Digital Transmissions with chaotic signals: Fast receiver synchronization using duplicated chaotic oscillators
Gilles Burel, Xavier Sammut

To cite this version:

HAL Id: hal-03223376
https://hal.univ-brest.fr/hal-03223376
Submitted on 19 Mar 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Copyright
DIGITAL TRANSMISSIONS WITH CHAOTIC SIGNALS:
FAST RECEIVER SYNCHRONIZATION USING DUPLICATED CHAOTIC OSCILLATORS

G. Burel and X. Sammut

L.E.S.T. – UMR CNRS 6616
University of Brest
6 avenue Le Gorgeu, 29285 Brest cedex, France
Phone: +33-2-9801-6246, Fax:+33-2-9801-6395,
Email: Gilles.Burel@univ-brest.fr

ABSTRACT

In recent years, synchronization of chaotic systems and its potential application to secure digital communications have received ever increasing attention.

Due to their high sensitivity to initial conditions, chaotic oscillators are difficult to synchronize. Furthermore, synchronization must be performed for each new symbol, so synchronization time puts a strong limitation on possible bit rates (the symbol period cannot be less than the synchronization time). In this paper, we propose an improvement to the structure of a chaotic receiver, in order to reduce the time needed for synchronization. The idea is to duplicate each receiver chaotic oscillator. A free-mode version of each receiver oscillator is used as a short term dynamic memory. At the end of each symbol period, information is transferred between the copies and the initial oscillators.

Experimental results show that using this method yields to a significant reduction of synchronization time.

1. INTRODUCTION

In a conventional digital communication system, bit sequences are mapped to sinusoids, or sums of sinusoids. In a chaotic communication system, chaotic waveforms are used instead of sinusoids. Research in chaotic systems is motivated by its potential interest for secure communications. Indeed, a chaotic signal is very difficult to demodulate for someone who does not know the parameters of the transmitter chaotic oscillators.

A chaotic oscillator is a system which is extremely dependent on the initial conditions [1]. If we consider two identical chaotic oscillators, an extremely small difference of their initial state causes the signals they generate to quickly diverge. A chaotic signal is therefore unpredictable in the long term.

Synchronization is the hard point in a chaotic digital communication system [3]. Indeed, the feasibility of chaotic oscillators synchronization is not obvious, because the characteristic of chaotic oscillators is sensitive dependence to initial conditions. However, it has been proved that synchronization is possible if the chaotic oscillator is modified in order to evolve in a driven-mode: an error signal, based on the received signal, is injected in the oscillator equations [4][5].

In this paper, we propose a contribution to synchronization of a chaotic receiver, that reduces the time required for convergence of synchronization. The idea is to duplicate each chaotic oscillator, one copy evolves in a driven-mode, while the other evolves in a free-mode. The latter is used as a short term dynamic memory.

The paper is organized as follows: in Section 2, the chaotic oscillator we use is briefly described. In Section 3, we show how it can be synchronized. Section 4 presents a chaotic communication system: we show that the long synchronization time causes reception errors if the symbol period is too small. In Section 5, we study the speed of divergence of a chaotic oscillator. Using this result, we can say that a free-mode chaotic oscillator can be used as a short term dynamic memory if the symbol period is less than its divergence time. This idea is used in Section 6, where we present our approach. Experimental results show that the method is able to considerably reduce the synchronization time.

2. CHUA’S CHAOTIC OSCILLATOR

Chua’s circuit [2][4][6] is shown on figure 1. It contains a nonlinear negative resistance, which provides energy and is essential to obtain a chaotic behavior.
The circuit can be realized, or simulated using differential equations (where $G = 1 / R$):

$$\frac{dV_1}{dt} = \frac{G}{C_1} (V_2 - V_1) - \frac{1}{C_1} f(V_1)$$ (1)

$$\frac{dV_2}{dt} = \frac{G}{C_2} (V_1 - V_2) + \frac{1}{C_2} I_1$$ (2)

$$\frac{dI_1}{dt} = -\frac{1}{L} V_2$$ (3)

$$f(V_i) = G_a V_i + \frac{1}{2} (G_a - G_b) [V_i + E] - [V_i - E]$$ (4)

In the sequel, we will use the same parameters as in [5]: $L = 18$ mH, $C_1 = 10$ nF, $C_2 = 100$ nF, $R = 1800$ Ohms, $G_a = -50 / 66$ mS, $G_b = -9 / 22$ mS, $E = 1$ V.

Figures 2 and 3 show respectively an example of the oscillator output signal (V_1 as a function of time), and V_2 as a function of V_1. Figure 3 can be used for theoretical study of the oscillator. It clearly shows two attractors.

3. SYNCHRONIZATION OF A CHAOTIC OSCILLATOR

A chaotic signal $V_i(t)$ is generated by a chaotic oscillator, and transmitted over a channel which adds a gaussian and centered white noise. The channel may be subject to interruptions of transmission. The receiver has the same oscillator as the transmitter, and must synchronize it, using the received signal $r(t)$ only.

