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1.  Introduction
Photosynthesis is one of the central biological processes on Earth. It is the main source of organic matter 
to ecosystems and modulates cycles of carbon, nutrients and water, thereby influencing the global climate. 
Therefore, accurate quantification of photosynthesis is critical for understanding ecosystem functions and 
predicting the feedbacks between the biosphere and climate.

Two fluxes relevant to photosynthesis are gross primary production (GPP) and net primary production 
(NPP). In the literature, GPP refers to the total amount of oxygen production associated with the splitting 
of water at photosystem II (PSII; Juranek & Quay, 2013; Quay et al., 2010) and excluding autotrophic res-
piration (Chavez et al., 2011; Sigman and Hain, 2012). NPP, defined as GPP minus the carbon lost by auto-
trophic respiration (AR), represents the organic carbon available for heterotrophic activity, accumulation, 
and export (Equation 1).

�

(1)

In ocean ecosystems, primary production can be estimated by various approaches generally classified into 
two types: incubation-based and geochemical (incubation-independent) approaches. The former approach-
es mainly include the 14C-inorganic carbon incorporation methods (Steemann Nielsen, 1952), oxygen evo-
lution between light-dark bottles (Serret et al., 1999), the H2

18O-labeling approach (M. Bender et al., 1987) 
and nutrient uptake experiments (Dugdale & Goering, 1967). The incubation-independent approaches are 
generally based on geochemical tracers of productivity, including the triple isotopes of dissolved oxygen 
(Luz & Barkan, 2000), analysis of oxygen records from moorings and gliders (Nicholson 2008, Nicholson 
et al., 2014) and electron transport measurements by active fluorescence (Kolber et al., 1998). Among the 
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Abstract  Approximately half of global primary production occurs in the ocean. While the large-scale 
variability in net primary production (NPP) has been extensively studied, ocean gross primary production 
(GPP) has thus far received less attention. In this study, we derived two satellite-based GPP models by 
training machine learning algorithms (Random Forest) with light-dark bottle incubations (GPPLD) and the 
triple isotopes of dissolved oxygen (GPP17Δ). The two algorithms predict global GPPs of 9.2 ± 1.3 × 1015 
and 15.1 ± 1.05 × 1015 mol O2 yr−1 for GPPLD and GPP17Δ, respectively. The projected GPP distributions 
agree with our understanding of the mechanisms regulating primary production. Global GPP17Δ was 
higher than GPPLD by an average factor of 1.6 which varied meridionally. The discrepancy between 
GPP17Δ and GPPLD simulations can be partly explained by the known biases of each methodology. After 
accounting for some of these biases, the GPP17Δ and GPPLD converge to 9.5 ∼ 12.6 × 1015 mol O2 yr−1, 
equivalent to 103 ∼ 150 Pg C yr−1. Our results suggest that global oceanic GPP is 1.5–2.2 fold larger than 
oceanic NPP and comparable to GPP on land.
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approaches, the 14C-inorganic carbon incorporation technique has traditionally been the most commonly 
used method and has generated a large global dataset over the past 60 years (Chavez et al., 2011; Peter-
son, 1980). The 14C-based approach measures GPP, NPP or net community production depending, among 
other things, on the incubation duration (Dring et al., 1982; Marra, 2009). Additionally, the dissolved or-
ganic carbon excreted by phytoplankton or by zooplankton (Carlson & Hansell, 2015; Laws et al., 2000; 
Myklestad,  2000; Teira et  al.,  2001) is traditionally not accounted for when measuring 14C on GF/F fil-
ters (size fraction of 0.7 um or larger). In contrast, the oxygen-based methods generally account for both 
particulate and dissolved organic carbon production, thereby providing estimates closer to GPP (González 
et al., 2008). In light-dark bottle incubations, GPP is estimated from the sum of O2 evolution in the dark (i.e., 
community respiration) and in the light (i.e., net community production). In the H2

18O-labeling approach, 
a negligible fraction of the photosynthetically-evolved 18O2 is recycled because it is diluted in the large 
dissolved O2 pool (M. Bender et al., 1987; Juranek & Quay, 2005). In the triple isotopes of dissolved oxygen 
approach, combining natural 18δ and 17δ signatures removes the mass dependent fractionation associated 
with respiration to calculate the relative contribution of photosynthetic and atmospheric end-members to 
the isotopic signature of O2 at the ocean surface (Lämmerzahl et al., 2002; Luz & Barkan, 2000).

Satellite-based remote sensing and biogeochemical models have broadened our understanding of the 
temporal and spatial variability in oceanic primary production (Behrenfeld & Falkowski, 1997; Friedrichs 
et al., 2009; Letscher & Moore, 2017; Westberry et al., 2008). Among these, VPGM and CbPM are two of 
the most widely used satellite-based models. These two models are semi-mechanistic and semi-empirical, 
hybrid in nature between mechanistic and statistical models. For example, the three light dependent terms 
in VGPM were parameterized using the MARMAP Dataset (Behrenfeld & Falkowski, 1997). 97% of meas-
urements in this dataset were based on 14C incubations which are longer than 6h. The most critical photo-
synthesis parameters (Pb

opt) was parameterized with in situ measurements of sea surface temperature and 
field 14C observation (Behrenfeld & Falkowski, 1997). Although the CbPM model didn't directly integrate 
14C-based measurements in the model construction, comparisons with field observations at two time-se-
ries stations (HOT and BATS) suggest the model is consistent with 24h 14C-based productivity estimates 
(Westberry et al., 2008). Therefore, the global map derived from these two algorithms can be viewed as NPP. 
These models estimate a global marine NPP of 44–67 Pg C yr−1, similar to that on land (60 Pg C yr−1; Field 
et al., 1998; Zhao & Running, 2010). Terrestrial GPP and NPP have been well studied with the former being 
on the order of 112–148 Pg C yr−1 (Anav et al., 2015; Beer et al., 2010; Waring et al., 1998). In contrast, stud-
ies of marine GPP are generally limited to local and regional scales (Quay et al., 2010; Serret et al., 2015). 
Recently, Carvalho et al. (2017) inferred a range of global oceanic GPP between 70 and 145 Pg C yr−1 based 
on global NPP and an empirically derived fraction of autotrophic respiration loss. The lack of independent 
estimates of global marine GPP limits our understanding of marine primary production, the metabolic de-
mands of autotrophs and their role in the global carbon cycle.

