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ABSTRACT
A method for detection of a Direct-Sequence Spread Spec-
trum (DS-SS) communication hidden in the noise is pro-
posed. Indeed, DS-SS signals are well-known for their low
probability of interception: their statistics are similar to the
statistics of a noise, and, furthermore, they are usually trans-
mitted below the noise level. The proposed method is based
on the uctuations of autocorrelation estimators. We show
that, when a DS-SS signal is hidden in the noise, these uc-
tuations increase. A theoretical analysis shows that detec-
tion is possible, even with very low signal to noise ratio at
the detector input. Experimental results are provided to il-
lustrate the approach. The method is also able to estimate
the symbol period of the DS-SS signal.

1. INTRODUCTION

Spread spectrum transmissions use a bandwidth con-
siderably larger than the minimal required bandwidth [4].
Their interests are:

² In the military domain, they allow transmission with
a very low power spectral density (PSD). Hence, they
are difcult to detect.

² In the non-military domain, they allow many trans-
mitters to share the same frequency band with low in-
terference (e.g. Code Division Multiple Access [2]).
They are also robust with respect to echoes.

While used in the military domain for decades [1][7],
spread spectrum is now taking a growing importance in non-
military transmissions [3]. The result is a proliferation of
low-cost spread spectrum transmission devices. The low
probability of interception of spread spectrum signals is a
problem for authorities in charge of spectrum surveillance.
In this paper, we propose a method to detect a spread spec-
trum transmission far below the noise level. The paper is
organized as follows: in Section 2, we briey recall the

principle of Direct-Sequence Spread Spectrum transmission
(DS-SS). Our approach for blind detection of a DS-SS sig-
nal is described in Section 3. Then, a theoretical analysis
is developped in Section 4: it proves that the method works
even when the signal to noise ratio is very low. Then, exper-
imental results are shown to illustrate the approach (Section
5).

2. PRINCIPLE OF DIRECT SEQUENCE SPREAD
SPECTRUM TRANSMISSIONS

In a DS-SS transmission, the symbols ak are multiplied
by a pseudo-random sequence which spreads the bandwidth
[6]. The pseudo-random sequence, as well as the carrier and
symbol frequencies, are known by the receiver. The receiver
correlates the received signal with the pseudo-random se-
quence, in order to retrieve the symbols [5]. A receiver
which does not know these parameters cannot even detect
the presence of a DS-SS signal, because it is usually under
the noise level. The signal at the output of the receiver lter
is:

y(t) = s(t) + b(t) (1)
where b(t) is the noise at the output of the receiver lter

g(t), and s(t) is the ltered noise-free DS-SS signal.

s(t) = (g ¤ es)(t) (2)

b(t) = (g ¤eb)(t) (3)

where eb(t) is the received noise and es(t) the noise-free
received DS-SS signal.

es(t) = +1X
k=¡1

akh(t¡ kTs) (4)

h(t) =
P¡1X
k=0

ckp(t¡ kTc) (5)
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p(t) is the convolution of the transmission lter and the
channel lter (which represents the channel echoes).
fck; k = 0; :::; P ¡ 1g is the pseudo-random sequence,

Tc is the chip period, and Ts is a symbol period (Ts =
P:Tc).
In the sequel, ° will stand for power spectral density,

and the following hypotheses will be assumed:

² The symbols are centered and uncorrelated.

² The received noise eb is white, gaussian, centered, and
uncorrelated with the signal. Its power spectral den-
sity is N0

2

² The time extension of (g ¤ h)(t) is only a little more
than Ts (this is always the case, otherwise it would
mean that the receiver bandwidth is extremely small
with respect to the signal bandwidth).

² The signal to noise ratio (in dB) at the output of the
receiver lter is negative (the signal is hidden in the
noise).

