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Abstract: - In the context of spectrum surveillance, a method to recover the code of direct sequence spread 

spectrum signal is presented, whereas the receiver has no knowledge of the transmitter’s spreading sequence. 

The approach is based on an artificial neural network which is forced to model the received signal. Experimental 

results show that the method provides a good estimation, even when the signal power is below the noise power. 
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1   Introduction 
Although spread spectrum communications were 

initially developed for military  applications, they are 

now widely used for commercial ones, especially for 

code division multiple access (CDMA), or global 

positioning systems (GPS) [1]. They are mainly used 

to transmit at low power without interference due to 

jamming, to others users or to multipath propagation. 

The spread spectrum techniques are useful for secure 

transmissions, because the receiver has to know the 

sequence used by the transmitter to recover the 

transmitted data, using a correlator [2, 3, 4]. 

 Our purpose is to automatically determine the 

spreading sequence, whereas the receiver has no 

knowledge of the transmitter’s pseudo-noise (PN) 

code. 

 In the next section, we present the technique of 

direct sequence spread spectrum (DS-SS) and we 

explain the difficulty to recover the data in an 

unfriendly context. Then, we introduce our method, 

which uses artificial neural networks to solve the 

problem. Finally, section 4 shows experimental 

results in various configurations.  

 
 

2   DS-SS technique 
In order to spread the signal power over a broadband 

channel, far in excess of the minimum bandwidth 

necessary to transmit the data, the direct sequence 

spread spectrum (DS-SS) technique consists in 

multiplying the information signal with a periodic 

pseudo-noise sequence.  

 
2.1   A simple model 
Let us note b(t) the information bearing signal 

b t b p t nTn b( ) ( )= −
−∞

+∞

∑                    (1)              where 

bn = ±1 with equal probability and p t( )  is a 

rectangular pulse of duration Tb .  
Let us note y , the PN sequence of length P  : 

y y y yP= −0 1 1
, , ,L                                                   (2) 

The transmitted signal $yn  is the product of both 

waveforms. Let us consider a direct sequence spread 

spectrum system without noise : 
$y b yn n=                                                                 (3)   

We assume the receiver knows this sequence and can 

despread the signal using a correlator : 
$ , , ,y y b y y b y y b Pn n n n= = =                        (4) 

according to the properties of PN sequences [5], the 

data information is then recovered. 
However it becomes more challenging when the 

receiver does not know exactly the code used by the 

transmitter. 
Let us note ~y  a sequence similar to y , but not 

exactly the same. Then using a correlator with ~y , we 

get : 

$ , ~ , ~ , ~y y b y y b y yn n n= =                                  (5) 
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according to the properties of PN sequences, y y, ~  

is low [5] and then we do not recover the data 

information. 
 
2.2   A realistic model 
Typically direct sequence spread spectrum systems 

use binary or quadrature phase shift keying (BPSK or 

QPSK) data modulation. Usually the PN sequence is 

a binary maximal length sequence or a Gold 

sequence [4]. Sometimes complex signature 

sequences are used. It has been shown [6], that using 

complex codes provides an improvement of 3 dB (in 

comparison with binary Gold sequences) against 

users interference.  

Here we consider a PSK data modulation, spread by 

a complex signature sequence. The baseband receiver 

signal at the output of the receiving filter can be 

written as : 

s t a h t kT n tk s
k

( ) ( ) ( )= − +
=−∞

+∞

∑                                (6) 

where h t( )   is the combined impulse response of the 

channel and the spreading code : 

h t c p t mTm c
m

P

( ) ( )= −
=

−

∑
0

1

                                         (7) 

and  p t e g c t( ) ( )( )= ∗ ∗                                          (8) 

P is the length of the spreading sequence. 

{ }c m Pm , = −0 1L  is the spreading sequence. 

ak  is the symbol number k . 

Tc is the chip period. 

Ts is the symbol period ( )T PTs c= . 

c t( ) is the channel filter (that modelises the channel 

echoes). 

e t( )  is the transmitting filter. 

g t( )  is the receiving filter. 

n t( ) is the noise at the output of the receiving filter. 

The baseband channel noise is assumed to be white,  

gaussian and centered.  

An interesting method to estimate h t( ) is proposed in 

[7]. It takes profit of blind identification techniques 

available for multiple FIR channels. Good results 

were obtained. The method implicitly assume that 

each symbol ak  has been precisely located in time. 

This is a strong requirement, since no method is 

known to perform time localization of the symbols  

without knowing the sequence. In this paper, we 

propose an approach that does not require knowledge 

of symbols times. It only needs previous estimate of 

the symbol period. The method is based on artificial 

neural networks techniques. 

