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Abstract:
We report on a simplified representation of Multi-Input Multi-Output (MIMO) systems and propose a Min-
imum Bit Error Rate (MBER) diagonal precoder. Assuming that channel information can be available at
the transmitter, we show that the proposed representation decouples the MIMO channel into parallel sub-
channels, which greatly facilitates and speeds up further processing. Using traditional criteria such as the
minimum mean square error (MMSE) and the maximum capacity, eigen diagonal precoders and decoders
can be obtained, leading to the same transmit and receive filters as those reported in the literature but in a
simpler and faster way. A new diagonal precoder is also derived using the minimum bit error rate (MBER)
criterion and compared to the others in term of bit error rate and achieved capacity. An approximation of
the MBER precoder (AMBER) is finally proposed, whose performances remain close to the optimal in spite
of its low complexity.

I INTRODUCTION

Multi-Input Multi-Output (MIMO) digital transmission systems currently retain more and more atten-
tion due to the very high spectral efficiencies they can achieve. Most existing systems such as spatial
multiplexing [3] or space-time coding [11] assume no channel knowledge at the transmitter. However, in
many wireless applications, feedback does exist (e.g., symmetric or asymmetric duplex transmissions), and
channel information can be made available at the transmitter. Indeed, only a very small data rate is used to
provide channel information to the transmitter. The question, then, is how to take profit of this information
to globally optimize the transmission system.
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Figure 1: MIMO System with linear precoder and decoder

Performances can be improved either by antenna selection [4] or precoders design in order to allocate
power among the transmit antennas. In [8] and [9] Sampath et al have globally optimized the transmission



scheme by designing optimum precoder and decoder using the minimum mean square error (MMSE) crite-
rion. An interesting property of their work is the diagonality of their equivalent channel after optimization.
This diagonality can also be obtained by the singular value decomposition (SVD) method, especially used
to maximize the channel capacity, which leads to the well-known water-filling (WF) solution [2, 5]. In this
paper, a similar technique is employed to provide a simplified diagonalized MIMO system which can be
easily optimized by any criterion (not only the channel capacity maximization). In addition, this diagonal-
ity results in an interesting complexity reduction, which enables one to use a maximum-likelihood (ML)
receiver.

As the bit error rate (BER) can then be expressed in a quite simple way, we propose a new precoder
based on the minimum BER (MBER) criterion. By comparisons with other criteria such as MMSE or the
WF solution, we show that the use of the MBER criterion increases the system performances in term of
error rate and achieved capacity for a given constellation. We also present an approximation of the MBER
precoder (AMBER), whose results remain very close and which is faster because it does not need any
optimization.

II SIMPLIFIED MIMO SYSTEM MODEL

Let us consider a MIMO system with nR receive and nT transmit antennas over which we want to
achieve b independent data streams. Including a precoder matrix F and a decoder matrix G, the basic
system model is (Fig. 1):

y = GHFs + Gν (1)

where H is the (nR × nT ) channel matrix, F is the (nT × b) precoder matrix, G is the b × nR decoder
matrix , s is the (b × 1) transmitted vector and ν is the (nR × 1) noise vector. We assume : E {ss∗} = Ib,
E {νν∗} = R and E {sν∗} = 0.

Furthermore, if the available transmission power is noted p0, the constraint below must be fulfilled:
trace {FF∗} = p0.

Our first objective is to obtain a diagonal channel and a whitened noise in order to facilitate both the
system analysis and the determination of the optimal precoder. We decompose the matrices F = FvFd
and G = GdGv , where the virtual precoder and decoder matrices Fv and Gv are designed to reach this
first objective, such that the determination of precoder Fd and decoder Gd with respect to any criterion is
greatly facilitated. They are obtained after successive matrix manipulations and transformations, such as the
singular value decomposition (SVD), and are decomposed as follows: Fv = F1F2F3 and Gv = G3G2G1.
The three different steps necessary to get Fv and Gv are resumed in Table 1.

step i method Fi Gi

noise
whitening

1
EVD:

R = QΛQ∗ F1 = InT
G1 = Λ

−
1

2 Q∗

channel
diagonalization

2
SVD:

G1HF1 = AΣB∗ F2 = B G2 = A∗

dimensionality
reduction

3
Fv = F1F2F3

Gv = G3G2G1

F3 =

(

Ib
0

)

G3 =

(

Ib 0

)

Table 1: Steps to obtain the diagonal MIMO system in case of CSI at the transmitter.

