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Introduction

An interleaver is a device commonly used in conjunction with error correcting codes to counteract the effect of burst errors (Fig. 1). Indeed, in many digital communication systems [START_REF] Proakis | Digital Communications[END_REF], error correcting codes are not used alone, because the encoder provides protection against uniformly distributed errors, but it is not robust with respect to burst errors.

The information data, which is usually binary, is rst encoded in order to add redundancy for protection against uniformly distributed random errors on the transmission channel. Then, the interleaver rearranges the encoded symbols so that the symbols from a codeword are separated by more than the typical length of a burst of errors [START_REF] Ramsey | Realization of Optimum Interleavers[END_REF]. As a consequence, the channel appears as a random-error channel to the decoder. The interleaved encoded data is then used to modulate a carrier. On the receiver side, the signal is demodulated, then sent to an inverse interleaver (which restores the initial order of the encoded symbols) and nally to the decoder. This requires that the receiver knows which encoder and which interleaver are used at the transmitter, in order to apply the appropriate inverse transformations. This knowledge is always available in the classical cooperative context. A good introduction to interleavers can be found in [3][4].

In this paper, we investigate the non-cooperative context, which is encountered in military applications or spectrum surveillance applications. In this context, a signal is intercepted, but we do not know which encoder and interleaver are used at the transmitter side. Only the interleaved data is known. Our objective, in this paper, is not to address the full problem of estimating the encoder and interleaver structures, but to provide an approach that helps to reach this objective. More precisely, what we propose is a method to:

Estimate the interleaver period

Perform a blind synchronization on the interleaver blocks

Estimate the code rate.

The method is based on linear algebra. The paper is organized as follows. In Section 2, we present the mathematical model for the encoder and the interleaver. In Section 3, we propose a method for blind estimation of the interleaver period. An approach for blind synchronization on the interleaver blocks is proposed in Section 4, and the estimation of the code rate is considered in Section 5. Finally, experimental results are provided in Section 6 and a conclusion is drawn in Section 7.

Mathematical model for the encoder and the interleaver

In the paper, for clarity of presentation, we will restrict the presentation to block encoders. Nevertheless, the method can be adapted to convolutional encoders by changing the sizes of the submatrices and their relative disposition.

A block encoder is dened by a full-rank generator matrix G c which transforms each block of k c information symbols into a block of n c encoded symbols (k c n c ). Representing the information block and the encoded block by vectors x and y, we have:

y G c x (1)
The ratio below is called the code rate:

r k c n c (2)
Usually, the symbols are binary, hence G c is a binary matrix and computations are performed modulo 2. A very simple example, which we will use throughout the paper to illustrate our approach, is the n c 3, k c 2 parity code, which generator matrix is:

G c 1 0 0 1 1 1 (3)
This encoder adds a parity bit to each block of 2 information bits.

As mentioned earlier, the encoded data is then sent to an interleaver which provides protection against bursts of errors. The interleaver can be modeled by a permutation matrix P, the size of which is n i n i , where n i is called "the interleaver period". This means that the interleaver performs a permutation within each block of n i encoded symbols. If we note y the vector representing a block of n i encoded symbols and z the vector representing the corresponding interleaved block, we have:

z Py (4)
In order to avoid useless complexity of the transmitter and receiver hardware, the interleaver period is a multiple of the size of the encoded block. That is:

n i b c n c (5)
where b c is an integer. Now, if we consider a block x of k i b c k c information symbols (that is the concatenation of b c information blocks), we can write:

y G c x (6) encoded data information data G c G c G c = n c k c n i k i k i matrix G c ~ ~ ~ vector y vector x Figure 2. Structure of matrix G c
where the structure of matrix G c is shown on Figure 2 (the gure shows an example for b c 3). Note that, since G c is full-rank, G c is also full-rank.

Then, using Equations 4 and 6,we can write:

z G i x (7)
where G i is the following n i k i matrix:

G i PG c (8)
Note that, since G c and P are full-rank, G i is also full-rank.

3 Blind estimation of the interleaver period

Principle of the approach

Our approach is based on dividing the interleaved stream into analysis blocks of an arbitrary size n a , then on building a matrix Z whose columns are these blocks, and then examining the behavior of the ratio dened below with respect to n a :

rank Z n a (9)
Let us illustrate the approach on a simple example. Consider the n c 3, k c 2 parity code dened above, and a random interleaver of period n i 12 (hence b c 4). From an interleaved stream containing 2400 symbols, we build matrix Z and compute for increasing values of n a . Figure 3 shows the obtained values of as a function of n a . We can note that is equal to 1, except when n a is a multiple of the interleaver period n i . As a consequence, the method allows to estimate the value of n i . The dashed curves are the theoretical upper and lower bounds, that will be explained later. 

Mathematical details

Now, let us detail the mathematical considerations that allowed us to propose this method and let us show why it works.

Let us consider a long interleaved data stream obtained from an intercepted signal. Figure 4 shows the relation between this interleaved data stream and the corresponding information stream. We recall that, in the noncooperative context, only the interleaved data stream is known. Everything else (the large matrix, the submatrices G i , their sizes, the information stream, etc.) is unknown.

If we divide the interleaved stream into analysis blocks of an arbitrary size n a , as shown on the gure, the submatrix G a which represents the transformation between information data and an analysis block varies from one block to another. However, if n a is a multiple of the interleaver period n i , the submatrix G a is the same matrix for all analysis blocks, as shown on Figure 5.

