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Abstract : � The paper is concerned with the application of probability theory to Multi-Input Multi-Output
(MIMO) transmission systems. We provide a theoretical formula to compute the error rate in such systems.
Furthermore, analysis of this formula shows that simulation results are not reliable at high SNR. Finally, we
provide an expression to compute the relative precision of the simulation results. This expression is helpful to
know which simulation results are reliable and which are not.
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1 Introduction

1.1 MIMO transmission systems

Recent research [2] has shown that very high spectral
ef�ciency can be obtained over rich scattering wire-
less channels by using multielement antenna arrays at
both transmitter and receiver (i.e. MIMO: Multi-Input,
Multi-Output transmitters). The principle of MIMO
transmission is as follows (Fig. 1): nT digital trans-
mitters operate co-channel at a given symbol rate with
synchronized symbol timing. n R digital receivers (n R ≥
nT ) also operate co-channel, with synchronized timing.
On the receiver side, an optimal Maximum-Likelihood
algorithm (or a suboptimal, but faster one, such as [3]) is
used to estimate the transmitted symbols from the com-
ponents of the received mixture.
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Figure 1: Principle of MIMO transmission

The MIMO channel is modelled by an n R × nT ran-
dom matrix H , and the received vector y (dimension

nR) is given by the equation below:

y = H x + n (1)

where n is the noise vector (dimension n R) and x the
transmitted vector (dimension nT ). The noise covari-
ance matrix is σ 2 InR .

Typical applications of MIMO systems are indoor
(wireless local area networks) or urban mobile wire-
less communications. Using MIMO, spectral ef�cien-
cies far above the ef�ciency provided by single antenna
transmission systems can be obtained (e.g. 20 bits/s/Hz
[3]). The most widely used model for indoor or urban
channels is the Rayleigh model [4]: the entries of H
are independent identically distributed circular complex
gaussian random variables with zero mean and unit vari-
ance. Please note that considering unit variance does
not imply any loss of generality because multiplying y
by any normalization constant does not modify the error
rate. Similarly, the total transmit power is usually nor-
malized to one (i.e. E

�
�x�2

�
= 1). In this paper, we

will also use these usual normalization hypotheses. Due
to this normalization, the signal to noise ratio (SNR) in
dB will be de�ned as SN R = −20 log10 (σ ).

In the sequel, for illustration purpose, the Figures
provided correspond to results obtained for a MIMO
system with nT = 2 transmit antennas and n R = 3 re-
ceive antennas, and BPSK (Binary Phase Shift Keying)
signalling. However, the equations, the theory, and the
conclusions are not restricted to this particular case.
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1.2 Problems with simulation of MIMO trans-
mission systems

A problem, that people in charge of designing MIMO
systems are faced to, is the duration of simulations. In
most work related in the literature, when a MIMO sys-
tem is simulated in order to estimate its error charac-
teristic (i.e. probability of error with respect to channel
signal to noise ratio), the following Monte Carlo tech-
nique is used:

� NH channel matrices are randomly chosen

� For each channel matrix, Nx vectors are successively
transmitted (each vector is subject to random noise).

� The receiver estimates the transmitted vector and
this is compared to the true transmitted vector.

� The number of false estimated vectors is used to es-
timate the probability of error.

The total number of transmitted vectors during the
simulation is then N = NH Nx . A reason for not choos-
ing a new random channel matrix for each transmitted
vector is that the receiver algorithms must be reopti-
mized for each new channel matrix (hence, adding more
computational requirements). Another reason is that the
channel is assumed almost stationary during the trans-
mission of Nx vectors.

Figure 2 (lower curve) shows a typical example of
simulation results. The receiver is a maximum like-
lihood. The number of simulated channel matrices is
NH = 100 and for each channel matrix, Nx = 2 × 106

vectors are transmitted. Hence, each point of the curve
is obtained by estimating the probability of error from a
total of N = 2× 108 transmitted vectors.

