that consists of a biological community and its basic 
resources is assumed to be at, or near, a state of equilibrium under the 
influence of environmental variability in the form of press perturbation 
(i.e., sustained input into the system), whose sign and magnitude may 
vary in space and time. The equilibrium assumption allows prediction of 
perturbation responses through qualitative mathematical modelling, 
and is typically supported by a system’s ability to persist in the face of 
disturbance (Puccia and Levins, 1985). 2) A press perturbation is ex-
pected to affect the system disproportionately through one of its vari-
ables, but the approach can also be extended to include multiple 
gateway variables (see section 6). 3) Detection of system-wide pertur-
bation impacts over independently generated, pre-existing spatial 
abundance patterns requires that unobserved pre-perturbation abun-
dances of each community member at different sites show random 
variability within a smaller range than any change caused by the press 
perturbation. 4) Internal community-shaping processes are assumed to 
act independently at each sampled site. Community samples can then be 
considered as independent realizations of a community model. 

According to these assumptions, a perturbation forces community 
members with varying strength across sites away from their pre- 
perturbation abundances. These unobserved abundances vary, inter 
alia, at each site according to the members’ level of numerical domi-
nance in the community, and across sites according to the sites’ total 
abundance, or site productivity (Borcard et al., 2011). Since perturba-
tion impacts are assumed to exceed this variability in space, and we are 
interested in the community members’ perturbation responses, such 
variation can, for our purposes, be considered as noise. Our goal is to 
reduce this noise, by standardizing abundances for site productivity and 
community dominance. Site-paired community member distances 
regarding standardized abundances should also eliminate the influence 
of site-dependent perturbation magnitude, quantifying only community 
members’ dissimilarity in terms of their perturbation responses. This 
dissimilarity can then be compared with the same measure calculated 
from predictions of mathematical community models for each potential 
input variable. Agreement between observations and predictions should 
indicate the respective system variable as a likely gateway for envi-
ronmental variability into the system. 

3.2. Community observations 

Samples of community abundance (Fig. 1a) are arranged into a data 
table C = [cij] of size (s × m) with sites (rows) i = {1⋯s} and community 
members (columns) j = {1⋯m} (Fig. 1b); row sums are noted as ci

∑

and column maxima as c⋁j. Abundances of community members at each 
site are first standardized for site productivity through division by the 
site’s total community abundance. The resulting table C’ = [c’ij], where 
c’ij =

cij
c

i
∑, describes the frequencies of community members at each site. 

Site frequencies of each community member are then standardized for 
community dominance through division by the community member’s 
maximum frequency over all sites. The resulting table C’’ = [c’’ij], where 
c’’ij =

c’ij
c’⋁j

, describes each community member’s relative frequencies 
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across sites (Fig. 1c). Double standardization makes these values com-
parable between sites and community members, regardless of systematic 
differences in site productivity and community dominance. Finally, 
square root transformation reduces the importance of observations with 
extremely high values, resulting in table Cr = [cr

ij], where cr
ij =

̅̅̅̅̅̅̅̅
c’’ij

√

(Fig. 1c). For each pair {x, y} ∈

(
{1⋯m}

2

)

of the m community members, 

the Euclidean distance D(x, y) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑s

i=1

(
cr

ix − cr
iy

)2
√

, calculated among 

values of the respective s-length columns of table Cr, quantifies the 
community members’ dissimilarity in terms of their relative frequencies 
across all sites. Calculations of D(x, y) for all elements of {x, y} are 
combined into the distance matrix DC (Fig. 1d). 

Assuming that the system is affected by a press perturbation, re-
sponses of community members across sampled sites are 1) described by 
comparable values along the respective columns of table Cr and 2) 
dictated by the input’s magnitude at each site and the community 
members’ position in the system structure. If the system position of two 
community members {x, y} forces them to respond to this input in a 
correlated manner, site-paired values along the respective columns of 
table Cr will be on average more similar than expected by chance, since 
they will only depend on the input’s magnitude at each site. As a result, 
D(x, y) will be minimized. The same measure will be maximized between 
community members whose position in the system structure results in 
opposite responses to that input. Under these conditions, distance matrix 
DC describes the community members’ dissimilarity of response to an 
assumed perturbation across sampled sites. 