Therefore, if n a is a multiple of the interleaver period (i.e. n a b i n i , where b i is an integer), we can write:

Z G a X ( 10 
)
where Z is a matrix whose columns are the interleaved blocks and X a matrix whose columns are the corresponding (overlapping) information blocks. The length of the intercepted stream is assumed sufcient to have the number of columns in matrix Z greater than the number of rows. Due to the equation above, the rank of matrix Z is subject to the following inequality:

rank Z min k a n a (11)
because, due to equation 10, the rank of Z cannot be greater than the rank of G a . And the rank of G a , which interleaved data information data

G i = n i n a k i k a matrix G a G i G i G i G i G i G i G i G i Figure 4. Structure of matrices G a (when n a is not a mul- tiple of n i )
is an n a k a matrix, cannot be higher than its smallest dimension.

If we examine in more details the structure of matrix G a (see Figure 5), we can obtain a closer upper bound:

rank Z min b i 1 k i min d k i min n i d k i n a ( 12 
)
where d is an integer which represents the unknown desynchronization between interleaver blocks and analysis blocks (0 d n i 1). In practice, if the length of the observed interleaved stream is sufcient, this close upper bound is often reached because there is enough diversity in the data.

Then, since k i n i k c n c r, the upper bound for the ratio rank Z n a is:

min r 1 b i r min r min 1 r 1 (13)
where

d n a (14)
and 0 1 b i 1 n a . Please note that the obtained value of is the same for and 1

, hence we can restrict the study to 0

1 2. interleaved data information data G i = n i n a k i k a matrix G a G i G i G i G i G i G i G i G i n i -d d Figure 5. Structure of matrix G a when n a is a multiple of n i (here n a 3n i )
To avoid boring details, let us examine only the case where r 1 2 (results for r 1 2 are similar and trivial to obtain). Then, we have two intervals for to consider: For 0 1 r (hence r 1 1), equation 13 becomes:

r b i (15)
For 1 r 1 2 (hence 1 2 1 r), equation 13 becomes:

r 1 r b i (16)
Finally, whichever the unknown desynchronization is, we can always write:

r 1 r b i (17)
This "desynchronization independent" upper bound is shown on Figure 3. It is easy to see that, when b i is suf-ciently large, this upper bound is less than one, hence we are sure that noticeable decreases of will be observed. Sometimes (depending on the desynchronization between the analysis blocks and the interleaver blocks) this "desynchronization independent" upper bound is reached, as shown on Figure 6. 4 Blind synchronization with the interleaver blocks.

Once the interleaver period n i is estimated, we set the size of the analysis blocks to n a n i , and we skip the rst d symbols in the interleaved stream (0 d n i 1 . If we plot versus d, we obtain the result shown on Figure 7. Here, the initial desynchronization of the intercepted interleaved stream was d 9, and we can note that the minimum of is obtained for d d. Hence, locating the minimum of allows to estimate d, and then to synchronize the analysis blocks with the interleaver blocks.

This result is not difcult to explain. Indeed, when we skip the rst d symbols, Equation 14 becomes:

mod d d n i 1 (18) 
and, since b i 1 (because n a n i ), equations 15 and 16 become: For 0 1 r (hence r 1 1):

r (19) !"#$%#& '( For 1 r 1 2 (hence 1 2 1 r): 1 (20)
Hence, since in practice the close upper bound is usually reached, we can note that the minimum of is expected for 0, that is for d d. We will see, in the next Section, that when d d, we also have r (this result can be used to estimate the code rate r). versus n a when the analysis blocks are synchronized We can note that when n a is a multiple of the interleaver period n i , the value of becomes 2 3, which, in fact, is exactly the code rate ( r k c n c 2 3 ). Hence, we obtain the value of the code rate.

Blind estimation of the code rate

Again, this result is not difcult to explain. If we skip the rst d symbols of the interleaved stream, we are synchronized on the interleaver blocks: the structure of the submatrices G a is shown on gure 9.

From the structure of G a , we can see that G a is fullrank (because G i is full-rank, see Section 2). Hence: In practice, in order to save computation time, it is not necessary to perform these computations (unless for ver-ication), nor to draw gure 8, because during the blind synchronization process, the minimum value obtained for was r (see gure 7). 

G i = n i n a k i k a matrix G a G i G i G i G i G i G i G i G i

Experimental results

In this section we show experimental results obtained with a n c 7 k c 4 Hamming code and a random interleaver of period n i 28. We used an interleaved stream of 3584 symbols for analysis. The desynchronization was d 22.

Figure 10 shows the obtained values of with respect to the size of the analysis blocks ( n a ). As expected, we can note that the value of decreases when n a is a multiple of the interleaver period. Once n i is estimated, we set n a n i and we compute the value of with respect to d, which is the number of skipped symbols (Fig. 11). As expected, the minimum value is equal to the code rate (r 4 7) and it is obtained for d d 22. 

Conclusion

In this paper, we have proposed an approach to estimate some encoder and interleaver characteristics in a non cooperative context. The approach is based on linear algebra.

Thanks to the structure of transformation matrices, we have shown that the behavior of the normalized rank of matrix Z, whose columns are analysis blocks taken from the intercepted interleaved stream, provides a lot of information. This information allows to estimate the interleaver period and the code rate, as well as to perform a blind synchronization with the interleaver blocks.

Further work will include extraction of more information (interleaver permutation matrix, encoder generator matrix) from the synchronized analysis blocks.

Figure 1 .

 1 Figure 1. Encoder and Interleaver

Figure 3 .

 3 Figure 3. Estimation of the interleaver period (the dashed curves are lower and upper bounds).

Figure 6 .

 6 Figure 6. Estimation of the interleaver period: in this example, the upper bound is reached.
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 7 Figure 7. Blind synchronization with the interleaver blocks (the dashed horizontal line shows the code rate).
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Figure 11 .

 11 Figure 11. Blind synchronization with the interleaver blocks (Hamming code). The dashed horizontal line shows the code rate.