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ABSTRACT
In most digital transmission systems, the data stream is rst
encoded, then sent to an interleaver that rearranges the en-
coded symbols in order to provide protection against error
bursts. In this paper, we consider analysis of an interleaved
stream in a non cooperative context (i.e. military or spec-
trum surveillance application). In this context, the encoder
and the interleaver used by the transmitter are unknown.
We propose an approach that is able to estimate useful in-
formation, such as the interleaver period and the code rate.
The method uses only the intercepted interleaved stream.
Furthermore, we are able to perform a blind synchroniza-
tion on the interleaver blocks.

The approach is based on linear algebra theory: we
show that the normalized rank of a matrix Z (whose
columns are analysis blocks taken from the interleaved
stream) decreases when the size of the analysis blocks is
a multiple of the interleaver period. Furthermore, we show
that the maximum decrease is obtained when the analysis
blocks are synchronized with the interleaver blocks, and
that it is linked to the code rate.

KEY WORDS
Communication Systems, Interleaver, Blind Estimation,
Non-Cooperative, Coding, Digital Transmissions,

1 Introduction

An interleaver is a device commonly used in conjunction
with error correcting codes to counteract the effect of burst
errors (Fig. 1). Indeed, in many digital communication
systems [1], error correcting codes are not used alone, be-
cause the encoder provides protection against uniformly
distributed errors, but it is not robust with respect to burst
errors.

The information data, which is usually binary, is rst
encoded in order to add redundancy for protection against
uniformly distributed random errors on the transmission
channel. Then, the interleaver rearranges the encoded sym-
bols so that the symbols from a codeword are separated by
more than the typical length of a burst of errors [2]. As a
consequence, the channel appears as a random-error chan-
nel to the decoder. The interleaved encoded data is then
used to modulate a carrier.
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Figure 1. Encoder and Interleaver

On the receiver side, the signal is demodulated, then
sent to an inverse interleaver (which restores the initial or-
der of the encoded symbols) and nally to the decoder. This
requires that the receiver knows which encoder and which
interleaver are used at the transmitter, in order to apply the
appropriate inverse transformations. This knowledge is al-
ways available in the classical cooperative context. A good
introduction to interleavers can be found in [3][4].

In this paper, we investigate the non-cooperative con-
text, which is encountered in military applications or spec-
trum surveillance applications. In this context, a signal is
intercepted, but we do not know which encoder and inter-
leaver are used at the transmitter side. Only the interleaved
data is known. Our objective, in this paper, is not to ad-
dress the full problem of estimating the encoder and inter-
leaver structures, but to provide an approach that helps to
reach this objective. More precisely, what we propose is a
method to:

Estimate the interleaver period

Perform a blind synchronization on the interleaver
blocks

Estimate the code rate.

The method is based on linear algebra. The paper is
organized as follows. In Section 2, we present the mathe-
matical model for the encoder and the interleaver. In Sec-
tion 3, we propose a method for blind estimation of the
interleaver period. An approach for blind synchronization
on the interleaver blocks is proposed in Section 4, and the
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estimation of the code rate is considered in Section 5. Fi-
nally, experimental results are provided in Section 6 and a
conclusion is drawn in Section 7.

2 Mathematical model for the encoder and
the interleaver

In the paper, for clarity of presentation, we will restrict the
presentation to block encoders. Nevertheless, the method
can be adapted to convolutional encoders by changing the
sizes of the submatrices and their relative disposition.

A block encoder is dened by a full-rank generator
matrix Gc which transforms each block of kc information
symbols into a block of nc encoded symbols (kc nc).
Representing the information block and the encoded block
by vectors x and y, we have:

y Gcx (1)

The ratio below is called the code rate:

r
kc
nc

(2)

Usually, the symbols are binary, hence Gc is a binary
matrix and computations are performed modulo 2. A very
simple example, which we will use throughout the paper to
illustrate our approach, is the nc 3, kc 2 parity code,
which generator matrix is:

Gc

1 0
0 1
1 1

(3)

This encoder adds a parity bit to each block of 2 in-
formation bits.