Strategies to model the broad distribution of oceanic properties can be classified into two types. The first 
is process based, relying on mechanistic or biogeochemical models (Moore et al., 2013; Siegel et al., 2014). 
Such an approach can provide unique insight into the underlying mechanisms. However, accurate rep-
resentation (and/or parameterization) of complex and sometimes poorly understood processes is a chal-
lenge. The second strategy is data-driven. While such an approach does not directly provide insight into 
the mechanisms, it can be used to model the distribution of a property and in some cases provide some 
quantitative intuition into the underlying processes through statistical inferences. Among these methods, 
machine learning approaches have gained popularity, being applied to estimate the global distribution of 
various ocean properties such as zooplankton biomass (Mazzocchi et al., 2014), seafloor organic carbon (T. 
R. Lee et al., 2019), net community production (Li & Cassar, 2016) and N2 fixation (Tang et al., 2019).

In this study, we present a first attempt at estimating global GPP by training machine learning algorithms 
with two meta-analyzed datasets. The first dataset is based on O2 evolution during light and dark bottle 
incubations (GPPLD; Serret et al., 1999). The second is based on in situ estimates of the triple isotopes of 
dissolved oxygen (GPP17Δ; Luz & Barkan, 2000). Taking advantage of machine learning techniques, we con-
structed data-driven algorithms based on the two datasets to estimate GPP for the global ocean. This novel 
approach advances our understanding of marine carbon cycling and can be used to validate process-based 
models.
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2.  Methods
2.1.  Meta-Analysis of Global GPP

2.1.1.  GPP Derived from the Diel Oxygen Changes in Light-Dark Bottle Incubations

To train and validate our machine learning algorithms, we compiled a global dataset of GPP derived from 
light-dark bottle incubations (Figure 1, Table S1). The light-dark bottle method has been used to assess 
primary production for nearly a century (Gaarder & Gran,  1927). GPP is estimated from the photosyn-
thetic evolution of oxygen in the light incubation with a correction for respiratory O2 consumption in the 
dark incubation (typically 24  h; Serret et  al.,  1999). The method relies on the assumption that daytime 
and nighttime respiration are equivalent. In our study, volumetric primary production observations were 
depth-integrated over the euphotic zone using the trapezoidal integration method. We did not incorporate 
GPP estimates derived from H2

18O-label incubations (M. Bender et al., 1987) into our training dataset as dis-
crepancies between the two incubation approaches might introduce uncertainties in the predictions. GPP 
estimates derived from H2

18O-label are also too sparse to reliably train the algorithms.

2.1.2.  GPP Derived from the Triple Isotopes of Dissolved Oxygen

We also compiled a dataset of GPP estimates based on the in situ measurement of the triple isotopes of 
dissolved oxygen (18δ, 17 δ and 16 δ, Table S1). This approach is increasingly being used to constrain marine 
productivity (Juranek & Quay, 2013; Luz & Barkan, 2000). Oceanic oxygen originates from atmospheric 
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Figure 1.  The locations and distributions of gross primary production (GPP) estimates derived from (a) oxygen 
evolution during light-dark bottle incubations (GPPLD) (b) triple isotopes of dissolved oxygen (GPP17Δ). The bottom 
histograms show the frequency distributions of the sampling month and GPP estimates.
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gas exchange and photosynthetic evolution. Atmosphere-derived dissolved oxygen has a known mass in-
dependent depletion of 17δ relative to 18δ resulting from a stratospheric reaction (Lämmerzahl et al., 2002; 
Luz & Barkan, 2000), whereas photosynthetic O2 derived from seawater has high 17δ, resulting in excess 17δ 
relative to the atmospherically derived oxygen. Respiration alters the 18δ and 17δ signals in a known mass-de-
pendent manner. Thus, the observed mass-independent anomaly in the 18δ and 17 δ isotopic ratios observed 
in the surface ocean O2 reflects the relative proportion of O2 derived from photosynthesis versus air-sea 
gas exchange. Assuming steady-state and parameterizing the gas exchange rate, the integrated GPP within 
the mixed-layer can be approximated using the “dual delta” approach recommended by Kaiser (2011) and 
Prokopenko et al. (2011):
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The subscripts dis, eq and p stand for dissolved, equilibrium and photosynthetic, respectively. We assigned 
0.411‰ for 17δOeq, −0.779‰ for 18δOeq, and −11.902‰ for 17δOp (Kaiser, 2011; Prokopenko et al., 2011). 
λ is the empirically derived slope for mass-dependent respiration fractionation equal to 0.518 (Helman 
et al., 2005; Luz & Barkan, 2005). Oeq is the oxygen concentration at saturation calculated with seawater 

temperature and salinity (Garcia & Gordon, 1992). 2Ok  represents the air-sea gas exchange velocity for ox-
ygen. We calculated 2Ok  using QSCAT/NCEP blended wind speeds (Colorado Research Associates/North-
west Research Associates/Inc., 2001), monthly climatological mixed layer depth (MLD; Hosoda et al., 2010) 
and the gas exchange parameterization of Wanninkhof (2014). A weighted technique (Reuer et al., 2007, 
Teeter et al., 2018) is adopted to account for the effect of wind speed history (60 days before the sampling 

days) on 2Ok  (Supporting Information). Our GPP17Δ estimates carry both random and systemic errors. The 
assumptions of steady-state and negligible role of lateral advection and vertical entrainment are violated 
under some conditions (Hamme et al., 2012; Nicholson et al., 2014). There are also uncertainties introduced 
with errors in end-members (Kaiser, 2011) and the mass dependent fractionation associated with respira-
tory O2 consumption (Ash et al., 2020). A recent experiment conducted in freshwater challenges the em-
pirical respiratory isotopic fractionation of 0.518, suggesting an upward revision to 0.522 (Ash et al., 2020). 
These results warrant further study in marine environments. The wind speed parameterization of the gas 
exchange velocity also introduces errors in our estimates of approximately ±30% (M. L. Bender et al., 2011; 
Emerson et al., 2019). As there are no absolute GPP standards, the only approach is to compare independent 
methods (M. Bender et al., 1999; Quay et al., 2010; Regaudie-de-Gioux et al., 2014).