3. PROPOSED APPROACH

We recall that we consider a non-cooperative context,
hence no a priori information is available (the spreading se-
quence, the symbol period, etc., are unknown).
The basic principle of any detection method (whatever

the application is) is to take prot of the fact that the signal
statistical properties are not the same as the noise statistical
properties. For instance, in some simple applications, the
signal and noise frequencies are not the same, hence lters
are sufcient to detect the presence of a signal. Here, the
application is much more complex, because a spread spec-
trum signal is specially built to be similar to a noise, in order
to have a low probability of interception (remind that spread
spectrum was initially developed for military applications).
For instance, the autocorrelation of a spread spectrum signal
is close to a Dirac function, as well as the autocorrelation of
a white noise (this is due to the pseudo-random sequence).
The originality of the proposed approach is to be based

on the uctuations of autocorrelation estimators, instead than
on the autocorrelation itself. Although the autocorrelation
of a DS-SS signal is similar to the autocorrelation of a noise,
we will prove that the uctuations of estimators are totally
different.
In order to compute the uctuations, we must divide the

received signal into temporal windows. We will note T the
window duration and M the number of windows. An au-
tocorrelation estimator is applied to each window, then the
uctuations are computed.
Using window number n, we compute an estimation of

the correlation:

dRnyy(¿) = 1

T

Z T

0

y(t)y¤(t¡ ¿)dt (6)

Using M windows, we can estimate the second order
moment of the estimated correlationdRyy(¿) :

½(¿) = bEfdjRyy(¿)j2g = 1

M

M¡1X
n=0

djRnyy(¿)j2 (7)

½(¿) is a measure of the uctuations of dRyy(¿). In the
paragraphs below, we show that this measure is a power-
ful tool to detect the presence of a spread spectrum signal
hidden in the noise.
Since the noise and the signal are uncorrelated, we can

write:

dRyy(¿) 'dRss(¿) +dRbb(¿) (8)

The next Section explains why the method works, and
show that it can work even when the SNR is very low.

4. THEORETICAL ANALYSIS

We will successively investigate the contribution of the
noise and of the signal. But, before, we need a theoretical
result about the second order moment of a correlation esti-
mator.
For readers who are not familiar with statistics, proba-

bilities, and signal processing, it is recommended to have a
look to the experimental results (Section 5) rst, in order to
have a better understanding of the meaning of some mea-
sures.

4.1. Second order moment of a correlation estimator

The estimator of the correlation between u(t) and v(t)
is:

dRuv(¿) = 1

T

Z T

0

u(t)v¤(t¡ ¿)dt (9)

Let us note:

² d(t) = u(t)=T for 0 · t · T and d(t) = 0 elsewhere
² e(t) = v¤(¡t)

We can write:

dRuv(¿) = Z +1

¡1
d(t)e(¿ ¡ t)dt (10)

This can be seen as the ltering of a signal e(t) by a
lter d(t). Hence:
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°R(º) = jD(º)j2:°e(º) (11)

where D(º) is the Fourier transform of d(t). If T is
large enough, we obtain:

°R(º) =
1

T
:°u(º):°v(º) (12)

Since EfjdRuv(¿)j2g is the average power of dRuv(¿)
(i.e. the integral of its PSD), we can write:

EfjdRuv(¿)j2g = 1

T

Z +1

¡1
°u(º):°v(º)dº (13)

4.2. Contribution of the noise

In this subsection, we will consider noise alone (no spread
spectrum signal is hidden in the noise). Since the noise
is random, the uctuations of the autocorrelation estimator
are random themselves. We will characterize them by their
mean and their standard deviation.

4.2.1. Average value of the uctuations ½b(¿)

The average value of ½b(¿) = bEfdjRbb(¿)j2g is the aver-
age ofdjRbb(¿)j2. Let us notem(b)

½ this average value. Using
equation 13 we can write:

m(b)
½ = EfdjRbb(¿)j2g = 1

T

Z +1

¡1
j°b(º)j2dº (14)

Let us note G(º) the Fourier transform of the receiver
lter. We have:

°b(º) = jG(º)j2°eb(º) = N0
2
jG(º)j2 (15)

If the frequency response of the receiver lter is at in
[¡W=2;+W=2] and zero outside, it is easy to show that:

m(b)
½ =

1

T:W
¾4b (16)

where ¾4b is the noise variance.