In this new representation the model becomes:



y = GdHvFds + Gdνv (2)

where Hv = GvHFv is the virtual diagonal channel and νv = Gvν is the virtual noise, whose correlation
matrix Rv = GvRG∗

v = Ib. Hv entries are linked to the singular values of the channel H and can be
expressed as Hv = diag(σ1, ..., σb) with positive elements ranked in the decreasing order.

III PRECODER DESIGNS

The matrices Fd and Gd are still to be determined, according to a given criterion. Since the channel
is diagonal and the noise white, we restrict our search to diagonal matrices Fd = diag{fi}bi=1 and Gd =
diag{gi}bi=1. Hence, the system can be seen as a set of b independent and parallel subchannels. ML
detection can be then performed efficiently even for large values of b and important constellations.

The values of these matrices depend on the criterion to be optimized as illustrated hereafter. Our ap-
proach provides a fast way to find many results already available in the literature as well as new ones for
the MBER precoder and its approximation.

III.1 Classical criteria

The most popular criterion for MIMO systems optimization aims at maximizing the information rate of
the transmission and is known as the water-filling (WF) solution.

Reminding the basic hypothesis, the equivalent model (2) leads to the following capacity [12]:

C =
b
∑

i=1

log2(1 + f2
i σ

2
i ) (3)

Using Lagrange multiplier µ, the criterion to be optimized under the constraint on total transmit power is
then:

CWF =
b
∑

i=1

log2(1 + f2
i σ

2
i ) + µ

((

b
∑

i=1

f2
i

)

− p0

)

(4)

Cancellation of ∂CW F

∂fi

provides the precoder elements expression:

f2
i =

(

p0 +
∑bΨ
k=1

1/σ2
k

bψ
− 1

σ2
i

)+

(5)

where (s)+ = s if s > 0 and (s)+ = 0 if s ≤ 0, and bΨ represents the integer until which this positivity
condition remains true.

The minimization of the mean square error (MMSE) is another optimization method, especialy appreci-
ated for its robustness and low complexity. We introduce here the weigthed MMSE criterion, that allows to
get information on each eigen mode and to act on it, leading to various applications such as the quality of
services or the equal-error transmission.

Thanks to the diagonal representation, the weighted mean square error is expressed as:

b
∑

i=1

E[wi |(giσifi − 1)si + giνvi
|2] (6)

where wi for i = 1, . . . , b are positive weighting coefficient.

That leads to the following criterion to be minimized:

CMSE =
b
∑

i=1

wi(g
2
i σ

2
i f

2
i − 2giσifi + g2

i + 1) + µ[(
b
∑

i=1

f2
i ) − p0] (7)



Cancellations of ∂CMSE

∂fi

and ∂CMSE

∂gi

provide the precoder and decoder expressions:

f2
i =

(

wi(p0 +
∑bΨ
k=1

1/σ2
k)

σi
∑bΨ
k=1

wk/σ
2
k

− 1

σ2
i

)+

and gi =
σifi

(σifi)2 + 1
(8)

The presence of wi in this expression allows to act on each mode. The expression of the precoder based
on the classical (unweighted) MMSE criterion can be easily recovered taking the weighting coefficients
wi = 1 for i = 1, . . . , b.

Some constant data rate communication systems need a very secure transmission and same SNR ρ on
each way, i.e. ρ = ρi = σ2

i f
2
i for i = 1, . . . , b. This particular configuration leads to the following precoder

expression:

f2
i =

p0

σ2
i

∑b
k=1 1/σ2

k

(9)

This equal-error precoder can be obtained from another point of view, considering the criterion which
aims at maximizing the minimum eigenvalue of the post-processing SNR(F,G) matrix (see [10]). This
criterion provides a lower bound for the minimum distance of the received symbol vector [10].

Same results as (5), (8) and (9) can be found in the literature [8, 9, 10] but are obtained here by a simple
way since a diagonalization of the MIMO system is performed in a previous step.

III.2 MBER criterion

As the performance of practical systems depends strongly on the bit error rate and achieved capacities,
we propose a new precoder based directly on the minimum BER, whose efficiency has been proved in [7]
for another configuration. As an ML receiver is used, Gd has no impact on the minimization of the BER,
so we choose for simplicity Gd = Ib.