2.2.  Matching In Situ Measurements to Environmental Factors

We matched the in situ observations of GPP to contemporaneous satellite predictors according to the sam-
pling location and date. Detailed information is provided in Table 1. In cases where ancillary data were not 
available, we used the corresponding monthly climatology of the missing properties. Predictors included 
in the training of the algorithms are expected to directly or indirectly impact or reflect primary production. 
For instance, temperature, nutrients and light availability have been well recognized as the main forcings 
driving primary production patterns at the global scale (Chavez et al., 2011). POC and Chl-a can be used as 
proxies for biomass, with the caveats that POC encompasses nonliving organic matter and that the C:Chl-a 
ratio varies as a function of taxa and growth conditions (Baker & Smith, 1982). The vertical light attenuation 
coefficient (Kd) can serve as a proxy for light availability as well as biomass in the water column. We also 
included inherent optical properties (Rrs) as they provide some information about plankton community 
characteristics (Li et al., 2013). Wind speed influences the delivery of nutrients to the surface through mix-
ing. It also impacts GPP17Δ by changing the mixed-layer ventilation and the residence time of O2 at the ocean 
surface, thereby changing the integration timescale of the geochemical tracer. In light of our limited under-
standing of the mechanisms and properties regulating primary production, we let the model select the best 
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predictors. We did not include VGPM and CbPM NPP as predictors into the machine learning algorithms in 
order to obtain GPP independently of other primary production models. However, similar GPP simulations 
were obtained when we included them in the statistical algorithms (Figure 5 and Figure S1). This is likely 
because NPP derived using the VGPM and CbPM models is a function of a subset of the variables we input 
into our statistical algorithms (see Table 1; Westberry et al., 2008). It may also suggest a similar underlying 
mechanism driving GPP and NPP, which is encouraging for the development of process-based GPP models 
based on the readily available satellite parameters.

2.3.  Machine-Learning Algorithms

2.3.1.  Data Processing and Selection for the Training and Validation Dataset

First, we removed data from coastal areas with bathymetry shallower than 200 m, given the difference in 
optical properties of Case II waters (Morel & Prieur, 1977). To limit spatial autocorrelation between obser-
vations (Tobler, 1970), the sampling data were binned into monthly 1 × 1° grids, as in Li and Cassar (2016) 
and Tang et al. (2019). The gridded data were natural log-transformed to satisfy the normal distribution be-
fore analysis. 392 GPPLD and 922 GPP17Δ gridded data points remained after these transformations. The two 
approaches (incubation and incubation-independent) each have their own assumptions and biases. In the 
absence of a benchmark method to estimate primary production (Regaudie-de-Gioux et al., 2014; Robinson 
et al., 2009), we derived independent algorithms for each approach and compared predictions.

2.3.2.  Statistical Algorithms Based on Machine Learning and Algorithm Validation

A Pearson correlation analysis was first applied to examine the linear relationships between observed rates 
and individual predictors. After this preliminary analysis, the machine learning approach of Random Forest 
(RF) was employed to estimate global GPP. RF is an ensemble method comprised of a number of explana-
tory variables to predict the target output. Based on a bootstrap sampling and random selection, RF selects 
at each node the optimal variable to split the dataset to achieve the greatest reduction in “out-of-bag” mean 
square error between observation and model predictions (Liaw & Wiener, 2002). This process is repeated 
until some criteria are reached. RF grows a large number of decision trees and each tree mimics the struc-
ture of a hierarchical branching system. RF is not an entirely “black-box” technique and the importance of 
the predictors during the algorithm's construction can be used to infer some underlying mechanisms con-
straining GPP. More detailed information of RF can be found in Cutler et al. (2007). RF was implemented 
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Parameter
Spatial 

resolution Temporal resolution Resource Reference

Rrs (λ) -

SST (°C) -

POC (mg C m−3) Stramski et al. (1999)

Chl-a (mg m−3) 0.083° 8 days Ocean color O'Reilly et al. (1998)

PAR (Einstein m−2 d−1) -

Euphotic zone (m) Z. Lee et al. (2002)

Kd (m−1) Z. Lee (2005)

Wind speed (m s−1) 2° Daily NCEP reanalysis Kalnay et al. (1996)

MLD (m) 2° 3 h Hycom Chassignet et al. (2007)

Surface NO3
‒ (umol L−1)

Surface PO4
3‒ (umol L−1) 1° Monthly climatology World Ocean Atlas 2013 Garcia et al. (2013)

Surface Salinity (umol L−1)

Rrs (λ): remote sensing reflectance above water surface at the spectral bands of 412, 442, 490, 510, 555 and 670 nm.
Abbreviations: SST: sea surface temperature; POC: particulate organic carbon; Chl-a: chlorophyll-a concentration; 
PAR: photosynthetically available radiation; Kd: light attenuation coefficient; MLD: depth of mixed-layer.

Table 1 
Environmental properties used as predictors
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using the function “randomForest” in the R package “randomForest” (https://cran.r-project.org/web/pack-
ages/randomForest/randomForest.pdf). The number of decision trees and minimum leaf size in our study 
were set at the default 500 and 3, respectively.

Independent RF analyses were conducted using GPPLD and GPP17Δ in the training and validation dataset. In 
each case, 70% of the dataset was randomly selected to train the algorithm and the remaining 30% was used 
for validation. To evaluate the fitness and prediction accuracy of the algorithms, we calculated the regres-
sion coefficient (R2), and root mean standard error for pairwise real observations and model predictions of 
the test datasets. After the algorithm construction, the derived models were used to predict global primary 
production with a 2 × 2° resolution. The model output is daily GPP. The annual mean GPP presented in 
our study is calculated as the sum of daily rates over the annual cycle divided by the number of days (365) 
in a year. To test the sensitivity of our estimates to the dataset selected for training, we adopted a bootstrap 
approach, by repeatedly reconstructing the training dataset 500 times. For each repetition, we conducted 
the same analyses as described above with the reconstructed dataset to derive the global pattern of primary 
production, from which we calculated the mean and standard deviation for results from 500 predictions. 
We generally derived similar global predictions for each repetition with a standard deviation significantly 
smaller than the mean (Figure S2), suggesting that our statistical algorithms are insensitive to the change 
in the training dataset.