4.2.2. Standard deviation of the uctuations ½b(¿)

The standard deviation of the uctuations is:

¾(b)½ =

q
varf bEfdjRbb(¿)j2g (17)

Since the windows are independent, we have:

var
n bEfjdRbb(¿)j2go = 1

M2

M¡1X
n=0

varfjdRnbb(¿)j2g (18)

Hence:

var
n bEfjdRbb(¿)j2go = 1

M
varfjdRbb(¿)j2g (19)

and:

varfjdRbb(¿)j2g = EfjdRbb(¿)j4g ¡ ³m(b)
½

´2
(20)

Due to its denition, the statistical behavior ofdRbb(¿)
is close to a gaussian because it is the average of a large
number of random variables. Furthermore, except for small
values of ¿ , its average value is null (the receiver lter cre-
ates a short term coherence in the noise, which can result in
non-zero autocorrelation for ¿ small). Hence:

EfjdRbb(¿)j4g ' 3³m(b)
½

´2
(21)

So:

varfjdRbb(¿)j2g ' 2³m(b)
½

´2
(22)

Hence:

¾(b)½ '
r
2

M
:m(b)

½ (23)

4.3. Contribution of the signal

If we consider the spread spectrum signal alone, we show
that high uctuations of the autocorrelation estimator are
obtained for each ¿ multiple of the symbol period. For sim-
plicity, we will limit the proof to ¿ = Ts. Generalization to
¿ = k:Ts is obvious.
We can write:

dRss(Ts) = 1

T

Z T

0

s(t)s¤(t¡ Ts)dt (24)

Let us note:

r(t) = (g ¤ h)(t) (25)

Using equations 2 and 4, and replacing, we obtain:

dRss(Ts) = 1
T

+1P
k=¡1

+1P
m=¡1

aka
¤
mR T

0
r(t¡ kTs)r¤(t¡ (m+ 1)Ts)dt

(26)
Due to the limited time extension of r(t), this expression

simplies to:

dRss(Ts) = 1

T

+1X
k=¡1

aka
¤
k¡1

Z T

0

jr(t¡ kTs)j2 dt (27)
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Let us note:

¾2a = E
n
jakj2

o
(28)

and

¾2r =
1

Ts

Z Ts

0

jr(t)j2 dt (29)

Since the symbols are centered and independent, we have:

EfjdRss(Ts)j2g = 1

T 2
¾4a

+1X
k=¡1

ÃZ T

0

jr(t¡ kTs)j2 dt
!2
(30)

That is:

EfjdRss(Ts)j2g = 1

T 2
¾4a
T

Ts

¡
Ts¾

2
r

¢2 (31)

and, since the signal power is:

¾2s = ¾
2
a¾

2
r (32)

we have:

m(s)
½ = EfjdRss(Ts)j2g = Ts

T
¾4s (33)

We can note that:

¾2s =

Z +1

¡1
°s(º)dº (34)

and that:

°s(º) = jG(º)j2°es(º) (35)

4.4. SNR at detector output

In this section, we prove that the detector works even
at very low SNR. The signal to noise ratio (in dB) at the
detector output is:

SNRout = 20 log

µ
m
(s)
½

¾
(b)
½

¶
(36)

This is the ratio between the mean value of the peaks
created by the DS-SS signal (if there is one such signal hid-
den in the noise), and the standard deviation of the estimator
uctuations due to the noise. One could object that it would
be better to comparem(s)

½ withm(b)
½ . In fact, this is not true,

because it is really ¾(b)½ which is signicant to determine if
the peaks due to signal may be hidden by the uctuations
due to noise. For instance, a large value of m(b)

