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Abstract:
We derive a fast maximum likelihood based (MLB) decoder for a multi-input multi-output (MIMO) Rician
fading channel with additive white Gaussian noise (AWGN). The basic idea is to take profit of the Rician
channel structure to significantly reduce the search of the optimum vector of symbols by the ML crite-
rion. When channel diversity is low, we obtain bit error rates (BER) which are very close to the BER of
the maximum likelihood (ML) optimum decoder. Comparisons in terms of BER for Quadrature Amplitude
Modulation (QAM) are performed for the MLB, ML and OSIC (Ordered Successive Interference Cancella-
tion) decoders via simulations. Finally, the ratio of computational complexities (depending of the number
of transmitters and on the constellation), between the ML and the MLB is presented to show the interest of
the proposed approach.

I INTRODUCTION

Narrowband MIMO transmission systems receive increased attention for a few years, due to their abil-
ity to provide large spectral efficiencies over rich scattering transmission channels. Spatial multiplexing
systems, known as V-BLAST (Bell Laboratories Layered Space-Time) architecture, have been proposed
recently, and first laboratory experiments have shown that spectral efficiencies as high as 20bits/s/Hz can
be obtained [3].

The basic model of a narrowband MIMO transmission system is:

r = Ha + n (1)

where H is the channel matrix, and r, a, and n respectively stand for the nR-dimensional received vector,
the nT -dimensional transmitted vector (the entries of which are the symbols), and the noise vector. The
objective of the receiver algorithm is to estimate a when r and H are known (in practice, H is estimated
using a training sequence). We also assume1 E[aaH] = (p0/nT ) InT

with p0 the total transmitted power,
E[nnH] = σ2

n InR
with σ2

n the noise variance and E[anH] = 0.

It is well known that the optimal method is the maximum likelihood (ML). However, this method is
difficult to use in many applications because it requires a large computation time. In this paper, we propose
a faster algorithm whose performances, in terms of bit error rates (BER), are close to the ML performances
when the low diversity hypothesis on the channel model is true.

The main limitation to MIMO is the low spatial diversity. This occurs typically for correlated fading
MIMO channel [5]. Otherwise, uncorrelated matrix channel containing random entries with similar and
non-zero average values could be poorly conditioned, particularly when standard deviations of the matrix
entries are not too large with respect to the average values. A typical example is the Rician channel model.
This model will be considered throughout the paper.

1The superscript H denotes transpose conjugate and InT
is the nT -dimension square identity matrix.



The Rician fading model is used when direct paths (or fixed echoes) between transmitters and receivers
are observed [4]. This model approximates a fixed wireless or a slow motion mobile communication sys-
tem operating in a scattering environment with one direct path. Furthermore, when direct paths between
transmitters and receivers become dominant, spatial diversity is low, the standard deviations of the channel
matrix entries are small with respect to the average values.

The computational complexity of the ML receiver is due to the fact that the whole set A of possible
vectors a must be evaluated, in order to determine which vector maximizes the ML criterion. The basic
idea of the proposed approach is to take profit of the channel model in order to create a partition of the set
A into a number of subsets Ai. Then, we show that the estimation can be divided into two steps: i) a first
(optimal under low diversity constraint) step, in which we decide which subset is the most likely to contain
the transmitted vector. ii) a second (optimal) step in which the optimal vector is searched within the selected
subset. The gain on computational complexity is due to the fact that the search is restricted to a subset of
A. The price to pay is that, due to the split in two steps, the method is not globally optimal. However, as
will be shown later, the obtained results are extremely close to the optimal ones, as far as the low diversity
hypothesis is true.

II CHANNEL MODEL

Consider a MIMO system with nR receive and nT transmit antennas, over which we want to send nT

independent data streams. We assume that the transmission is narrowband, which means that the channel
frequency response is constant over the considered bandwidth. It is assumed that channel varies very slowly,
so that the random channel matrix H is assumed constant during a burst of symbols.

The uncorrelated MIMO Rician channel model corresponds to the combination of Rayleigh and specular
multipath fading [1, 2]:

H =
√

κHm +
√

1 − κ H̃ (2)

where H̃ = [h̃ij ] is a matrix whose entries are independent and identically distributed (i.i.d.), complex
normal, zero-mean, and variance equal to one. Hm = γβ H is a deterministic rank-one matrix with
γ = (exp(jθ1), . . . , exp(jθnR

))T and β = (exp(jθ′1), . . . , exp(jθ′nT
))T and such that trace(HmH H

m) =
nT nR. The Rician parameter κ (between zero and one) is the fraction of channel energy devoted to specular
component. Note that for κ = 0, specular multipath fading doesn’t exist and the MIMO channel is modeled
as Rayleigh. For κ close to one, specular multipath fading is dominant, H is poorly conditioned and leads
to low spatial channel diversity. Assuming the specular component known at both transmitter and receiver,
a phase compensation allows to simplify the model (2) by setting the entries of Hm equal to 1. Without lost
of generality, this simplification will be used in the rest of the paper for clarity of presentation of the MLB
proposed decoder.