From probability theory, it is well known that, if the
realizations are independent, the expected value of the
number of errors is Pe N and the standard deviation is√

Pe (1− Pe) N . Hence, the relative precision, de�ned
as the ratio between the standard deviation and the av-
erage value is:

ρ =
�
(1− Pe)

Pe N
(2)

For N = 2 × 108 and a probability of error equal to
10−6, we still have ρ = 7% . Hence, we could expect
the lower curve on �gure 2 to be a relatively good esti-
mation of the MIMO system error characteristic. How-
ever, if we increase the number of simulated channel
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Figure 2: Impact of the number of channel matrices on
simulation results

matrices by a factor of ten (i.e. NH = 1000) and de-
crease Nx by the same factor (i.e. Nx = 2 × 105),
in order to keep the same number of realizations N =
2× 108, we obtain the upper curve. The main observa-
tion is that, at high SNR, the estimated probability of er-
ror has considerably increased (by almost a factor 100,
that is a 10000%, far above the 7% expected relative
precision). Hence, the reliability of the obtained curves
is highly questionable. Replaying the same experiment
many times shows that the estimated error curve ob-
tained with NH = 1000 is �almost always� far above
the estimated curve obtained with NH = 50.

In fact, it is not dif�cult to guess that the reason for
which the relative precision is not 7% as expected: as
explained above, the same channel matrix is used for a
set of Nx successive transmit blocs, hence the N real-
izations are not fully independent. But, far more dif�-
cult to explain is why increasing NH �almost always�
increases the estimated probability of error.

1.3 Objective of the paper

In this paper, we use random matrices theory to derive a
theoretical expression of the error rate. The probability
of error we consider is the probability of vector error,
that is the probability that the vector estimated by the
Maximum Likelihood receiver is wrong. Thanks to this
expression, some long and complex simulations could
be avoided. Furthermore, the theoretical results derived
in the sequel provide an explanation concerning the be-
havior of simulation outputs and allow to predict their
true relative precision.



Application of random matrices theory to MIMO
channels still represents a little part of scienti�c work
concerning MIMO transmissions, and only a few recent
works (such as [5] for theoretical prediction of capac-
ity) have been published. The major part of work in
the MIMO transmissions domain is dedicated to space-
time coding, and receiver or precoder algorithms [6][7].
However, theoretical study of MIMO channels from the
random matrices theory point of view is of crucial im-
portance and can provide a lot of new results, because
MIMO channels are basically multidimensional random
channels.

The paper is organized as follows. In Section 2, we
recall a few mathematical results about chi-square dis-
tributions and the Gamma function. In Section 3, we
provide a theoretical formula of the error rate. Then,
thanks to these results, we provide an expression con-
cerning the reliability of simulations in Section 4. Fi-
nally, a conclusion is drawn in Section 5.

2 Mathematical recalls

The Gamma function �(p) and the incomplete Gamma
function �a(p) are de�ned below:

�(p) =
� ∞

0
t p−1e−t dt (3)

= (p − 1)! (if p is a positive integer) (4)

�a(p) =
1

�(p)

� a

0
t p−1e−t dt (5)

= 1− e−a
p−1�

k=0

ak

k!
(if p is a positive integer)

(6)

The probability density function (pdf) of the sum of
the square moduli of m i.i.d. circular complex gaussian
random variables with zero mean and variance σ 2

c is a
chi-square distribution with 2m degrees of freedom:

pc(t) =
1

σ 2m
c � (m)

tm−1e−t/σ 2
c (7)

Its cumulative distribution function (cdf) is:

Fc(a) =
� a

0
pc(t)dt (8)

= �a/σ 2
c
(m) (9)

3 Theoretical estimation of the proba-
bility of error

This Section is organized as follows. In Subsection 3.1,
we explain why the minimum distance between noise-
free received vectors is important to characterize the
performances of a MIMO channel. Then, in Subsection
3.2, we derive the statistical distribution of the mini-
mum distance, and in Subsection 3.3 we recall a theoret-
ical result concerning the error rate for channels with a
given minimum distance. Finally, in Subsection 3.4 we
combine results from Subsections 3.2 and 3.3 to provide
a theoretical expression of the error rate.