As mentioned earlier, the encoded data is then sent to
an interleaver which provides protection against bursts of
errors. The interleaver can be modeled by a permutation
matrix P, the size of which is ni ni , where ni is called
“the interleaver period”. This means that the interleaver
performs a permutation within each block of ni encoded
symbols. If we note y the vector representing a block of ni
encoded symbols and z the vector representing the corre-
sponding interleaved block, we have:

z Py (4)

In order to avoid useless complexity of the transmitter
and receiver hardware, the interleaver period is a multiple
of the size of the encoded block. That is:

ni bcnc (5)

where bc is an integer. Now, if we consider a block x
of ki bckc information symbols (that is the concatenation
of bc information blocks), we can write:

y Gcx (6)
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Figure 2. Structure of matrix Gc

where the structure of matrix Gc is shown on Figure 2
(the gure shows an example for bc 3). Note that, since
Gc is full-rank, Gc is also full-rank.

Then, using Equations 4 and 6,we can write:

z Gi x (7)

where Gi is the following ni ki matrix:

Gi PGc (8)

Note that, since Gc and P are full-rank, Gi is also
full-rank.

3 Blind estimation of the interleaver period

3.1 Principle of the approach

Our approach is based on dividing the interleaved stream
into analysis blocks of an arbitrary size na , then on build-
ing a matrix Z whose columns are these blocks, and then
examining the behavior of the ratio dened below with
respect to na:

rank Z
na

(9)

Let us illustrate the approach on a simple example.
Consider the nc 3, kc 2 parity code dened above,
and a random interleaver of period ni 12 (hence bc 4).
From an interleaved stream containing 2400 symbols, we
build matrix Z and compute for increasing values of na.
Figure 3 shows the obtained values of as a function of
na . We can note that is equal to 1, except when na is



���������	
���	
���������
�
��
����������
��	
�������	
��
	������������	
����
���������������������� �!"�#$%#&�����������		����
���'��(��

a multiple of the interleaver period ni . As a consequence,
the method allows to estimate the value of ni . The dashed
curves are the theoretical upper and lower bounds, that will
be explained later.
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Figure 3. Estimation of the interleaver period (the dashed
curves are lower and upper bounds).

3.2 Mathematical details

Now, let us detail the mathematical considerations that al-
lowed us to propose this method and let us show why it
works.

Let us consider a long interleaved data stream ob-
tained from an intercepted signal. Figure 4 shows the re-
lation between this interleaved data stream and the corre-
sponding information stream. We recall that, in the non-
cooperative context, only the interleaved data stream is
known. Everything else (the large matrix, the submatrices
Gi , their sizes, the information stream, etc.) is unknown.

If we divide the interleaved stream into analysis
blocks of an arbitrary size na , as shown on the gure, the
submatrix Ga which represents the transformation between
information data and an analysis block varies from one
block to another. However, if na is a multiple of the in-
terleaver period ni , the submatrix Ga is the same matrix
for all analysis blocks, as shown on Figure 5.

Therefore, if na is a multiple of the interleaver period
(i.e. na bini , where bi is an integer), we can write:

Z Ga X (10)

where Z is a matrix whose columns are the inter-
leaved blocks and X a matrix whose columns are the cor-
responding (overlapping) information blocks. The length
of the intercepted stream is assumed sufcient to have the
number of columns in matrix Z greater than the number of
rows. Due to the equation above, the rank of matrix Z is
subject to the following inequality:

rank Z min ka na (11)

because, due to equation 10, the rank of Z cannot be
greater than the rank of Ga . And the rank of Ga, which
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Figure 4. Structure of matrices Ga (when na is not a mul-
tiple of ni )

is an na ka matrix, cannot be higher than its smallest
dimension.

If we examine in more details the structure of matrix
Ga (see Figure 5), we can obtain a closer upper bound:

rank Z
min bi 1 ki min d ki min ni d ki na

(12)

where d is an integer which represents the unknown
desynchronization between interleaver blocks and analysis
blocks (0 d ni 1). In practice, if the length of the
observed interleaved stream is sufcient, this close upper
bound is often reached because there is enough diversity in
the data.

Then, since ki ni kc nc r , the upper bound for
the ratio rank Z na is:

min r
1
bi

r min r min 1 r 1

(13)

where

d
na

(14)

and 0 1 bi 1 na . Please note that the ob-
tained value of is the same for and 1 , hence we can
restrict the study to 0 1 2.
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Figure 5. Structure of matrix Ga when na is a multiple of
ni (here na 3ni )

To avoid boring details, let us examine only the case
where r 1 2 (results for r 1 2 are similar and trivial
to obtain). Then, we have two intervals for to consider:

For 0 1 r (hence r 1 1), equation
13 becomes:

r
bi

(15)

For 1 r 1 2 (hence 1 2 1 r),
equation 13 becomes:

r
1 r

bi
(16)

Finally, whichever the unknown desynchronization is,
we can always write:

r
1 r

bi
(17)

This “desynchronization independent” upper bound is
shown on Figure 3. It is easy to see that, when bi is suf-
ciently large, this upper bound is less than one, hence
we are sure that noticeable decreases of will be ob-
served. Sometimes (depending on the desynchronization
between the analysis blocks and the interleaver blocks) this
“desynchronization independent” upper bound is reached,
as shown on Figure 6.
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Figure 6. Estimation of the interleaver period: in this ex-
ample, the upper bound is reached.

