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ABSTRACT

Spread spectrum signals have been used for
secure communications for several decades [4].
Nowadays, they are also widely used outside the
military domain, especially in Code Division
Multiple Access (CDMA) systems [2]. Due to
their low probability of interception, these
signals increase the difficulty of spectrum
surveillance.
Direct-Sequence Spread Spectrum transmitters
(DS-SS) use a periodical pseudo-random
sequence to modulate the baseband signal
before transmission. In the context of spectrum
surveillance, the pseudo-random sequence used
by the transmitter is unknown (as well as other
transmitter parameters such as duration of the
sequence, symbol frequency and carrier
frequency). Hence, in this context, a DS-SS
transmission is very difficult to detect and
demodulate, because it is often below the noise
level.
In this paper, we propose a method for
estimating the spreading waveform without prior
knowledge on the transmitter. Only the period of
the pseudo-random sequence is assumed to have
been estimated (this can be done using
cyclostationarity analysis). Our method is based
on eigenanalysis techniques. We show that the
spreading sequence can be recovered from the
first and the second eigenvectors. This property
provides a way to estimate the spreading
sequence. Experimental results are given to
illustrate the performances of the method and
show that a good estimation can be obtained
even when the signal is far below the noise level.
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1. PRINCIPLE OF DIRECT-SEQUENCE
SPREAD SPECTRUM TRANSMISSION

In direct-sequence spread spectrum (DS-SS), the
information signal is modulated by a periodic
pseudo-random sequence (PPRS) prior to
transmission, resulting in a wideband signal with
low probability of interception [2][4]. Indeed,
the DS-SS signal can be transmitted below the
noise level, because the receiver knows the
pseudo-random sequence and therefore can use a
correlator to increase the signal-to-noise ratio
(SNR). For instance, with a pseudo-random
sequence length equal to 31, the correlation gain
is 15dB. Hence, even if the DS-SS signal is
received with SNR= dB5 , at the correlator
output the SNR is +10 dB.
At the output of the receiver filter, the baseband
signal is:
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p(t) is the convolution of the transmission filter,
the channel filter (which represents the channel
echoes) and the receiver filter.  {ck , k=0..P-1 }
is the pseudo-random sequence, ak is a symbol,
Ts is the symbol period, Tc is the chip period
(Ts=P.Tc), and b(t) is the noise at the output of
the receiver filter.

In the context of spectrum surveillance, the
pseudo-random sequence used by the transmitter
is unknown. In this paper, we propose a method
to estimate the spreading waveform h(t) without
having to estimate the pseudo-random sequence
{ck , k=0..P-1 }. Furthermore, since the ultimate
goal of spectrum surveillance is to estimate the
symbols ak , we can see from the equations
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above that when the received signal is correlated
with h(t) instead of with the pseudo-random
sequence, a better estimation of the ak is
obtained.
In this paper, we assume that the symbol period
Ts is known. It can be estimated by methods
based on cyclostationarity analysis of the signal
or, if the SNR is low, by methods based on
fluctuations of correlation estimators [1]. All
other parameters are unknown.

2. BLIND ESTIMATION OF THE
SPREADING WAVEFORM

The received signal is sampled and divided into
non-overlapping temporal windows, the duration
of which is Ts. Let us note s the content of a
window. The correlation matrix
                            HssER .                        (2)
can be estimated as follows: the N available
vectors s  can be placed in the columns of a
matrix S (M rows, N columns), and the
correlation matrix estimated by
                            NSSR H /.ˆ                      (3)
The eigenanalysis of this matrix shows that there
are two large eigenvalues. The reason is
explained below.

Since the windows duration is equal to the
symbol period, a window always contains the
end of a symbol (for a duration Ts – t0 ),
followed by the beginning of the next symbol
(for a duration t0), where t0 is unknown. Hence,
we can write:

                   bhahas mm 110                 (4)

0h  is a vector containing the end (duration Ts –
t0 ) of the spreading waveform h(t), followed by
zeros (duration t0).

1h  is a vector containing zeros (duration Ts – t0)
followed by the beginning (duration t0) of the
spreading waveform h(t).
t0  is the unknown desynchronization time
between windows and symbols ( sTt00 ).
The equations above show that:
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where 2  is the noise variance. From this
equation, we see that there are two large

eigenvalues, 22

0
2 ha  and 22

1
2 ha

(the order is unknown), where 
22

ka aE .
These eigenvalues are associated to eigenvectors
whose directions are given by 0h  and 1h . All

the other eigenvalues are 2 .