½ is not a
problem if ¾(b)½ is small. On the contrary, if ¾(b)½ is large,

the peaks due to signal can be totally hidden, even ifm(b)
½ is

small.
For a receiver lter with at frequency response in

[¡W=2;+W=2] and zero outside, we have:

m
(s)
½

¾
(b)
½

=W:Ts

r
M

2

µ
¾2s
¾2b

¶2
(37)

Hence, the equation below gives the signal to noise ratio
at the detector output as a function of input SNR and other
parameters:

SNRout = 4:SNRin + 20 log (W:Ts)
+10 log(M)¡ 10 log(2) (38)

The table below shows the results obtained withW:Ts =
127 andM = 100

SNRin(dB) SNRout(dB)
¡5 +39
¡8 +27
¡11 +15
¡14 +3

(39)

Please note that increasingW does not always increase
the output SNR. The optimum case is when W is equal
to the DS-SS signal bandwidth (in that case WTs is equal
to the length of the pseudo-random sequence). Further in-
creasing decreases SNRin (and, consequently, it can de-
crease SNRout), because more noise goes through the re-
ceiver lter. Since the characteristics of the DS-SS sig-
nal are not known a priori, the receiver lter bandwidth
will usually be different to the optimum value. However,
the tolerance is large: for instance, if W is twice the opti-
mum value (i.e. an error of 100%), 3dB are lost in SNRin
and 6dB are gained in 20 log (W:Ts), hence 6dB are lost in
SNRout.
Equation 38 also shows that, from a theoretical point

of view, the detector performances can be increased with-
out limits, just by increasing the number of windows (M).
However, on a practical point of view, we must take into
account that the computation time is approximately propor-
tional toM , hence the value ofM cannot be increased with-
out limits: it depends on the available computation power,
and it depends also on the time allocated for detection.

5. EXPERIMENTAL RESULTS

Figure 1 shows an example of detector output. The
curve represents ½(¿) (i.e. the uctuations of the autocorre-
lation estimator) as a function of ¿ (in ¹s). We can clearly
see two peaks. This means that a DS-SS signal is hidden in
the noise.
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Figure 1: Example of detector output

Here, there was indeed a DS-SS signal hidden in the
noise, and the detector input SNR was ¡10 dB (this is the
SNR at the output of the receiver lter).
From the theoretical analysis, we know that the peaks

are obtained for values of ¿ which are the multiples of the
symbol frequency Ts. Hence, we can also determine the
symbol frequency: Ts = 1:54¹s.
The computation time to obtain this curve was 3s on a

Intel Pentium II processor (266MHz), with a non-optimized
C-program. The number of windows was M = 200, and
we hadWTs = 63.
The horizontal lines show the theoretical average uctu-

ations (m(b)
½ , see eq. 16) and the theoretical average uctu-

ations plus 4 times the theoretical standard deviation on the
uctuations (m(b)

½ + 4¾
(b)
½ . For ¾(b)½ see eq. 23), if no DS-

SS signal were hidden in the noise. Since the peaks are far
abovem(b)

½ +4¾
(b)
½ , there is no doubt that a DS-SS signal is

hidden in the noise.

.

6. CONCLUSIONS

A method for detection of a Direct-Sequence Spread
Spectrum communication hidden in a noise has been pro-
posed. DS-SS signals are well-known for their low prob-
ability of interception: they are similar to noise and they
are often transmitted below the noise level. We have shown
that, although the autocorrelation of a DS-SS signal is the
same as the autocorrelation of a noise, the uctuations of
correlation estimators are higher when a DS-SS signal is
hidden in the noise. The method computes these uctu-
ations, and the uctuation curve is displayed. This curve
shows high equispaced peaks when a DS-SS signal is present.
This method is interesting in any non-cooperative con-

text such as spectrum surveillance. Furthermore, the method
is able to estimate the symbol period of the DS-SS signal.
This information is required for Blind spreading sequence
estimators, such as the method proposed in [8].
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