2.3.3.  Integrating the Mixed-Layer GPP17Δ Over the Euphotic Depth

The triple isotopes of dissolved oxygen approach estimates GPP in the mixed layer. GPP generally decreases 
with depth as a function of light availability. When the mixed-layer is deeper that the euphotic zone, the 
mixed-layer GPP should reflect GPP integrated over the euphotic depth. Conversely, when a mixed-layer is 
shallower than the euphotic depth, the mixed-layer GPP17Δ underestimates the euphotic-depth GPP because 
it doesn't account for primary production occurring deeper in the water column where light is still availa-
ble. This is particularly significant in subtropical waters where the euphotic zone often extends beyond the 
mixed layer (Figure S4). In regions where the mixed-layer is shallower than the euphotic depth, we scaled 
our mixed-layer GPP17Δ to the euphotic depth using empirical relationships at different latitudes between 
mixed-layer GPP and euphotic-zone GPP derived from the light-dark bottle incubation (Figure S5). The 
model yields a global mixed-layer integrated GPP17Δ of 12.9 × 1015 mol O2 yr−1, and 15.1 × 1015 mol O2 yr−1 
when integrated over the euphotic zone. For reference, the global pattern of mixed-layer integrated GPP17Δ 
and GPPLD are also presented in Figure s6.

2.4.  Correction for Dissolved Organic Carbon Production in VGPM and CbPM Model 
Predictions

We compared our GPP predictions to two commonly used NPP models: CbPM and VGPM (Behrenfeld & 
Falkowski, 1997; Westberry et al., 2008). The VGPM model is based on chlorophyll-a (Chl-a), attributing 
changes in Chl-a to a change in biomass (Behrenfeld & Falkowski, 1997). The CbPM model is a backscatter-
ing-based estimate of phytoplankton carbon biomass from which primary production is derived (Westberry 
et al., 2008). As we described above, the model simulations derived from VGPM and CbPM reflect 14C-based 
measurements, which commonly only account for POC produced NPP (NPPPOC; i.e., the 14C data is based on 
filters), and therefore ignores the 14C in the filtrate (i.e., DO14 C). To account for DOC production, we used 
the following equation suggested by Regaudie-de-Gioux et al. (2014) to derive NPP including particulate 
and dissolved phases (NPPTOC):

      2
TOC POCLogNPP 0.67 LogNPP 2.25 0.71, 0.001, 107R p n� (3)

This empirical relationship was derived from a global dataset of concurrent measurements of particulate or-
ganic carbon and total organic carbon production by 14C-based incorporation approach (Regaudie-de-Gioux 
et al., 2014). The DOC production of 10%–60 % of NPPTOC (Figure S7) is in a good agreement with the range 
observed in previous studies (González et al., 2008; Teira et al., 2001).
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2.5.  GPP Uncertainties Estimates

A Monte Carlo approach was used to propagate uncertainties in the global GPP estimates (Table 2). Ran-
domly distributed errors were generated and 500 iterations were run to compute the standard deviation 
of GPP simulations.To attribute uncertainties, we altered the corresponding model settings and fixed the 
other model conditions as described in Sections 2.3 and 2.4. We assigned random errors of ±17% in GPPLD 
measurements, which represents the median coefficient of variation of the light/dark incubation oxygen 
measurements reported in the global dataset. For GPP17Δ, we assigned ±30% random errors to account for 
the uncertainty in gas exchange velocities (Bender et al., 2011; Emerson et al., 2019). To evaluate errors 
associated with resolution scales, we compared global GPP simulations based on a suite of temporal (daily, 
monthly and monthly climatology) and spatial averaging (i.e., not binning data, and varying the grids from 
0.25° to 1°). To assess the effect of different combinations of predictors on GPP estimates, we maintained the 
input of top-performing predictors for the model construction but randomly included or excluded other less 
important predictors. We restricted our analysis to the RF method with the top performing predictors Chl-a, 
POC, Rrs (412) and PAR for GPPLD, and SST, Chl-a, PO4

3− and NO3
− for GPP17Δ. Spatiotemporal mismatches 

between the GPP observations and environmental predictors also introduce errors in our estimates. This is 
likely most acute when we replace missing daily properties by the corresponding monthly climatological 
values. We compared the difference of global GPP simulations based on the training dataset with predictors 
matching to 8-day averaged and monthly climatology. To assess the uncertainty associated with selecting a 
training dataset, we repeatedly reconstructed the training dataset 500 times and then calculated the stand-
ard deviation of derived GPP estimates. We also applied three commonly used machine learning approach-
es (RF, support vector regression and neural network) to construct the model with the aim of evaluating 
the effect of the machine learning tool on GPP estimates. Finally, we incorporated all the error sources 
mentioned above and calculated the propagated uncertainties in the global GPP estimates.

2.6.  Caveats and Limitations

There are other sources of uncertainties in our estimates not accounted for by our analyses, including the 
limited number of field observations, and methodological biases associated with each type of GPP measure-
ments. The impact of such errors on our global marine GPP estimates is difficult to quantify because they can 
vary regionally and temporally. For example, few GPPLD observations were collected in the Southern Ocean 
and Pacific Ocean. A large fraction of GPP17Δ were collected in the Pacific and Atlantic Oceans (Figure 1). 
While the factors regulating primary production differ between biomes and regions (Longhurst, 1995; Val-
lina et al., 2014), the machine learning approach relies on statistical relationships in the properties domain. 
Should the training dataset capture the range in relationships between predictors and the predictants, the 
machine learning model is expected to perform well. We tested the model's predictions by cross-validation 
using a bootstrap approach, repeatedly reconstructing the training dataset 500 times, to test the sensitivity 
of our estimates to the training dataset. The small standard deviation of GPP relative to the average from 
500 repetitions (Figure S2 and Table 2) implies that our algorithms trained from this global dataset generally 
captured the factors driving the large broad-scale variability in GPP, and performed better than traditional 
multiple linear regression (R2 = 0.31 for GPP17Δ dataset and R2 = 0.40 for the GPPLD dataset). However, the 
machine learning algorithm may fail to represent the functional relation between the predictors and GPP in 
undersampled biomes. In these regions, our predictions should be interpreted with caution. For example, 
in the Southern Ocean, a region characterized by high macronutrients and low biomass in large part due 
to iron limitation, our model predicts relatively high GPPLD. These biases are probably due to the lack of 
Southern Ocean GPPLD observations in our training dataset, resulting in an inability of the machine learn-
ing algorithm to accurately capture the relationship between nutrients and primary production under iron 
limitation. Predictions should improve as more observations from a broad range of biomes are included in 
the training dataset. Additionally, the discrepancy in global GPP simulations between the two measurement 
approaches (Figures 5 and 6a) highlights the potential biases of each methodology (see the discussion in 
Section 4.1). In future studies, combining our purely statistical model with earth system models (e.g., to 
account for vertical mixing or the lack of steady-state in the geochemical tracer) and/or mechanistic models 
(e.g., biophysical representation of the light impact on mixed-layer integrated GPP) may help reduce uncer-
tainties in our projections. In the discussion section, we discuss corrections for some known biases in both 
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methods, including photorespiration for the GPPLD estimates and the effects of assuming steady-state and 
neglecting lateral and vertical mixing on GPP17Δ.