3.1 De�nition of the minimum distance

Let us consider a MIMO transmission channel with nT

transmit antennas and n R receive antennas (nR ≥ nT ),
and let us note M the number of symbols in the basic
constellation (for instance, M = 2 for a BPSK modu-
lation). The channel is modelled by an n R × nT ran-
dom matrix H mentioned in the introduction (see Eq.
1). We note S =

�
sp, p = 1, ...,MnT

�
the set of all

possible transmitted vectors (i.e. multidimensional con-
stellation). As usual, the vectors sp are assumed to be
normalized in order to have a total transmit power equal
to 1. That is:

1

MnT

MnT�

p=1

��sp

��2 = 1 (10)

For example, for a BPSK (Binary Phase Shift Key-
ing) signalling and nT = 2 transmitters, we have:

S =
�

1√
2

�
−1
−1

�
,

1√
2

�
−1
+1

�
,

1√
2

�
+1
−1

�
,

1√
2

�
+1
+1

��

(11)

Let us note d0 the minimum distance between the el-
ements of S. For instance, for the BPSK example men-
tioned above, we have d0 =

√
2.

The noise-free received vectors belong to the setR =�
rp, p = 1, ...,MnT

�
where rp = Hsp. The probabil-

ity of error is strongly linked to the minimum distance
dmin between the elements of R. Indeed, the maximum
likelihood receiver searches for the element ofR which
is the closest to the actual received vector y. If dmin is
small, some vectors of R are very close together and a
small noise is suf�cient to cause an error.

The minimum distance is:

dmin = min
p �=q

��rp − rq

�� (12)

= min
p �=q

��H
�
sp − sq

��� (13)



3.2 Cumulative distribution function of the
minimum distance

A large value of dmin guarantees a low probability of er-
ror. Hence, knowing the statistical distribution of dmin is
of great importance to characterize a MIMO transmis-
sion system and predict its error rate. In [1] we have
shown that a good approximation is:

dmin = d0 min
m=1,...,nT

�hm� (14)

where hm is the mth column of H . This formula is
important because it shows that the statistical distribu-
tion of dmin is determined by the statistical distribution
of the norms of the columns of H . Since �hm�2 is the
sum of nR square moduli of complex i.i.d. circular gaus-
sian random variables with variances 1, it is chi-square
distributed and, using equation 9, its cdf is:

Fh(u) = P
�
�hm�2 < u

�
(15)

= �u (nR) (16)

Hence, the cdf of dmin is:

F (a) = P (dmin < a) (17)

= 1−
nT�

m=1

P
�
d2

0 �hm�2 > a2
�

(18)

= 1−
�
1− Fh

�
(a/d0)

2
��nT (19)

that is:

F (a) = 1−
�
1− �(a/d0)

2 (nR)
�nT (20)

where we recall that d0 is the minimum distance be-
tween the possible transmitted vectors. Figure 3 shows
that this theoretical formula is con�rmed by simulation
data.

3.3 Probability of error for a given minimum
distance

In the sequel, Pe(dmin) stands for the probability of er-
ror, given that the minimum distance is dmin.(hence, it is
a conditional probability). In [1] we have provided up-
per and lower bounds for this probability and we have
shown that when signalling is BPSK, Pe(dmin) is very
close to the lower bound which is:

Pe(dmin) =
1

2
erf c

�
dmin

2σ

�
(21)

Figure 4 shows that this theoretical formula is in ac-
cordance with simulation data. Expressions for other
modulations are given in [1].
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Figure 3: Veri�cation of the theoretical formula for the
cdf of dmin. The simulation curve is obtained by averag-
ing over 1000 random channel matrices.

3.4 Probability of Error

The probability of error can be written:

Pe =
� ∞

0
p(dmin)Pe(dmin)ddmin (22)

where p(dmin) is the probability density function
(pdf) of dmin. Using integration by parts, we can write:

Pe = [F(dmin)Pe(dmin)]
∞
0 −

� ∞

0
F(dmin)P

�
e(dmin)ddmin

(23)

where P
�
e(dmin) is the derivative of Pe(dmin) with re-

spect to dmin and F(dmin) the cdf of dmin. Since F(0) =
0 and Pe(∞) = 0, we have:

Pe = −
� ∞

0
F(dmin)P

�
e(dmin)ddmin (24)

This integral can be computed numerically. F(dmin)

is provided by equation 20, and:

P �e(dmin) = −
1

2σ
√
π

exp

�
−
�

dmin

2σ

�2
�

(25)

4 Reliability of simulation results

4.1 Relative precision

We recall that during simulations the probability of er-
ror is estimated by averaging over NH random channel
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Figure 4: Veri�cation of the theoretical formula for the
conditional probability of error Pe (dmin). The signal to
noise ratio is 10d B. Each simulation point correspond
to a random channel matrix.

matrices H :

�Pe =
1

NH

�

H

�Pe (H) (26)

Since the number Nx of transmitted vectors for each
channel matrix is usually large, we can consider that
�Pe (H) is close to Pe (dmin), where dmin is the minimum
distance corresponding to matrix H . Hence:

var
��Pe
�
= 1

NH
vardmin

��Pe (dmin)
�

(27)

= γ

NH
(28)

where:

γ = var
��Pe (dmin)

�

=
� ∞

0
p(dmin) (Pe (dmin)− Pe)

2 ddmin

=
�
F(dmin) (Pe (dmin)− Pe)

2
�∞

0

− 2
� ∞

0
F(dmin)P

�
e(dmin) (Pe (dmin)− Pe)

2 ddmin

= (Pe)
2 (29)

− 2
� ∞

0
F(dmin)P

�
e(dmin) (Pe (dmin)− Pe)

2 ddmin

where F(dmin), P
�
e(dmin), Pe (dmin) and Pe are given

by equations 20, 25, 21 and 24. Finally, the true rela-
tive precision, de�ned as the ratio between the standard

deviation of the estimation and the true value is:

ρ =
√
γ

Pe
(30)

Figure 5 shows the relative precision with respect to
the SNR. We can see that for an SNR larger than 12dB,
the validity of simulation results is questionable.

0 5 10 15 20
10

-2

10
-1

10
0

10
1

SNR (dB)

re
la

tiv
e 

p
re

ci
si

on

Figure 5: Relative precision with respect to SNR, for
NH = 1000.

4.2 Illustration

First of all, let us check our theoretical results. Figure
6 shows the experimental and theoretical estimations of
the probability of error. The theoretical estimation is
provided by equation 24 (with equations 20 and 25).
The simulation results are obtained by averaging over
1000 random matrices H and 2× 105 vectors transmit-
ted each H . The theoretical curve minus the standard
deviation (square root of Eq. 29) is also shown.

In the previous subsection, we have seen that with
NH = 1000, the quality of the simulation results is
questionable for an SNR larger than 12dB. This is con-
�rmed by the fact that the simulation results clearly di-
verge from the theoretical curve above 12dB.

It is the theoretical results which are the most reliable.
Indeed, if we increase the number of random channel
matrices in the simulation process, the simulation curve
converges to the theoretical curve. Furthermore, note
that the theoretical curve is obtained in less than one
second with a non optimized Matlab program, while
days of computations are required to obtain the same
results by simulation.
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Figure 6: Probability of error with respect to SNR.
Comparison of theoretical and simulation results.

Figure 7 illustrates the theoretical formula for the
probability of error (Eq. 22). By analyzing the for-
mula, it is easy to see that the probability of error is the
surface under the curve labelled product, which repre-
sents Pe (dmin) p (dmin) (this curve has been drawn up to
a scale factor for easier visualization). We can note that
the values of dmin which most contribute to the errors
have a very low probability. Hence, if classical simu-
lation is used, the probability of error will usually be
under-estimated, unless a very large number of matri-
ces H is simulated (but this implies huge computation
time).
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Figure 7: Illustration of the theoretical formula of the
probability of error (SNR=15dB)

5 Conclusion

In this paper we have provided a fast and ef�cient
method to predict the error rate in MIMO transmis-
sion systems and have used the obtained theoretical for-
mula to explain why simulation results are not reliable
at high SNR. Furthermore, we have provided a way to
compute the relative precision of the simulation results.
This formula is helpful to know which simulation re-
sults are reliable and which are not. With regards to
these new results, it can be mentioned that the reliabil-
ity of some simulation curves provided in the literature
about MIMO transmissions is highly questionable.
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