 

 

3 Estimation of the spreading sequence 
To recover data information, we have to estimate 

h t( ) , without knowing the transmitter’s PN 

sequence. In this section we explain our method, 

which is based on artificial neural networks. 
 
3.1 Theoretical analysis 
The transmitted signal is the same as previously 

defined.  
The symbol period Ts  is assumed to be known, it can 

be estimated using cyclostationarity analysis [7]. The 

received signal is sampled, and we will note Te  the 

sampling period. We assume that Te  is such that 

T MTs e=  where M  is an integer.  

Let us note 
r
s t( ) the M-dimensional vector below : 

[ ]r
Ls t s t s t T s t T Te s e( ) ( ), ( ), , ( )= + + −                (9)       

where 
r
h t( )  and 

r
n t( )  are defined in the same way. 

From the signal samples, we can create a matrix 

S with M rows and N  columns, where N  is the 

number of temporal windows of duration Ts  in the 

signal used for estimation : 

S s t s t T s t N Ts s= + + −
















M
r

M

M
r

M

L

L

L

M
r

M

( ) ( ) ( ( ) )1    (10) 

Let us note t mT ts= +
0

, where 0
0

≤ <t Ts  

From equation (6) we can write : 

r r r
s t a h t m k T n tk s

k

( ) ( ( ) ) ( )= + − +
=−∞

+∞

∑ 0
                (11) 

 

r r r
s t a h t kT n tm k s

k

( ) ( ) ( )= + +−
=−∞

+∞

∑ 0
                           (12) 

Let us note 
r
h tk ( )

0
 the vector below : 

r
Lh t h t kT h t k T Tk s s e

T
( ) [ ( ), , ( ( ) )]

0 0 0
1= + + + −  

Hence we can write : 
r r r
s t a h t n tm k k

k

( ) ( ) ( )= +−∑ 0
                                (13) 

Since the time extension of h t( ) is limited, the sum 

has been limited to values of k for which 
r
h tk ( )

0
 is 

not null. In the sequel, we assume for clarity, that 
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h t( ) ≈ 0 for t outside the interval [ ]0,Ts . Hence, 
r
s t( )  can be written as follow : 

r r r r
s t a h t a h t n tm m( ) ( ) ( ) ( )= + ++ −0 0 1 1 0

                  (14) 

where 
r
h t

0 0
( )  is the M-dimensional vector 

containing the end of the spreading waveform (for a 

duration T ts −
0

) followed by zeros (for duration t
0
) . 

r
L Lh t h t h t T h T Te s e

T
0 0 0 0

0 0( ) [ ( ), ( ), , ( ), , , ]= + − . 
r
h t−1 0

( )  is the M-dimensional vector containing zeros 

(for a duration T ts −
0

) followed by the beginning of 

the spreading waveform (for duration y . 
r

L Lh t h h T h t Te e
T

− = −
1 0 0

0 0 0( ) [ , , , ( ), ( ), , ( )] . 

Hence, we can write the matrix S  as follow : 

S h a h a n tT T= + +−

r r r r r
0 0 1 1
. . ( )                                   (15) 

where 
r

La a a am m m m N
T= + + −[ , , , ]

1 1
 

r
h t

0 0
( )  and 

r
h t−1 0

( )  are orthogonal, and  the noise is 

uncorrelated with the signal. Hence the subspace 

spanned by 
r
h t

0 0
( )  and 

r
h t−1 0

( )  can be identified by 

a three layers neural network, whose hidden layer 

includes two neurons [8, 9, 10]. In fact we estimate 

h t( ) thanks to the second layer of weights. 

 

3.2 Description of the artificial neural 
network 

We create a feedforward network with three layers : a 

layer of the inputs, a hidden layer of two sigmoid 

neurons with hyperbolic tangent nonlinearities and an 

output layer of linear neurons. 
As the transmitted signal is complex, a neural 

network algorithm has been generalized to neural 

network with complex weights [9]. The network’s 

inputs are the columns of the matrix S , and the 

desired outputs are the same data as the inputs.  The 

weights are adjusted according to a backpropagation 

algorithm [10], which minimizes the mean square 

error between the network outputs and the desired 

ones. Contrary to classical use of neural networks, 

the useful information is not the outputs of the 

network, but the weights. In fact we recover the 

spreading sequence  in the second layer of weights. 

That is the reason why there is not previous train, but 

a training at each experiment. Hence we impose a 

condition to the two vectors corresponding  to the 

second layer of weights. The constraint does not 

allow the vectors to have energy in the same time at 

the same place. In this way, adding the two vectors 

gives us the spreading sequence used by the 

transmitter.  