3.  Results
3.1.  Distributions and Magnitude of GPP in the Two Datasets

We compiled 761 and 2,740 observations of GPPLD and GPP17Δ, respectively. Most GPPLD observations are 
from the Atlantic Ocean and the Mediterranean Sea, with limited observations in the Pacific Ocean and the 
Southern Ocean (Figure 1a). In contrast, the majority of GPP17Δ observations were collected in the Pacific 
Ocean and the Southern Ocean (Figure 1d). Averaging data into monthly 1° × 1° grids returns 392 and 
922 gridded data points for GPPLD and GPP17Δ, respectively. While the seasonal distribution of GPPLD is 
relatively homogeneous, a large fraction of GPP17Δ observations were collected in January in the Southern 
Ocean (austral summer; Figures 1b and 1e). The GPPLD observations ranged from 6.6 mmol O2 m−2 d−1 to 
1,170 mmol O2 m−2 d−1 with a mean of 111 mmol O2 m−2 d−1 (Figure 1c). Conversely, GPP17Δ ranged be-
tween 4.1 mmol O2 m−2 d−1 and 1,198 mmol O2 m−2 d−1 with a mean of 154 mmol O2 m−2 d−1 (Figure 1f).

3.2.  GPP versus the Remotely Sensed Observations

The relation of GPP observations to environmental parameters and their Pearson relationships are pre-
sented in Figure 2. The GPPLD observations were significantly correlated with the majority of the environ-
mental variables (Figures  2b and 2d). GPPLD were positively correlated with particulate organic carbon 
(POC) and Chl-a, light attenuation coefficient (Kd), and surface nutrients, and negatively correlated with 
the depth of the euphotic zone (Zeu), Rrs (443), and Rrs (488) (Figures 2a and 2b). GPPLD was not correlated 
to mixed-layer depth, surface salinity, and wind speed (Figures 2a and 2b). GPP17Δ was positively correlated 
with POC, Chl-a and Kd, and negatively correlated with Zeu, Rrs (443), and Rrs (488) (Figures 2c and 2d). 
Generally, the absolute values of the Pearson correlation for GPP17Δ were lower than the GPPLD counterparts 
(Figures 2c and 2d). GPP17Δ were weakly or not correlated to other environmental variables (Figures 2c and 
2d). Most environmental predictors are highly correlated to each other in both datasets (Figure 2).

3.3.  Algorithm Validation

Overall, the slopes of the machine learning predictions versus observations for the validation dataset con-
verged onto the identity line (Figure 3). The R2 and root standard mean error (RSME) for GPPLD were 0.55 
and 0.6 mmol O2 m−2 d−1, respectively (Figures 3a and 3b). PAR and Chl-a were the two most important pre-
dictors in the construction of the GPPLD algorithm by RF (Figure 4a). They explained approximately 47% of 
the GPP variance. The model performance marginally increased with the inclusion of other predictors (Fig-
ures 4a and 4c). The model performance for GPP17Δ was slightly weaker than for GPPLD (R2 = 0.41), with the 
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Sources Description of uncertainty estimates

Uncertainty (1015 mol O2 yr−1)

GPPLD GPP17Δ

GPP measurements Assign ±17 % error for GPPLD and ±30% for GPP17Δ observations 0.47 0.41

Data Subgrid Vary the grid from 0.25°–1° and time window from daily, monthly to monthly 
climatology

0.2 0.14

Temporal mismatch of predictors Match to 8-day averaged or monthly climatology predictors 0.4 0.23

Training dataset Random reconstruction of the training dataset 0.37 0.18

Predictors input Random selection of input predictors except for the top-performing predictors 0.16 0.30

Machine learning approach Construct the model with different machine-learning approaches 0.7 0.5

All Monte-Carlo uncertainty propagation 1.3 1.05

More details can be found in Section 2.5.

Table 2 
Sources of uncertainties in our global marine GPP estimates
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R2 and RSME being 0.44 and 0.54 mmol O2 m−2 d−1, respectively (Figure 4). In addition to Chl-a, salinity, nu-
trient concentrations (NO3

− and PO4
3−) and SST were selected as the top five important variables during the 

algorithm construction, accounting for 47% of the variance in GPP17Δ (Figures 4b and 4d). Generally, both 
GPPLD and GPP17Δ algorithms tended to overestimate observations at the lower end (<32 mmol O2 m−2 d−1) 
and underestimate observations at the higher end (>635 mmol O2 m−2 d−1, Figure 3).

3.4.  Global Gross Primary Production Prediction

The global patterns of GPP integrated over the euphotic zone are shown in Figure 5. Hereafter, GPP refers 
to GPP integrated over the euphotic zone, unless stated otherwise. The GPPLD and GPP17Δ simulations gen-
erally agree with relatively high rates in coastal and equatorial regions, the Arabian Sea, and the Northern 
Hemisphere high latitudes. As expected, GPP is lower in the subtropical oceans. The annual global marine 
GPPLD predicted by RF was 9.2 ± 1.3 × 1015 mol O2 yr−1 (Table 3). Conversely, global GPP17Δ was nearly 
1.6 folds higher than the GPPLD estimates at 15.1 ± 1.05 × 1015 mol O2 yr−1 (Table 3). Basin-scale rates are 
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Figure 2.  Scatterplots and Pearson correlation coefficients between gross primary production (GPP) and environmental properties. Point colors in panels 2a 
and 2c represent density of observations (Eilers & Goeman, 2004). GPPLD, gross primary production derived from oxygen evolution during light-dark bottle 
incubations; GPP17Δ, gross primary production derived from triple isotopes of dissolved oxygen; Rrs, inherent optical properties; SST, sea surface temperature; 
POC, particulate organic carbon; Chl-a, chlorophyll-a; PAR, photosynthetically available radiation; Kd, light attenuation coefficient; Zeu, depth of the euphotic 
zone.
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also presented in Table 3, with the Pacific and Atlantic Oceans having the highest basin-scale GPP in part 
because of their large surface areas.