3.3. Model predictions 

In describing a theoretical community’s dynamics, the community 
matrix consists of the partial derivatives of each community member’s 
population growth rate with respect to each community member’s 
abundance (Berlow et al., 2004; Novak et al., 2016). Given a community 
matrix A, Eq. (1) predicts the difference between the community 
member i’s equilibrium abundance (N*

i ) before and after sustained 
change in parameter h (ph) of community member j’s growth rate 
function (fj). The sign of this difference is defined by the first term of the 
expression, (adj(–A)), as the second term is a positive scalar in stable 
systems and the third is by convention positive (for positive input) or 
negative (for negative input). 

dN*
i = N*

i new − N*
i old = adj( − A) ×

1
det( − A)

×
∂fj

∂ph
dph (1) 

The community matrix can be specified qualitatively (i.e., with en-
tries of + 1, –1 and 0), in which case it is denoted as ◦A (Fig. 1e, f). For a 
system with n variables, the adj(–◦A)= (akl) is a (n × n) matrix with rows 
k = {1⋯n} and columns l = {1⋯n}. Assuming that the modelled system 
is stable, each column vector a = (ako) (o = constant) of the adj(–◦A) 
predicts the direction of the equilibrium response of all system variables 
to a press perturbation that affects the system through a single variable 
(Dambacher et al., 2002) (Fig. 1g). These values represent the net 
number of positive and negative effects that contribute to the direction 
of responses, and have been found to at least moderately correspond 
with quantitatively predicted response strengths (Dambacher et al., 

Fig. 1. Schematic representation of the analytical framework. Left-hand panels illustrate the treatment of community observations. (a) A spatial sampling of a 
community that meets the general assumptions of the methodology results in (b) a table describing community composition at the sampled sites (table C). (c) 
Abundances at each site are divided by the site’s total abundance to standardize for site productivity (table C’). The resulting frequencies of each community member 
are divided by the member’s maximum frequency to standardize for community dominance (table C’’). The output is square root transformed to reduce the 
importance of extremely high values (table Cr). (d) This table describes the community members’ responses to an assumed perturbation. The Euclidean distance of 
community members with respect to site-paired values of table Cr represents their perturbation response dissimilarity (matrix DC). Right-hand panels illustrate the 
derivation of qualitative model predictions. (e) A signed digraph model of the system that includes the sampled community is translated into (f) a qualitatively 
specified community matrix (◦A). (g) Standard analysis of ◦A (Dambacher et al., 2002) generates the adj(–◦A)matrix, each column of which describes the system 
variables’ responses to positive input through a specific variable. (h) Euclidean distances, or dissimilarities, of community members with respect to their predicted 
responses to each input variable (matrices DA) are in turn (i) compared with matrix DC through concordance analysis. A statistically significant level of agreement 
between observations and predictions indicates the respective system variable as a likely gateway for external input into the system. 
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2003). Therefore, they describe not only the direction but, to some de-
gree, also the magnitude of the system’s response to external input 

entering through a single variable. For each pair {w, z} ∈

(
{1⋯n}

2

)

of the 

n system variables, the Euclidean distance D(w, z) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(awo − azo)
2

√

, 
calculated between the respective values of the column vector a, quan-
tifies the predicted dissimilarity of response of two system variables to 
such an external input. Calculations of D(w, z) for all elements of {w, z}
are combined into the distance matrix DA, and the process is repeated for 
all columns of the adj(–◦A) (Fig. 1h). 

3.4. Observations vs. Predictions 

Impacts of environmental variability would ideally be detected by 
sampling biological communities before and after a perturbation. The 
first set of samples would act as controls, minimizing the effects of 
drivers other than the perturbation in the second set of samples. How-
ever, environmental variability can operate over temporal scales that 
are too large to allow observation of non-perturbed communities. 
Furthermore, the use of destructive sampling methods can preclude this 
approach, while the need for sampling often arises only after a pertur-
bation has occurred. As a result, pre-perturbation (pre-input) abun-
dances of community members (N*

i old in Eq. (1)) are often unobserved, 
so we have to generate hypotheses about external input into the system 
based only on observed post-perturbation (post-input) abundances of 
community members (N*

i new in Eq. (1)). 
Qualitative community models predict the signal of external input as 

the perturbation is propagated through the system’s structure. Identi-
fying a single system variable as a perturbation gateway depends on 
separating this signal in N*