The major remaining problem is to know how to
extract information from the two first
eigenvectors 0u  and 1u  in order to obtain the
spreading waveform. Indeed, since matrix R can
only be estimated from a limited number of
signal samples, these vectors are noisy, and it is
not trivial to recognize which one corresponds to

1h  and which one corresponds to 0h .
Furthermore, the desynchronization t0 is
unknown and there are unknown multiplicative
factors between the eigenvectors iu  and the

partial spreading vectors jh . The method we
propose to solve this problem is as follows.

First of all, let us compute:
                            *. i

T
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It is obvious (see equation (4)) that the elements
of iv  are estimates of the symbols (up to an
unknown  multiplicative factor). For clarity, let
us assume that 0u  corresponds to 0h , and 1u  to

1h  (generalization to the other case is trivial).

Let us note iii hzu . , where zi are unknown
complex numbers. In this case, equations (4) and
(6) show that the elements of iv  are estimates of
ai /zi , a1+i /zi , ..., am+i /zi , ..., aN-1+i /zi. Let us
compute:
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It is clear that, here, we have 1001 , because
it is only in 01 that the estimated symbols are
shifted in a coherent way. For the other possible
correspondence, we would obtain 0110 .
Hence, the relative values of the ij  can be used
to determine which correspondence is the right
one.

Now, let us assume that the correspondence
mentioned above has been determined as being
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the right one (once again, generalization to the
other case is trivial). We build the 2M-
dimensional vector below:
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Obviously, we have:
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Finally, the estimated spreading waveform is
obtained by extracting from u  the M-
dimensional subvector with the highest norm.
The spreading waveform is estimated up to an
unknown multiplicative factor. This is not a
problem because in any transmission system, the
channel is modeled by at least an unknown
multiplicative factor. Hence, this uncertainty is
also included in the channel model. This is why
transmission systems use either differential
coding, or periodically occurring known symbol
sequences, in order to remove this uncertainty.

Let us come back to equation (8). To apply this
equation, we need an estimate of 01 / zz . It can
be obtained as explained below.
Considering that the elements of iv  are estimates
of ai /zi , a1+i /zi , ..., am+i /zi , ..., aN-1+i /zi , we can
write:
                  2222 .. Nazv ii             (10)
where a  is a vector containing the symbols.
Hence:

                     
22

1

22
0

2

0

1

Nv
Nv

z
z

               (11)

and 2  can be estimated by averaging the
eigenvalues numbered 3 to M.
Having obtained the modulus of 01 / zz , we can
now estimate its phase. From equation (7) we
see that:
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Hence we can write:
                 )()/( 0101 ArgzzArg            (13)

3. EXPERIMENTAL RESULTS

To illustrate the approach, a DS-SS signal is
generated using a random-sequence of length 31
(it is one of the Gold Sequences [3] which are

traditionally used in CDMA systems). The
symbols belong to a QPSK constellation
(Quadrature Phase Shift Keying). The SNR is

dB8  (hence, the noise power in the signal
passband is more than 6 times the signal power).
211 windows were used for estimating the
correlation matrix. To simplify the interpretation
of illustrations, the sampling period was chosen
equal to Ts /31 (of course, in practice, this is not
a requirement. The only requirement is to have a
sampling frequency large enough with respect to
receiver filter bandwidth).

Figure 1 shows the eigenvalues: we can clearly
distinguish the first and second eigenvalues. The
estimated spreading waveform obtained from the
corresponding eigenvectors is shown. Basically,
the estimation is composed of complex numbers.
Here, the estimation has been projected on its
principal axis in the complex plane, for easier
comparison with the true sequence. The
comparison with the true spreading waveform
shows that a good estimation is obtained, even
with negative SNR.

Here, the spreading sequence was real, but the
method can also deal with complex spreading
sequences, because nowhere in the method
development we assumed that the sequence was
real. While complex spreading sequences are not
yet widely used in current spread spectrum
systems, the situation may change in a close
future.

A classical spread spectrum receiver correlates
the spreading sequence with the received signal
in order to estimate the symbols. If we feed a
classical receiver with the waveform estimated
by our approach instead of the true sequence, the
difference is extremely low: the cosinus of the
angle between the vectors (true and estimated
waveforms) is 0.983, which means that they are
almost aligned, hence they provide almost the
same correlation results.

4. CONCLUSION

A method for blind estimation of the spreading
waveform of a direct-sequence spread spectrum
transmission has been proposed. The method is
based on eigenanalysis techniques. After
showing that the two first eigenvectors of the
received signal correlation matrix contain
information about the spreading waveform, we
detailed the proposed approach to actually
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extract this information, and build an estimate of
the spreading waveform. Experimental results
show that a good estimate can be obtained even
for very low SNR.
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Figure 1: Experimental Results
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