The GPP17Δ and GPPLD simulations display similar meridional patterns with maxima around −40°S and in 
the equatorial zone (Figure 6b). As expected, the lowest GPP were simulated in the extensive subtropical 
ocean in the ∼5–30° meridional bands of both hemispheres (Figure  6b). The overall ratio of GPP17Δ to 
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Figure 3.  Evaluation of the algorithm's prediction accuracy with the validation dataset. GPPLD, gross primary 
production derived from oxygen change during light-dark bottle incubations; GPP17Δ, gross primary production 
estimated from the triple isotopes of dissolved oxygen.

Figure 4.  (a), (b) Predictor feature importance: Rank of predictor importance in the model construction by Random 
Forest. (c), (d) Change in model performance as a function of the number of predictors. GPPLD, gross primary 
production derived from oxygen evolution during light-dark bottle incubations; GPP17Δ, gross primary production 
derived from triple isotopes of dissolved oxygen; Rrs, inherent optical properties; SST, sea surface temperature; POC, 
particulate organic carbon; Chl-a, chlorophyll-a; PAR, photosynthetically available radiation; Kd, light attenuation 
coefficient; Zeu, depth of the euphotic zone.
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GPPLD was 1.6 (Table 3) with substantial meridional variability (Figure 6b). Differences between the two 
approaches peak in subtropical regions, with better agreement at lower latitudes and at high latitudes in 
the Northern Hemisphere. A small ratio (<1) is observed at the high latitudes of the Southern Hemisphere 
(Figure 6).
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Figure 5.  The global distribution of euphotic-depth GPP and NPPTOC. Daily rates are calculated by summing daily rates and dividing by the number of days 
in a year. GPPLD, gross primary production derived from oxygen change during light-dark bottle incubations; GPP17Δ, gross primary production estimated from 
triple isotopes of dissolved oxygen. NPPTOC-VGPM, net primary production including both particulate and dissolved phases corrected from VGPM model; NPPTOC-

CbPM, net primary production including both particulate and dissolved phases corrected from CbPM model.

(a) (b)

(c) (d)

GPPLD GPP17Δ GPPcorrected GPPcorrected NPPTOC-VGPM NPPTOC-CbPM

1015 mol O2 yr−1 1015 mol C yr−1 1015 mol C yr−1

Pacific 3.81 ± 0.55 6.77 ± 0.5 3.92∼5.74 3.01–5.57 1.36 2.63

Atlantic 1.92 ± 0.21 3.50 ± 0.42 2.1∼3.02 1.75–2.29 0.92 1.16

Indian 1.80 ± 0.27 3.41 ± 0.25 1.83∼2.89 1.53–2.80 0.54 0.94

Southern Ocean 1.51 ± 0.27 1.49 ± 0.11 1.09∼2.1 0.90–2.03 0.24 0.34

Arctic Ocean 0.19 ± 0.03 0.22 ± 0.02 0.18∼0.19 0.15–0.18 0.12 0.05

Global 9.2 ± 1.3 15.1 ± 1.05 9.5∼12.6 7.9–12.2 5.0 5.5

Reference this study Behrenfeld and Falkowski (1997) Westberry et al. (2008)

Ocean basins defined as in the World Ocean Atlas 2005 (Figure S8). GPP17Δ: gross primary production estimated from triple isotopes of dissolved oxygen. 
GPPcorrected: corrected gross primary production due to methodological biases (see discussion). GP was converted into the carbon unit using O2/C elemental 
stoichiometry range of 1.03–1.2 (see the discussion). NPPTOC-VGPM: net primary production including both particulate and dissolved phases corrected from 
VGPM model; NPPTOC-CbPM: net primary production including both particulate and dissolved phases corrected from CbPM model.
Abbreviations: GPP, gross primary production; NPP, net primary production.

Table 3 
Estimated gross primary production and net primary production in the world's oceans
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4.  Discussion
4.1.  Discrepancies Between GPPLD and GPP17Δ for the Global 
Ocean

The global distribution of GPP derived from the machine learning up-
scaling of incubation and in situ measurements (Figures  5 and 6) are 
largely consistent with our understanding of the mechanisms driving pri-
mary production (Chavez et al., 2011). In winter at high latitudes, cool-
ing and wind stress from storms destabilize the water column, bringing 
nutrient-rich waters to the surface thereby stimulating productivity when 
light is available (Taylor & Ferrari, 2011). Likewise, high GPP observed 
in the equatorial Pacific is fueled by the upwelling of nutrient rich wa-
ters (Barber et al., 1996). Net Ekman downwelling with stable and deep 
thermocline and nutricline in the subtropical ocean limits nutrient avail-
ability and primary production (Karl et al., 1996). The Southern Ocean 
is unique in that macronutrients are generally not fully utilized at the 
ocean surface due to a combination of iron and light limitation (Cassar 
et al., 2007; Martin et al., 1990).

At the global scale, GPP17Δ is 1.6 higher than GPPLD, with the re-
spective values of 15.1  ±  1.05  ×  1015  mol  O2  yr−1 for GPP17Δ and 
9.2 ± 1.3 × 1015 mol O2 yr−1 for GPPLD (Table 3). This ratio is close to the 
1.8 ± 0.5 value reported in the Sagami Bay by the paired comparisons 
of GPP determined by the same two methods (Sarma et al., 2005). More 
broadly, this ratio also falls within the range (1.1 ∼ 1.9) derived from a 
comparison of GPP17Δ to the H2

18O-labeling incubation approach report-
ed in several studies (Juranek & Quay, 2013; Luz & Barkan, 2000; Quay 
et al., 2010).

The GPP17Δ to GPPLD ratio (Figure 6b) demonstrated a pronounced me-
ridional variability which might be explained by methodological biases 
in the geochemical budget approach and bottle artifacts (Elena García-
Martín et al., 2011; Juranek & Quay, 2013). These methods also reflect 
differing time scales of GPP integration. The geochemical approach typi-
cally integrates the primary production signal over the O2 residence time 
within the mixed-layer (∼days to weeks), whereas the incubation-based 
approach reflects the rates over the incubation period. In the subtropical 
oligotrophic ocean, Karl et al. (2003) and Williams et al. (2004) argued 

that intermittent events can contribute to up to 40% of primary production. Because of their short integra-
tion time (∼hours to a day), incubation-based methods may not capture episodic high GPP events potential-
ly resulting in underestimation of primary production (compared to the geochemical tracer approach). This 
may in part explain the higher ratio of GPP17Δ to GPPLD ratio in the unproductive subtropical oligotrophic 
ocean (Figure 6b). The GPP17Δ approach is sensitive to the influence of physical processes and the time 
rate of change of the triple isotope oxygen tracer. Nicholson et al. (2014) showed that vertical entrainment/
mixing could result in significant biases in GPP17Δ estimates, leading to underestimation of GPP at high 
latitudes in the Southern Hemisphere, which may explain the lower ratio of GPP17Δ to GPPLD we observe in 
these regions (Figure 6b). The model of Nicholson et al. (2014) suggests that estimates of GPP17Δ are most 
accurate in the equatorial and low-latitude regions because advective fluxes and tracer time-rate of change 
are smaller. This is supported by our results which show that the ratio of GPP17Δ to GPPLD in these regions 
is closer to unity (Figure 6b).