The signal to noise ratio for each sub-channel is:

ρi = σ2
i f

2
i (10)

For a square M -QAM constellation (M = 22n), the BER is Pe = 1

b

∑b
i=1 Pe,i where the BER in

sub-channel i is [6]:

Pe,i = αM × erfc
√

βM × ρi with αM =
2

log2 M
(1 − 1√

M
) and βM =

3

2(M − 1)
(11)

Using Lagrange multiplier µ, we can express the precoder elements fi as follows:

f2
i =

1

2βMσ2
i

W0

(

2σ4
i α

2
Mβ2

M

µ2πb2

)

(12)

where W0 stands for Lambert’s W function of index 0 [1]. The parameter µ can be iteratively computed by
using the constraint of the total transmit power.

A simplified solution of the MBER design can be performed by approximating the Lambert’s W function
of index 0 by:

W0(x) ' log(x) − log(log(x)) for x � 1 (13)

By using this approximation in (12) and the constraint power we directly obtain the approximated MBER
(AMBER) solution:

f2
i =

ai(1 −∑k Ak) + Ai

∑

k ak
∑

k ak
for i = 1, . . . , b (14)

where:

ai =
1

2βMσ2
i

(15)

Ai = ai(log(bi) − log(log(bi))) with bi =
2σ4

i α
2
Mβ2

M

πb2
(16)



One should note here that, in the low SNR case, the approximation (13) does not hold any more; log(bi)
may be smaller than 1 and (16) can not be computed. The AMBER method then neglects the weakest
subchannel, just as MMSE or WF solutions, and (14) is computed over the remaining modes.

This AMBER method is the fastest one among those presented in this paper, because it needs neither
optimization nor µ search.

IV SIMULATION RESULTS

The efficiency of the MBER precoder is illustrated by Fig. 2 which represents the BER and achieved
capacity of MIMO systems with different precoders with respect to the SNR. We here consider nT = 5
transmitters, nR = 5 receivers; using a QPSK constellation, we transmit 4 independent data streams over
the system.

For each SNR, 100 000 4-symbol vectors are transmitted during the Monte-Carlo simulations. For each
transmitted vector, a new H and a new R are randomly chosen in order to obtain results that depend neither
on a particular channel, nor on particular noise statistics. Entries of H are i.i.d. zero-mean unit-variance
complex Gaussian random variables. Matrices R are obtained by R = TT ∗ (where entries of T are i.i.d.
zero-mean unit-variance complex Gaussian random variables) and then scaled according to the desired
SNR. The SNR is defined as the ratio of the total transmitted power p0 to the total received noise power.

In order to compute the achieved capacity, we consider a binary symmetric channel (BSC) [6] because
we use an optimal receiver (ML) and the input and the output of the system can be seen as binary data
streams. In the MIMO case with b independent data streams and a QPSK constellation (2 bits per symbol),
the BER and the achieved capacity are then related by the following expression:

CQPSK = 2b×(1+BER×log2(BER)+(1−BER)×log2(1−BER)) (bits / transmitted vector) (17)

Fig. 2 shows that the best precoder is the MBER, followed by the MMSE. In the MMSE solution, the
performances of our equivalent model are exactly the same as in [9]. In opposition with the expected
capacity, the WF is the worst one (the SNR gain of the MBER is about 5 dB). Intermediate results are
obtained by the equal-error precoder. Finally, the performances of the very simple AMBER are close to the
optimal MBER and even equivalent as the SNR is increasing.
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Figure 2: Experimental results for a QPSK with nT = 5, nR = 5, and b = 4



V CONCLUSION

In this paper, we proposed a simplified representation of MIMO channels along with an optimization of
the global transmission scheme. Thanks to simple matrices manipulations, i.e. an eigen value decomposi-
tion and a singular value decomposition, we respectively whitened the noise and diagonalized the channel.
The diagonality of the obtained global system allowed us to design a diagonal precoder based on the Min-
imum Bit Error Rate criterion. By comparisons precoders based on other criteria, such as the maximum
information rate or the minimum mean square error, it was shown that the MBER precoder was far more
efficient, both in achieved capacity and BER terms. The best compromise between performance and com-
plexity is certainly obtained by the AMBER precoder. Its performances are very close to the optimal MBER
one with a minimum of complexity.

The diagonality the global optimized system allows independent parallel subchannels and an easy ML
reception. Nevertheless, it would be interesting to study the design of non-diagonal precoders and their
performance under the same conditions. Futhermore, this kind of transmission scheme is directly applicable
to narrowband wireless channels, in which channel information can be made available at the transmitter.
As a matter of fact, future research will include applications to broadband MIMO channels, with the help
of multicarrier modulations.
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