 

3.3 Evaluation of the results 
As the weights are complex, we recover the 

spreading code with a phase indetermination. It is not 

a problem, because in any transmission system 

symbols phase is always indeterminate on the 

receiver side. Anyway, in our application, it can be 

useful to normalize the phase for results 

interpretation. The phase is calculated according to 

the expected sequence, to visualize the results, as 

stated below : 

let us note V  the spreading code found with the 

neural network, we visualize $V  such as 

{ }$ ReV Vz= , where z
V H

V

T

=
*

.
2 , with H the true 

sequence. 

 

 
4   Illustrative results 
In many spread spectrum transmission systems, the 

spreading code is real when the channel effects are 

omitted, then we introduce several results with real 

sequences, treated with neural networks, the weights 

of which are first real and then complex. Then we 

study a transmission system, where the code and the 

network’s weights are complex. To complete our 

work, we provide some results according to the 

signal to noise ratio (SNR) to the number of temporal 

windows N of duration Ts  and according to the 

length of the spreading sequence. 

 
4.1 Real sequence  

 
4.1.1 With real weights 

The studied PN sequence is a binary Gold 

code of length P = 31, and we consider a BPSK 

data modulation. The channel adds white, gaussian, 

centered, and real noise. The SNR is -5 dB (the 

signal power is less than the noise power). 
Fig. 1 shows the code used by the transmitter. 
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                 Fig. 1 : Transmitter’s PN code 
 
The first weight vector is shown on Fig. 2 
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                  Fig. 2 : First weight vector 
 

Fig. 3 shows the second weight vector. 
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                   Fig. 3 : second weight vector 
 

The first weight vector corresponds exactly to the end 

of the spreading sequence, whereas the end of the 

second weight vector corresponds to the opposite of 

the beginning of the code. Moreover we can observe 

that the constraint imposed to the vectors is well 

respected. There is only a problem of sign between the 

vectors, to recover the spreading code, we have to add 

the first one, with the opposite of the second one. It is 

a problem of phase indetermination.  
 
 

4.1.2 With complex weights 

The PN sequence is still a Gold code. It is the same 

as previously, and we consider now a QPSK 

modulation, damaged with a white, gaussian, 

centered and complex noise. The SNR is -10 dB. 
To visualize the results, we used the technique of  

phase normalization. 
 

Fig. 4 shows the estimated sequence (sum of the two 

weight vectors). 
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                           Fig. 4 : sum of two weight  vectors 

 
In comparison with Fig. 1, we recover exactly the 

spreading sequence, with a shift of ten positions left, 

because the received signal is not synchronized. 
 
4.2 complex sequence 

Let us now consider a complex sequence, the real 

and the complex parts of which are a Gold sequence. 

The information bearing signal is still a QPSK 

modulation, and the SNR is -10 dB. In this case we 

have to recover the real and imaginary parts of the 

sequence.  
 

Fig. 5 represents the real part of the code. 
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                  Fig. 5 : Real part of the code 
 
 
 
 
 

and Fig. 6,  the imaginary part 



��������	
����������������	������������������������������	����������������������� !�"���#�$%�&"�!'���!((!)

0 5 1 0 1 5 2 0 2 5 3 0 3 5
- 1 . 5

- 1

- 0 . 5

0

0 . 5

1

1 . 5

 
                  Fig. 6 : Imaginary part of the code 
 
Fig. 7 and 8 represent the results of the neural network 

estimation (respectively real and imaginary parts of 

the weights). 
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                  Fig. 7 : Real part of the weights 
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              Fig. 8 : Imaginary part of the weights 

 
If we compare Fig. 5 and Fig. 7, the signs of  real 

part of the weights correspond exactly with the real 

part of the spreading sequence. Furthermore the 

signs of the imaginary part of the weights correspond 

exactly to the imaginary part of the code (Fig. 6 and 

Fig. 8). 
 
 

4.3 Performances of the method  
Here we introduce some tables summarizing the 

performances of our method. 

 
4.3.1 Influence of the number of windows in the 

studied signal 
We study the influence of the number of temporal 

windows N included in the signal used to estimate 

the spreading sequence.  
For this experiment, the sequence length is P = 31, 

the modulation is a BPSK  and the SNR is equal to   

-12 dB. 
   

N 50 100 150 200 

nb_errors 5 2 0 0 

              

           Table 1 :Influence of the number of windows N 
 

nb_errors is the number of sign errors in the 

recovered  sequence . When N increases, the results 

are improved. 
 