i new from systematic differences in site pro-
ductivity, community dominance and other random sources of abun-
dance variation. Transformation of community members’ abundances is 
aimed at reducing this background noise. The resulting distance matrix 
DC is here intended to describe the community members’ observed 
response dissimilarities to an assumed perturbation. Each distance ma-
trix DA describes the community members’ predicted response dissim-
ilarities to perturbation in the form of external input through a single 
variable. The problem of identifying likely input variables then becomes 
one of testing the agreement between observed (DC) and predicted 
dissimilarities of response to input through each system variable (DA). 
To this end, matrix DC is compared in turn with the array of DA matrices, 
each calculated from a column of the adj(–◦A) (Fig. 1i). Agreement be-
tween each pair of matrices can be assessed by a test of congruence 
among distance matrices (CADM), which measures Kendall’s W coeffi-
cient of concordance, and quantifies its significance level through a 
permutation procedure (Legendre and Lapointe, 2004). The null hy-
pothesis is monotonic independence of matrices. The alternative hy-
pothesis is that matrices are congruent, i.e., they have similar rankings 
of community members’ distances. 

4. Calculation 

4.1. System characteristics 

The Rance estuary is situated on the northern coast of Brittany, 
France. A tidal power plant spans its mouth, which opens to the English 
Channel. The operating constraints of the power plant have reduced the 
tidal range in the estuary compared to the open sea. Maximum water 
depth is 17 m at low tide, but the main part of the estuary is 5–6 m deep. 
From downstream to upstream of the estuary, pebbles and coarse sand 
are replaced by medium and fine sand, muddy sand and finally mud. A 
similar sequence is observable from the central channel to the banks. 
Since operation of the power plant started in 1966, natural silting has 
increased due to long periods of slack water, while strong sluice and 

turbine currents have eroded parts of the riverbed (Retière, 1994). 
Macrobenthic community composition approximately stabilized 10 
years after start of the power plant’s operation (Desroy, 1998). Infaunal 
organisms dominate macrobenthos, but proliferation of the slipper 
limpet (Crepidula fornicata) since the 1970′s has enhanced epifaunal 
species assemblages. Fluctuations of environmental conditions are 
rather regular, and macrobenthos is protected from the disruptive effects 
of swells or storms. Extremely low temperatures can however reduce 
benthic abundances (Desroy, 1998). Harmful algal blooms can occur, 
but have been declining in magnitude since the mid-90′s, probably due 
to decreasing phosphate input to the Rance drainage basin (Le Bec et al., 
2016). In the Rance estuary’s relatively stable environment, benthic 
abundances are considered to fluctuate around equilibrium levels in 
response to abiotic drivers, while biotic interactions are expected to 
have stronger influence on benthic community composition than in the 
open sea (Desroy and Retière, 2004). 

4.2. Community observations 

Samples of the upper sediment layers were collected at 113 sites 
across the bed of the Rance estuary in April 1995, prior to spring 
recruitment. Invertebrate organisms larger than 1 mm were counted and 
determined at species level. Species abundances were extrapolated to a 
standard sediment volume across samples (Desroy, 1998). A set of 14 
biological traits (Table 1) described the role of each of the 240 collected 
species in an array of ecological processes, including environmental 
filtering, consumption of algae or detritus, predation, use of space, 
biogenic habitat modification and trade-offs in utilization and allocation 
of resources. These traits allowed application of the emergent group 
hypothesis (Hérault, 2007) for the classification of species into 20 
functional groups (Table 1). The groups were given trait values and were 
found to suffice for the representation of functional diversity in the 
Rance estuary (Alexandridis et al., 2017a). Abundances of the 20 func-
tional groups at the 113 sampled sites (see Supplemental Information of 
Alexandridis et al. (2018)) were split between tables C1 and C2, sepa-
rating the 12 epifaunal from the 9 infaunal groups, respectively (one 
group was included in both matrices, because of the high mobility and 
variable substrate preference of its member species). These tables were 
standardized and transformed into tables Cr

1 and Cr
2, from which 

Euclidean distance matrices DC1 and DC2 were calculated, respectively. 
Mantel correlograms quantified spatial correlation in the multivar-

iate domain of functional group abundances, in order to investigate the 
spatial structure of community observations, and assess violations of 
general assumptions. Correlograms are based on calculation of the 
normalized Mantel statistic between pairs of site dissimilarity matrices. 
One matrix in each pair quantifies differences in multivariate commu-
nity composition, and the other is derived by attributing the value 0 to 
pairs of sites that belong to the same distance class and the value 1 to all 
other pairs of sites. The process is repeated for each distance class and 
values of the Mantel statistic are tested by permutations. Mantel corre-
lograms were derived from the square root of Wisconsin-transformed 
tables C1 and C2. This is the same procedure producing tables Cr