The projected meridional variability of GPP17Δ to GPPLD ratio may also be attributed to biases in data dis-
tribution and methodological issues with bottle incubations. For example, the paucity of light-dark bottle 
incubations in the Southern Ocean and equatorial Pacific (Figure 1a) might also lead to our algorithms 
failing to capture the complex relationship between macronutrient and iron-limited primary production, 
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Figure 6.  (a) Meridional distribution of annual marine gross primary 
production and net primary production and (b) meridional discrepancies 
between the two gross primary production simulations represented 
as a ratio. (c) Meridional distribution of molar ratio of GPP to NPPTOC 
estimates. GPP17Δ, gross primary production estimated from triple isotopes 
of dissolved oxygen. NPPTOC-VGPM, net primary production including both 
particulate and dissolved phases corrected from VGPM model; NPPTOC-

CbPM, net primary production including both particulate and dissolved 
phases adjusted from CbPM model.
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thereby resulting in GPPLD being biased high in these regions. In addition, contamination during sampling 
and incubation might lead to overestimation of GPP, especially in regions where primary production is 
limited by trace metals such as in the Southern Ocean and equatorial Pacific (Martin et al., 1990). These 
two possible biases toward high GPPLD could partly account for the higher GPPLD projection in the Southern 
Ocean (Figures 6a and 6b) and lower GPP17Δ to GPPLD ratio in the Southern Ocean and Equatorial region 
(Figure 6b). The bottle incubations are also prone to errors due to confinement, which might artificially 
modify the growth conditions (i.e. temperature, light and nutrients) and community structure in the en-
closed bottle (Huang et al., 2019). For example, Westberry et al. (2012) inferred that photosynthetic rates 
may be inhibited because the reduced turbulence in the bottle limits nutrient regeneration and supply to 
autotrophic organisms. There are also arguments that incubation-based GPP is overestimated because of 
the filtering out of UVB radiation by borosilicate bottles (Godoy et al., 2012). Because our understanding of 
these artifacts and containment effects is limited, we cannot quantitatively correct for their overall impact 
on estimates of GPP. Pairwise comparisons show that the 18O-labeling approach generally yields higher GPP 
estimates than the light-dark incubation approach (Grande et al., 1989; Regaudie-de-Gioux et al., 2014). 
This discrepancy has been attributed in part to light-induced oxygen evolution associated with photorespi-
ration and the Mehler reaction (Bender et al., 1999; Laws et al., 2000). The assumption of similar respiration 
rates under light and dark conditions in the light-dark bottle method would lead to an underestimation of 
GPP compared with the 18O-labeling approach.

We attempt to reconcile the GPP17Δ to GPPLD estimates by accounting for some of the known biases in 
the two methods. Laws et al. (2000) estimated that a +20% correction should be applied to GPP derived 
from light-dark bottle estimates because they do not account for photorespiration and the Mehler reaction. 
Nicholson et al. (2014) suggested a −29% correction factor for GPP17Δ biases associated with the effect of 
vertical entrainment and mixing, as discussed above. After applying these first-order corrections, the GPP17Δ 
and GPPLD converge to 9.5 ∼ 12.6 × 1015 mol O2 yr−1 for the global ocean (Table 3, 4).

4.2.  Comparison of GPP Simulations With Oceanic Satellite-Based NPP Models

VGPM and CbPM are two of the most-widely used algorithms to predict primary production in the global 
ocean (Behrenfeld & Falkowski, 1997; Westberry et al., 2008). Given that oxygen-based estimates of GPP 
reflect the production of particulate and dissolved organic carbon, we adjust the VGPM and CbPM NPP 
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Ecosystem Variables Value (Pg C yr−1) Reference Method

Land GPP 119 Tramontana et al. (2016) Statistical models scaling up observations

112 Zhang et al. (2016) Light use efficiency models

123 Guanter et al. (2014) Solar-induced fluorescence models

130 Gent et al. (2011) Earth System Models

148 Kuppel et al. (2013) Hybrid model (process-based + data-driven 
models)

NPP 48 Field et al. (1998) Satellite-based vegetation photosynthesis 
model

52 Zhao and Running (2010) Satellite-based vegetation photosynthesis 
model

64 Gent et al. (2011) Earth System Models

Ocean GPP 103–150 This study Statistical model scaling up observations

NPP 60 Behrenfeld & Falkowski (1997) VGPM model (Adjusted for DOC production)

66 Westberry et al. (2008) CbPM model (Adjusted for DOC production)

An elemental stoichiometry of 1.03–1.2 was used to convert marine GPP from oxygen to carbon units (see discussion).
Abbreviations: DOC, dissolved organic carbon; GPP, gross primary production; NPP, net primary production.

Table 4 
Global estimates of GPP and NPP in terrestrial and marine ecosystems
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estimates for DOC production for comparison to our GPP estimates. We find that our GPP simulations gen-
erally follow the pattern of NPPTOC (Figures 5 and 6).

In principle, the molar ratio between primary production estimates in the units of oxygen (i.e., GPP) and 
carbon (i.e., NPPTOC) may reflect variations in underlying metabolic pathways involved in photosynthetic 
gross O2 evolution and carbon fixation. For example, the light-dependent oxygen consumption induced by 
the Mehler reaction and photorespiration are not associated with carbon fixation (Halsey et al., 2010; Laws 
et al., 2000). The photosynthetic molar ratio of O2 evolution to C fixation is also impacted by elemental sto-
ichiometry associated with production of proteins, polysaccharides, lipids and nucleic acids from inorganic 
precursors. This chemical ratio varies regionally between 1.1 and 1.4, depending among other things on the 
nitrogen species (ammonium or nitrate) fueling primary production (Laws, 1991). It is also affected by other 
factors, such as the phytoplankton's physiological optimization to the nutrient and light regime (Behrenfeld 
et al., 2008; Halsey et al., 2010). As discussed above, methodological biases and uncertainty in algorithm 
predictions may also explain differences in the primary production estimates.