4.3.2 Influence of the sequence length and the 
SNR 

The modulation signal is a QPSK filtered at the 

transmitter and the receiver sides, the spreading 

sequence is a complex code, and we study the 

number of errors with respect to the SNR for several 

sequence lengths. For our experiment, we consider 

sequences of length P = 31 63 127, , , the real and 

imaginary parts of which are different Gold 

sequences, and we have N = 200. We assume, for 

simplicity, that T PTs c= . So the signal to noise ratio 

on the correlator output can be expressed as a 

function of the signal to noise ratio on the correlator 

input : 
SNR P SNRout in=  

If we express the signal to noise ratio in dB : 
 

SNR P SNRout in= +10
10

log ( )  
Hence the error probability per symbol Pe  can be 

written as :  
 

Pe erfc
SNR

erfc
SNRout out=









 −























1

2 2
2

1

2 2
 

with erfc x e dtt

x

( ) = −
+∞

∫
2 2

π
 

This shows that the performance of a transmitted 

spread spectrum signal is better with long sequences 

than with short ones. 
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Here are our results for different sequence lengths 

and SNRin  (dB) 
 

  P  = 31  P  = 63  P   = 127 

SNR -2 -3 -4 -5 -6 -7 -9 -10 -11 

errors  0  1  4  0  1  2  0   0   2 

                             

      Table 2 : Influence of sequence length 
 

errors are the number of  signs errors in the sequence 

estimated by the neural network. 

We observe, that the results are improved, when the 

sequence is longer. We get a gain of 3 dB when we 

use a sequence length equals to 63 rather than 31, or 

a sequence length equals to 127 rather than 63, which 

corresponds about to : (10 63 10 31
10 10

log ( ) log ( )− ) 

and (10 127 10 63
10 10

log ( ) log ( )− ). The results 

follow approximately the same law as the error 

probability per symbol. 

   
 

5   Conclusion 
In the context of spectrum surveillance, a method for 

identification of a spread spectrum transmitter PN 

sequence has been proposed. Experimental results 

have been provided and show  good estimation 

results. Further work will include removal of sign or 

phase  indecision. 
 

 
References: 
[1] D. Thomas Magill, Francis D. Natali, Gwyn P. 

Edwards, "Spread-Spectrum Technology for 

Commercial Applications", Proceedings of the 
IEEE, Vol. 82, No. 4, April 1994, pp. 572- 584. 

[2] Raymond. L. Picholtz, Donald L. Schilling, 

Laurence B. Milstein, "Theory of Spread-

Spectrum Communications - A Tutorial", IEEE 
Transactions on Communications, Vol. COM- 30, 

No. 5, May 1982, pp. 855- 884. 

[3]  Charles E. Cook, Howard S. Marsh, "An 

introduction to spread spectrum", IEEE 
communications magazine, March 1983, pp. 8- 

16. 

[4] John G. Proakis, Digital communications, Third 

Edition, Mac Graw Hill International Editions, 

1995. 

[5] Dilip V. Sarwate, Michael B. Pursley, 

"Crosscorrelation Properties of  Pseudorandom 

and Related Sequences", Proceedings of the 
IEEE, Vol. 68, No. 5, May 1980, pp. 593- 619. 

[6] Alex W. Lam, Faith M. Özlütürk, "Performance 

Bounds for DS/SSMA Communications with 

Complex Signature Sequences", IEEE 
Transactions on communications, Vol. 40, No. 

10, October 1992, pp. 1607- 1614. 

[7] Michail K. Tsatsanis, Georgios B. Giannakis, 

"Blind Estimation of Direct Sequence Spread 

Spectrum Signals in Multipath", IEEE 
Transactions on signal processing, Vol. 45, No. 

5, May 1997, pp. 1241- 1252. 

[8] G. Burel, "Réseaux de Neurones en Traitement 

d’Images : des Modèles Théoriques aux 

Apllications Industrielles", Thèse de Doctorat de 
l’Université de Bretagne Occidentale, Brest , 

1991. 

[9] N. Rondel, "Réseaux de Neurones pour le 

Traitement d’Antenne et pour la Commande 

Référencée Capteur", Thèse de Doctorat de 
l’Université de Bretagne Occidentale, Brest , 

1996. 

[10] D. E. Rumelhart, G. E. Hinton, R. J. Williams, 

"Learning internal representations by error 

backpropagation", Parallel Distributed 

Processing, D. E. Rumelhart and J. L. Mc 

Clelland, chapter 8, Bradford book, MIT Press, 

1986. 

 