1 and 
Cr

2, except that division by row maxima precedes division by column 
totals, as sites are compared instead of community members. The dataset 
was detrended, and the permutation test results were Holm-corrected for 
multiple testing. The number of distance classes was calculated based on 
Sturge’s rule, and the correlograms were restricted to distances 
including all sites (Borcard et al., 2011). 

4.3. Model predictions 

General rules of biotic interaction were formulated with the help of 
ecological theory and expert knowledge (Alexandridis et al., 2017b), 
towards constructing two signed-directed graph, or signed digraph, 
models (Fig. 2). Model variables included the previously built functional 
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groups and two resource variables representing food and space. In-
teractions between variables (positive or negative direct effects) were 
defined based on trait values of the functional groups (Alexandridis 
et al., 2017b). Model 1 was built for epifaunal organisms that prefer rock 
or gravel substrates, and model 2 for infaunal or interface-positioned 
organisms preferring finer sediment substrates. Matrices ◦A1 and ◦A2 
are an equivalent representation of models 1 and 2, respectively 
(Dambacher et al., 2002). Model analysis revealed a moderate to high 
potential for stability (Alexandridis et al., 2017b). Each column of the 
adj(–◦A1) and adj(–◦A2) describes the predicted responses of functional 
groups to input through a single model variable. As there are no field 
observations of available food and space resources, predicted responses 
of these variables were omitted. Should these variables respond strongly 
to perturbation, their omission could reduce the detecting power of the 
analysis. The omission, however, of variables with different units also 
removes the need for additional standardization of system observations. 
Euclidean distances were calculated within each column of the adj(–◦A1) 
and adj(–◦A2), producing two sets of distance matrices DA1 and DA2, 
respectively. 

4.4. Observations vs. Predictions 

Distance matrix DC1 (DC2) was in turn compared with each of the DA1 
(DA2) distance matrices, corresponding to each potential input variable. 
Agreement between each pair of distance matrices was quantified by 
Kendall’s W coefficient of concordance. The null hypothesis of incon-
gruence between distance matrices was tested by calculating W’s sig-
nificance level through a permutation procedure with 9999 
permutations and Holm correction for multiple testing (Campbell et al., 
2009). 

5. Results 

Mantel correlograms of epifaunal (Fig. 3a) and infaunal (Fig. 3b) 
community observations show community samples that are more similar 
than expected by chance at approximately 1 km and more dissimilar at 
approximately 3 km of distance. Patterns of compositional similarity and 
dissimilarity also appear at larger distances among the sampled sites, but 
these are weaker and not statistically significant. 

Permutation tests of Kendall’s W coefficient of concordance (Table 2) 
show almost all pairs of distance matrices to be statistically independent 
(i.e., to convey distinct information about observed and predicted 
response dissimilarities of functional groups to external input through 
the respective variables). These system variables were therefore 
considered as less likely to be gateways for external input into the sys-
tem. Only two comparisons resulted in statistically significant W values, 
one each for the epifaunal and infaunal communities. In the epifaunal 
community, predator/scavenger group C3, represented by the errant 
polychaete Nephtys hombergii (Table 1), was thus identified as a likely 
gateway for external input. In the infaunal community, input was shown 
to likely enter through algae- or detritus-feeding group H7, represented 
by the sedentary polychaete Melinna palmata (Table 1). Input through 
groups C3 and H7 corresponds to the highest values of W for each 
benthic community and overall (Table 2). W values vary between 0.76 
(calculated for group C3) and 0.31, both observed in the epifaunal 
community. W values in the infaunal community vary between 0.67 
(calculated for group H7) and 0.43. Greater range of W values in the 
epifaunal community shows clearer distinction between stronger and 
weaker agreements of observed perturbation response dissimilarities 
with predicted perturbation response dissimilarities. This is an indica-
tion of a stronger perturbation signal through one epifaunal system 
variable, compared to the infaunal community. 