4 Blind synchronization with the interleaver
blocks.

Once the interleaver period ni is estimated, we set the size
of the analysis blocks to na ni , and we skip the rst d
symbols in the interleaved stream (0 d ni 1 . If we
plot versus d, we obtain the result shown on Figure 7.
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Figure 7. Blind synchronization with the interleaver blocks
(the dashed horizontal line shows the code rate).

Here, the initial desynchronization of the intercepted
interleaved stream was d 9, and we can note that the
minimum of is obtained for d d. Hence, locating the
minimum of allows to estimate d, and then to synchro-
nize the analysis blocks with the interleaver blocks.

This result is not difcult to explain. Indeed, when we
skip the rst d symbols, Equation 14 becomes:

mod
d d

ni
1 (18)

and, since bi 1 (because na ni ), equations 15
and 16 become:

For 0 1 r (hence r 1 1):

r (19)
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For 1 r 1 2 (hence 1 2 1 r):

1 (20)

Hence, since in practice the close upper bound is usu-
ally reached, we can note that the minimum of is ex-
pected for 0, that is for d d. We will see, in the next
Section, that when d d, we also have r (this result
can be used to estimate the code rate r).

5 Blind estimation of the code rate

Once synchronization is done, let us skip the rst d sym-
bols of the interleaved stream, and compute for increas-
ing values of na again. We obtain the result shown on Fig-
ure 8.
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Figure 8. versus na when the analysis blocks are syn-
chronized

We can note that when na is a multiple of the inter-
leaver period ni , the value of becomes 2 3, which, in
fact, is exactly the code rate ( r kc nc 2 3 ). Hence,
we obtain the value of the code rate.

Again, this result is not difcult to explain. If we skip
the rst d symbols of the interleaved stream, we are syn-
chronized on the interleaver blocks: the structure of the
submatrices Ga is shown on gure 9.

From the structure of Ga , we can see that Ga is full-
rank (because Gi is full-rank, see Section 2). Hence:

rank Z ka (21)

and
ka
na

(22)

Since ka bi ki bi bckc and na bi ni bi bcnc,
we obviously have:

r (23)

In practice, in order to save computation time, it is not
necessary to perform these computations (unless for ver-
ication), nor to draw gure 8, because during the blind
synchronization process, the minimum value obtained for

was r (see gure 7).
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Figure 9. Structure of matrix Ga when the analysis blocks
are synchronized

6 Experimental results

In this section we show experimental results obtained with
a nc 7 kc 4 Hamming code and a random inter-
leaver of period ni 28. We used an interleaved stream
of 3584 symbols for analysis. The desynchronization was
d 22.

Figure 10 shows the obtained values of with respect
to the size of the analysis blocks ( na ). As expected, we
can note that the value of decreases when na is a multiple
of the interleaver period.
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Figure 10. Estimation of the interleaver period (Hamming
code)

Once ni is estimated, we set na ni and we compute
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the value of with respect to d, which is the number of
skipped symbols (Fig. 11). As expected, the minimum
value is equal to the code rate (r 4 7) and it is obtained
for d d 22.
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Figure 11. Blind synchronization with the interleaver
blocks (Hamming code). The dashed horizontal line shows
the code rate.

7 Conclusion

In this paper, we have proposed an approach to estimate
some encoder and interleaver characteristics in a non coop-
erative context. The approach is based on linear algebra.

Thanks to the structure of transformation matrices, we
have shown that the behavior of the normalized rank of ma-
trix Z , whose columns are analysis blocks taken from the
intercepted interleaved stream, provides a lot of informa-
tion. This information allows to estimate the interleaver
period and the code rate, as well as to perform a blind syn-
chronization with the interleaver blocks.

Further work will include extraction of more infor-
mation (interleaver permutation matrix, encoder generator
matrix) from the synchronized analysis blocks.
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