Synchronization is performed by computing an error signal $e(t)$, which is the difference between the received signal $r(t)$ and the estimated transmitted signal $\hat{V}(t)$. This error is injected in the circuit. The circuit equations in driven-mode are:

$$\frac{d\hat{V}_1}{dt} = \frac{G}{C_1} (\hat{V}_2 - \hat{V}_1) - \frac{1}{C_1} f(\hat{V}_1) + \frac{G_a}{C_1} e(t)$$ (5)

$$\frac{d\hat{V}_2}{dt} = \frac{G}{C_2} (r(t) - \hat{V}_2) + \frac{1}{C_2} \hat{I}_1$$ (6)

$$\frac{d\hat{I}_1}{dt} = -\frac{1}{L} \hat{V}_2$$ (7)

$$f(\hat{V}_i) = G_a \hat{V}_i + \frac{1}{2} (G_a - G_b) [\hat{V}_i + E] - [\hat{V}_i - E]$$ (8)

$$e(t) = r(t) - \hat{V}(t)$$ (9)

In our experiments, we used the following value for the coupling resistance: $R_e = 1 / G_e = 30000$ Ohms.

The transmitted signal is shown on figure 2. Figure 4 shows the received signal: it is noisy and interrupted. Figure 5 shows the output of the receiver chaotic oscillator (i.e. estimated transmitted signal). Figure 6 shows the error signal (difference between figures 5 and 2).
We can note that the transmission interruption causes the receiver to progressively desynchronize (the error increases: see fig. 6). Then, when transmission is restored, the error decreases: this means that the receiver resynchronizes. We can also note that the noise is almost totally suppressed by the receiver oscillator (figure 5).

4. APPLICATION TO DIGITAL COMMUNICATIONS

Let us consider a digital transmission with binary symbols. On the transmitter side, we use two chaotic oscillators:

- Oscillator A was defined in section 2
- Oscillator B is also a Chua’s circuit, but the parameters are:
 \[L = 20 \text{ mH}, \ C_1 = 10 \text{ nF}, \ C_2 = 80 \text{ nF}, \ R = 1960 \text{ Ohms} \]
 \[G_a = -\frac{50}{66} \text{ mS}, \ G_b = -\frac{9}{22} \text{ mS}, \ E = 1.5 \text{ V} \]

The transmitted signal is built as follows: time is divided into windows of equal duration. Each window is used to transmit one symbol. When the symbol is 0, the window contains the signal from oscillator A, and when the symbol is 1, it contains the signal from oscillator B.

On the receiver side, we use the same oscillators, but in driven-mode. The decisions are made by a correlator: the received signal is correlated with the driven-mode oscillators output. If oscillator A (resp. B) provides the highest correlation, the estimated transmitted symbol is 0 (resp. 1).

Let us consider the transmission of the binary sequence: 1 0 1 0 1. Figures 7 and 8 show the output signal of transmitter oscillators A and B, and figure 9 shows the received signal.
Figures 10 and 11 show the error signals of receiver oscillators A and B. Vertical lines have been added manually on figures 10 and 11 to show (approximately) the limits of the time windows. For instance, let us consider the third time window. The transmitted bit is 1, hence the transmitted signal comes from oscillator B. We can see that the receiver oscillator B synchronizes (the error decreases), while oscillator A cannot synchronize. Hence, the output signal of receiver oscillator B will be the closest to the received signal and the decision will be correct. However, we can see that oscillator B requires approximately two thirds of the symbol period to synchronize. Hence, it is not possible to increase the bit rate without causing reception errors.

5. SPEED OF DIVERGENCE OF A CHAOTIC OSCILLATOR

Let us consider two identical chaotic oscillators of type A. Even when they start from extremely close initial conditions, their output signals quickly diverge. Figure 12 shows the natural logarithm of the absolute value of their output signals difference, with respect to time.
This figure clearly shows that the oscillators diverge exponentially until $t=0.006$. At that time, their output signals have become totally independent.

6. FAST SYNCHRONIZATION

6.1 Principle

Let us consider the third time period again (figure 11). At the end of the first time period, oscillator B was synchronized because the transmitted bit was 1. But it was desynchronized during the second time period because the transmitted bit was 0. Hence, in the third time period, it requires time to synchronize again. In fact, each time a 0 is transmitted, oscillator B desynchronizes, and it needs time to resynchronize when a 1 is transmitted.

Now, if we could imagine a way to partially preserve synchronization during the second time period, it is clear that the synchronization phase during the third time period would be considerably shorter.

The time period is approximately 1.2×10^{-3}. Figure 12 shows that the time required to fully desynchronize a free-mode oscillator is about 5 times larger. Hence, we propose to use free-mode oscillators as short term dynamic memories in the receiver. Figure 13 shows the proposed approach. At the end of each time period:

- The state of the best synchronized driven-mode oscillator is loaded into its free-mode copy. Hence, if the driven-mode oscillator desynchronizes during the next time period, its free-mode copy will remain almost synchronized.
- The state of the other oscillator is loaded from its free-mode copy.

One could object that, if a long sequence of 0 is transmitted, the free-mode oscillator B will also desynchronize. That is true, but 2 remarks can be done:

1. The probability of a long sequence of 0 is low.
2. There exist bit stream coding strategies that avoid long sequences of 0.

6.2 Experimental results

The bit stream is the same as in Section 4. Figures 14 and 15 show the error signals of driven-mode receiver oscillators A and B. These figures are to be compared with figures 10 and 11. Here, we can see that the synchronization time of the driven-mode oscillator which corresponds to the transmitted bit is always very fast. Hence, the symbol period could be reduced (i.e. the bit rate could be increased).
7. CONCLUSION

We have proposed a method to increase the synchronization speed of chaotic oscillators in a digital transmission context. The method is based on transfer of

information between driven-mode and free-mode oscillators, the latter being used as dynamic short term memories.

There is no doubt that chaotic oscillators are promising systems for secure digital communications. However, research in this area is still young, and the robustness of these methods in difficult environments (noise, echoes) still remains to be improved.

REFERENCES