6. Discussion 

Comparison of model predictions with community observations Ta
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detected only two statistically significant levels of agreement regarding 
functional groups’ response dissimilarities, one for each benthic com-
munity (Table 2). This finding supports the expectation of input entering 
each system through primarily one of its variables. However, results 
should only be considered as an indicator of the relative likelihood of 
each variable to be a gateway for external input, as the sensitivity of the 
analysis and its robustness to violations of assumptions have not been 
assessed. Before the framework can be thus validated, we suggest careful 
evaluation of the general assumptions. Our conservative choice of as-
sumptions means that they may often not be perfectly valid. Therefore, 
the objective should not simply be to assess whether assumptions are 
violated, but rather whether detected signals are the result of such 
assumption violations, instead of environmental variability. 

Environmental variability, viewed as external input into benthic 
communities, can take many forms in the Rance estuary. Substrate 
characteristics primarily differentiate the spatial distribution of 
epifaunal versus infaunal macrobenthos (Retière, 1994). The effect of 
substrate on macrobenthic organisms has been previously detected with 
the use of multivariate statistical techniques (Desroy, 1998); we largely 
removed this effect on epifaunal and infaunal relative frequencies, by 
separately comparing observations and predictions for the two com-
munities (Alexandridis et al., 2017b). Tidal emersion, along with asso-
ciated levels of water salinity, is a further potential source of 
environmental variability (Desroy and Retière, 2004). Exploratory 
models of community dynamics have identified tidal zonation as the 
driver of spatial dependence in community composition in the Rance 
estuary (Alexandridis et al., 2018), resulting in spatial correlations 
similar to the small-scale patterns detected here in correlograms of 
epifaunal and infaunal communities. 

In addition to spatial drivers, environmental variability can operate 
in time, but these effects are much more difficult to detect in snapshot 
observations of a system. The extremely cold winter of 1993-’94 has 
been hypothesized to affect macrobenthos in the Rance estuary (Desroy 
and Retière, 2004). The impact of this winter has been recorded in 
similar systems, including on the representative species of group C3, the 
polychaete Nephtys hombergii, in the Dutch Wadden Sea (Beukema et al., 
2000). This long-term study detects perturbation impacts in spite of 
background random variation, as well as their cascading through a much 
simpler trophic chain of 3 species. Cold winters are shown to intervene 
on average once every 3 or 4 years, while the system appears to recover 
rapidly. These observations support the assumptions of adequately small 

random pre-perturbation abundance variability and persistence at, or 
near, a state of equilibrium under the influence of press perturbation 
(Donohue et al., 2016) in a system that is similar to the Rance estuary. 

Characteristics of the two functional groups that correspond to the 
highest agreement levels support their role as gateways for suspected 
environmental variability into the system. Both groups have been 
assigned stenothermal and stenohaline trait values, meaning that they 
cannot tolerate single-digit temperatures or salinities that differ greatly 
from those of the open sea (Alexandridis et al., 2017a). The concomitant 
occurrence of low temperatures and tidal exposure in space and time 
probably contributed to these groups’ identification as likely gateways 
for environmental variability into their communities. However, an 
apparently stronger signal of external input in the epifaunal community, 
where spatial correlation patterns are weaker, suggests a stronger 
contribution of the previous winter. Other groups may have the same 
trait values, but the two identified as likely gateways for press pertur-
bation are among the most abundant (C3 is the 6th and H7 the 2nd most 
abundant group overall), making their impact on community dynamics 
stronger compared to similarly affected organisms (Grime, 1998). Both 
groups are also represented by polychaetes, which have been previously 
identified as efficient indicators of adverse environmental conditions 
(Giangrande et al., 2005). 

Our framework employs relatively easy-to-build qualitative mathe-
matical models of communities to increase the mechanistic under-
standing that can be derived from analysis of commonly collected, 
snapshot data of community composition. Eq. (1) only requires that the 
strength of any individual input is sufficiently strong to produce an 
observable impact on the system. As observed distances of community 
members are calculated from site-paired values, no distinction is made 
based on the sign of the input, which can be the same or opposite across 
sites. The expectation for a single such input can be relaxed to consider 
whether one or more perturbations are acting on the system through 
multiple variables. The community’s response to combined input 
through more variables can be explored by adding or subtracting the 
respective columns of the adjoint of the negative community matrix 
(Dambacher et al., 2002). If potential perturbations are known to have a 
direct impact of the same or opposite direction on several variables, 
applying such an adjustment to these variables entails no additional risk 
of spurious agreement between predictions and observations. In all 
other cases, this risk should also be considered (Puccia and Levins, 
1985). For instance, Coll et al. (2019) could not exclude the explanatory 