The VGPM and CbPM algorithms predict a global NPPTOC of 5.0 × 1015 mol C yr−1 and 5.5 × 1015 mol C yr−1, 
respectively (Table 3). Combined with our corrected estimates of global marine GPP (9.5 ∼ 12.6 × 1015 mol 
O2 yr−1), our study suggests a global averaged molar ratio of marine gross oxygen to net carbon production 
of 1.7–2.5. This molar ratio is lower than observations based on O2 and C incubations from culture studies 
(3.3 mol O2/C; Halsey & Jones, 2015; Halsey et al., 2010) and Joint Global Flux Study (2.7 mol O2/C; Juranek 
& Quay, 2013). It is worth noting that the 14C-based incubation in these studies only account for particulate 
phase organic production. A first-order correction of these estimates for DOC production (assuming 20%–
30% of TOC production is DOC production) brings these ratios in the same range as our estimates (2.3 ∼ 2.6 
and 1.89 ∼ 2.16, respectively). Meridional variations in the molar ratio of primary production estimates in 
the unit of oxygen and carbon are highly uncertain and dependent on the algorithm used (Figure 6c). As is 
the case for the GPP algorithms GPP, satellite estimates of NPP carry uncertainties, as shown by compari-
sons with field measurements of 14C-based primary production (Friedrichs et al., 2009; Palevsky et al., 2016; 
Regaudie-de-Gioux et al., 2019; Saba et al., 2010). Using VGPM versus CbPM leads to large differences in 
predicted GPP/NPP (GPP/NPP, mol O2/mol C), especially in the subtropical and tropical area (Figure 6c).

Applying the global average scaling factor (corrected to 1.8–2.16, see the above discussion above; Juranek 
& Quay, 2013) as a basis to identify the latitudinal variability in the oxygen to carbon ratio, we generally 
observe a consistently higher deviation at the high latitude of the Southern Hemisphere (mainly in the 
Southern Ocean), although there is substantial noise (Figure 6c). It is unclear whether this reflects sys-
tematic methodological biases in the Southern Ocean (i.e., the effect of mixing/vertical diffusion in triple 
isotopic oxygen signal) or provides some insight into phytoplankton physiology (e.g., iron deficiency) and 
nutrient distribution (e.g., nitrogen species). Also, a comparison of the latitudinal trends in NPPTOC and 
GPP is compromised by the uncertainty associated with the empirical conversion of POC-based NPP to 
TOC-based NPP. Earlier studies show that the ratio of DOC:POC production varies regionally by a factor of 
three and is correlated with the nutrient status and microbial community structure (Roshan and DeVries, 
2017). Further work is needed to test the modeled meridional variability in the molar O2/C ratio.

We can also, at first order, attribute the difference between GPP and NPP to autotrophic carbon loss (Dring 
et al., 1982; Marra, 2009). Conversion of GPP to carbon units is not trivial. Primary production is fueled by 
“new” (mainly in the form of nitrate) and “regenerated” nitrogen (mainly in the form of ammonium). The 
O2/C elemental stoichiometries for (new) nitrate and (regenerated) ammonium-fueled primary production 
are 1.4 ± 0.1 and 1.1 ± 0.1, respectively (Dugdale & Goering, 1967; Laws, 1991). The f-ratio, defined as the 
ratio of new production to total primary production is around 0.1–0.25 globally (Dunne et al., 2007; Henson 
et al., 2011; Siegel et al., 2014). Based on this information and neglecting the contribution of N2 fixation 
(Tang et al., 2019), the uncertainty for the global averaged C:O ratio for GPP likely ranges between 1.03 
(=1 × 0.9 + 1.3 × 0.1) and 1.2 (0.25 × 1.1 + 1.5 × 0.75). Applying this range of elemental stoichiometries 
to convert oxygen to carbon-based primary production (our corrected GPP simulations), we find that our 
global oceanic GPP ranges from 103 to 150 Pg C yr−1 (Table 4). Our estimates of marine GPP only account 
for primary production generated by planktonic communities within the photic zone. However, this should 
represent the largest fraction of marine GPP, as global NPP in other marine biomes are comparatively 
small with benthic microalgae at 0.32 Pg C yr−1 (Gattuso et al., 2006), marine marcrophytes at 1 Pg C yr−1 
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(Smith, 1981) and chemoautotrophs at 0.7 Pg C yr−1 (Middelburg, 2011). The contribution of these other 
biomes to GPP is therefore likely within the uncertainty of our global marine GPP estimates. Our estimates 
of global marine GPP (103–150 Pg C yr−1) is 1.5–2.2 fold greater than oceanic NPP and comparable to ter-
restrial GPP rates (112–148 Pg C yr−1, Table 4).

5.  Conclusion
Our study represents a first attempt to assess the global distribution of O2-based oceanic GPP thereby pro-
viding novel insight into marine primary production and its role in carbon cycling. Global GPP derived from 
the two datasets displayed similar patterns and are in general agreement with our current understanding of 
the geographical distribution of primary production. The observed discrepancy of GPP between the incu-
bation-based and geochemical approaches at certain latitudes deserves further investigation. In particular, 
current biases, such as the effect of vertical mixing on the triple isotope signature of oxygen, could be cor-
rected for in a spatiotemporally explicit manner in future studies using model predictions. After accounting 
for some of these biases, global marine GPP estimates of 103–150 Pg C yr−1 are comparable to GPP on land.

Data Availability Statement
The authors are grateful to collaborators for contributing their data to this project. This study benefited 
from discussions with Dr. E. Laws at Louisiana State University and Dr. Y. Xie at the National Oceanic 
and Atmospheric Administration. The compiled datasets for gross primary production are presented in the 
supporting information (Table S1). Satellite data, wind speed, nutrients concentrations, net primary pro-
duction and monthly MLD climatology were downloaded from NASA Ocean Color (http://oceancolor.gsfc.
nasa.gov/cms/), NCEP/NCAR reanalysis (https://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanaly-
sis.html), World Ocean Atlas (https://www.nodc.noaa.gov/OC5/woa13/), https://www.science.oregonstate.
edu/ocean.productivity/, and www.ifremer.fr/cerweb/deboyer/mld/home.php, respectively. The monthly 
GPP products developed in our study are available via ZENODO (https://zenodo.org/record/4455883#.
YBB_DJNKhhE) or Cassar's lab website (https://sites.nicholas.duke.edu/cassar/).
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