We introduce the following dispersion coefficient ρ defined by:

ρ =

√
1 − κ

κ
(3)

The dispersion coefficient ρ will be, in the following, a crucial parameter for determination of the domain
of validity of the method.

III PROPOSED APPROACH

III.1 Principle of the fast ML-based receiver

Let us note aΣ the sum of the entries of vector a and rav the average received value:

aΣ =
nT∑

i=1

ai rav =
1

nR

nR∑

i=1

ri (4)

where ai and ri are the components of the vector a and r respectively. We can also define nav in a similar
way. Finally, let us note H̃av the (1 × nT ) vector, the entries of which are the averages of the columns
of H̃ .



Now, let us left-multiply Eq. 1 by a (1 × nR) vector with entries are equal to 1/nR. We get:

rav =
√

κ aΣ +
√

1 − κ H̃ava + nav (5)

Under assumptions:

κE[|aΣ|2] = κ p0 � (1 − κ)p0/nR (6)

E[|nav |2] = σ2

n/nR � (1 − κ)p0/nR (7)

Eq. 5 can be approximated by:
rav '

√
κ aΣ + nav (8)

Assumption (6) corresponds to the low channel diversity (small values of ρ or values of κ close to one).
Assumption (7) links the SNR to the channel diversity: higher the SNR is, smaller ρ must be to satisfy (7).

We can perform a maximum likelihood estimation of aΣ. Then, assuming that the estimated aΣ is the
true one, the ML search can be restricted to the subset of A which corresponds to this aΣ.

III.2 Probabilistic description

In this section we show that the ML estimation of aΣ from rav in the first step is equivalent to the ML
estimation of α =

√
κHma from r under assumptions (6) and (7).

In order to derive the proposed method, we introduce the following definitions:

• Let A the set of all possible vectors a. For a QAM with a constellation of 2n points the cardinal of
A is card(A) = L = 2nnT .

• Let Ã the set of possible received symbol vectors through the matrix
√

κHm without noise. Elements
of Ã are denoted αi for i = 1, . . . , Q (card(Ã) = Q, see Fig. 1.a).

• Let Ai the set of symbol vectors a associated to αi such that
√

κHma = αi (i.e., Ai =
{a | √κHma = αi}). We notice that each component of αi is equal to

√
κ ai

Σ
. For each a ∈ Ai

corresponds ai
Σ

. Each different value of aΣ is noted ai
Σ

. The cardinal of Ai is equal to Li. Sets Ai

for i = 1, . . . , Q form a partition of A and then L =
∑Q

i=1
Li.

The MLB method consists in estimating the vector αi in order to apply the ML to the set Ai:

1. Determination of the set Ai among Q possible sets by using an approximate ML estimation of the
vector αi. To illustrate this step, Fig.1(a) plots the constellation of ai

Σ
for nT = 3 and a QPSK

modulation.

2. Estimation of the symbol vector a by using the ML estimation within the previous estimated set Ai.

Note that the first step is crucial: if the determination of Ai is correct then estimation of the symbol
vector is equivalent to the estimation provided by the ML decoder.

Now, we detail the two steps MLB method. The first step is obtained by computing

i = arg max
j

p(r|αj) (9)

By definition, the knowledge of αj implies a ∈ Aj , hence :

p(r|αj) = p(r|a ∈ Aj) =
∑

a∈Aj

p(r|a)P (a|a ∈ Aj) =
1

Lj

∑

a∈Aj

pn(r − Ha) (10)

where pn() denotes the pdf of n.
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Figure 1: (a) Constellation ai

Σ
for nT = 3, nR = 5 and a QPSK (p0 = 1). The bold numbers correspond

to cardinals of Ai (i.e., Li) for i = 1, . . . , 16. (b) Ratio of calculated distances between ML and MLB
receivers for nR = 5 and several QAM constellations.