Fig. 2. Signed digraph models of processes that shape (a) the epifaunal and (b) the infaunal benthic communities. Nodes represent functional groups or the basic 
resources of food and space. Links ending in arrows and filled circles represent positive and negative direct effects, respectively; see Alexandridis et al. (2017b) for 
details. Black nodes indicate variables identified in Section 5 as likely gateways for external input into the system. 
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potential of alternative combinations of input variables when comparing 
observed system changes with the predictions of qualitative mathe-
matical models. They employed their knowledge of the system and the 
principle of parsimony to identify the most likely source of input. 

Assessing the framework’s assumptions in the Rance estuary is a 
challenging, but necessary task in lack of formal sensitivity and 
robustness analysis. We expect such analysis to allow targeted relaxation 
of assumptions, as we were rather conservative in their definition. Ob-
servations of relatively stable composition of benthic communities in the 
Rance estuary support the assumption of a system near equilibrium 
(Desroy, 1998). Assumptions of a single gateway variable and 
adequately small, random pre-perturbation abundance variability are 
more difficult to assess. Pre-perturbation abundance variability can 
exceed acceptable levels because of internal system dynamics, such as 
alternative stable states, or external input forcing organisms in different 
directions. No such dynamics are predicted by our qualitative models, or 

have been observed in the Rance estuary (Alexandridis et al., 2017b). 
The possibility of external sources of input to act in opposite directions 
cannot be excluded, but no such known effect appears to be strong 
enough to mask expected perturbation signals in our results. The 
assumption of independent community functioning at the sampled sites 
can be violated by spatial autocorrelation, due to the processes of local 
dispersal and biogenic habitat modification, but such patterns appear at 
site distances of around 7 km (Alexandridis et al., 2018), further apart 
than any significant patterns observed here. Spatial segregation of 
epifaunal and infaunal communities is the major component of such 
large-scale patterns. Consequently, our separate analysis of the two 
communities has probably reduced the respective processes’ signal 
below levels that could affect the results. 

Consequences of violated assumptions can be assessed through 
validation of the analytical framework, combined with sensitivity and 
robustness analysis. This task requires application of the framework on 

Fig. 3. Correlograms of the Mantel statistic at different distance classes for (a) the epifaunal and (b) the infaunal benthic community samples. Filled squares indicate 
statistically significant values at 0.05 level. 
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biological communities affected by known environmental drivers that 
vary in space and time. The ability of the framework to detect these 
drivers can then be assessed, along with the framework’s sensitivity to 
diverse environmental drivers and robustness to different violations of 
assumptions. These analyses can be applied to systems simulated using 
mechanistic community models (e.g., Alexandridis et al., 2018), along 
with a systematic assessment of different community structures (similar 
to Dambacher et al., 2003; Hosack et al., 2008; Melbourne-Thomas 
et al., 2012). Alternatively, the framework can be applied to real- 
world systems with diverse characteristics that have been surveyed 
repeatedly (e.g., Dauvin, 2000; Boyé et al., 2019), offering both detailed 
data and good understanding of community functioning. 

Ultimately, evaluation of this framework and exploitation of its full 
potential can be achieved through its integration with other techniques 
aimed at the analysis of spatial and temporal community observations. 
For instance, variation partitioning using canonical ordination tech-
niques (Borcard et al., 1992) separates spatial variation in community 
composition into independent components: pure spatial, pure environ-
mental, spatial component of environmental influence and undeter-
mined. Explicit assignment of observed variation to direct 
environmental impacts will facilitate assessment of their influence on 
general assumptions and separation of such impacts from the signal of 
environmental variability propagating through system structure. Com-
parison of qualitative predictions with community observations, as 
illustrated in this study, can thus be the first step towards incorporating 
complex networks of biotic interactions into ecological variation parti-
tioning. The resulting combined investigation of community structure 
and environmental variability will increase the ability of researchers 
across ecological systems to explain typically large undetermined vari-
ation in limited community observations. Enriching assessments of 
environmental impacts with complex feedbacks shaped by diverse biotic 
interactions, will allow for more comprehensive and, therefore, robust 
identification and prediction of community responses to perturbation. 
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