Under assumption (6) and (7), Eq. (10) can be approximated by:

p(r|αj) ' pn(r − αj) (11)

Finally, (9) leads to:
i = arg min

j
‖r − αj‖ (12)

which is equivalent to solve:
i = arg min

j

∣∣∣rav −
√

κ aj
Σ

∣∣∣ (13)

The second step is performed by computing the ML estimation for a ∈ Ai where Ai is obtained in the
first step:

â = arg max
a∈Ai

pn(r − Ha) (14)

which can be simplified as :
â = arg min

a∈Ai

‖r − Ha‖ (15)

III.3 Distances computation reduction

In order to illustrate the gain in number of calculated distances between MLB and ML, we compute this
ratio η of number of calculated distances for a M -QAM square constellation. For the ML receiver with nT

transmitters, the number of configurations is L = MnT . The symbols ai
Σ

belong to a square constellation
of Q = ((

√
M − 1)nT + 1)2 elements. The mathematical expectation of Lk is:

E[Lk] =
Q∑

i=1

P (Li)Li =
1

L

Q∑

i=1

(Li)
2 (16)

The ratio η in term of calculated distances between the ML and MLB receiver is then

η =

ML︷ ︸︸ ︷
nR × L

1 × Q︸ ︷︷ ︸
first step

+nR × E[Lk]︸ ︷︷ ︸
2nd step

(17)

The improvement is represented on Fig.1(b) where η is plotted versus nT and for 4-QAM, 16 and 64
constellations.



IV SIMULATION RESULTS

We use Monte-Carlo simulations to illustrate performance comparison between ML, MLB and BLAST
decoders. Consider a 3 × 5 spatial MIMO system over which we transmit 3 independent data streams with
QPSK modulation. The elements of the uncorrelated MIMO Rician channel H are i.i.d. complex, Gaussian
random variables with a dispersion parameter ρ = 0.28 (see (2) and (3)). For our simulations, the average
BER is obtained by averaging over 40,000 Monte-Carlo simulations runs, and a new H is randomly chosen
every 50 symbol vectors.
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Figure 2: (a) BER vs signal-to-noise ratio for ML, MLB and OSIC receivers with a QPSK modulation,
ρ = 0.28, nT = 3, nR = 5 and the difference of BER between MLB and ML (legend (MLB-ML)) in
comparison with Pmiss/2. (b) Probability Pmiss to choose the bad subset in the first step for the MLB
method without AWGN.

The average signal-to-noise ratio SNR is given by:

SNR = EH [SNR] = EH

[
p0 trace(HH H)

nT nRσ2
n

]
=

p0

σ2
n

(18)

In Fig.2(a), the average BER is computed for ρ = 0.28 and ML, MLB and OSIC decoders. This ordered
successive interference cancellation (OSIC) algorithm is used in the V-BLAST system described in [3]. The
BER performance of the MLB is very close to the optimal (ML). This excellent result is obtained in spite
of the complexity reduction. The ML receiver computes 4nT × nR = 43 × 5 = 320 distances. The MLB
receiver computes in the first step Q = 16 distances in order to chooseAi. In the second step the ML search
on the previous subset computes in average E[Lk]×nR = 6.25 × 5 = 31.25 distances. The ratio η in term
of calculated distances is about 6.8.

The sub-optimality of the MLB method, which comes only from the first step, is illustrated in Fig.2(a)
where the difference in term of BER between the MLB and the ML is plotted. As shown in this figure,
this difference seems to be approximatively equal to Pmiss/2 with Pmiss the probability to choose the bad
subset in the first step of the MLB method. From (5), Pmiss can be theoretically computed, it corresponds to
the symbol error probability of a Q-QAM (constellation of

√
κ aΣ, see Fig.1(a)) corrupted by the Gaussian

random variable (H̃ava + nav), zero-mean and variance p0(1 − κ)/nR + σ2
n/nR. We obtain2:

Pmiss = 2

√
L − 1√

L
erfc

√
3(M − 1)

2
SNRout with SNRout =

κ p0/nT

(1 − κ)p0/nR + σ2
n/nR

(19)

Fig.2(b) plots Pmiss versus the dispersion coefficient ρ (put κ = 1/(1 + ρ2) in (19)). We observe a
probability of 6 × 10−6 (for ρ = 0.28 and σn = 0) to choose the bad subset. This implies that for very

2Note that the multiplicative factor is (
√

L − 1)/
√

L instead of (
√

Q − 1)/
√

Q because the symbols aΣ are not
equiprobable.



high SNRs the condition (7) doesn’t hold any more and the MLB method presents a stage close to Pmiss/2
(the decision αi in the first step is wrong and a is then chosen in the bad set Ai even without noise). Pmiss

for σn = 0 corresponds to the lower bound to miss the correct subset in the first step of the MLB method
(cf Fig.2(b)). It indicates the validity of the MLB method depending of the dispersion parameter ρ. We
conclude that as far as ρ is small (which corresponds to low diversity channel) the method is applicable and
gives results very close to the ML ones.

V CONCLUSION

We introduced a decoder algorithm (MLB) for MIMO Rician fading channel with low dispersion. This
method is based on the ML estimator but uses the structure of the channel to significatively reduce the
computational complexity. The MLB performances in term of BER are similar to the performances of the
ML decoder as far as the assumption of low channel’s dispersion is satisfied. Otherwise, the ML estimation
over the two steps may be replaced by applying the sphere decoding algorithm [6] in order to reduce again
the computational complexity.
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