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ABSTRACT
Multi-Input Multi-Output transmission has been a topic of
great interest for the last few years due to the huge spec-
tral ef ciency gain it can provide over rich scattering trans-
mission channels, such as indoor (for wireless local area
networks) or urban outdoor (for mobile wireless communi-
cations). However, since each additional antenna has a cost
and requires additional circuits for processing, one of the
rst question people in charge of realizing actual systems
(and not only simulations) usually ask is: what is the re-
quired number of antennas? In this paper, we use random
matrices theory to derive a theoretical approximation of the
error rate with respect to the number of antennas. Thanks
to this result, long simulations can be avoided and the re-
quired number of antennas can be easily determined.

KEYWORDS
Wireless Digital Transmissions, MIMO, Error Rate, Num-
ber of antennas, Random matrices.

1 Introduction

Recent research [ ] has shown that very high spectral ef -
ciency can be obtained over rich scattering wireless chan-
nels by using multielement antenna arrays at both trans-
mitter and receiver (i.e. MIMO: Multi-Input, Multi-Output
transmitters). The principle of MIMO transmission is as
follows: nT digital transmitters (for instance, QAM trans-
mitters) operate co-channel at a given symbol rate with syn-
chronized symbol timing. nR digital receivers nR nT
also operate co-channel, with synchronized timing. On the
receiver side, an optimal Maximum-Likelihood algorithm
(or a suboptimal, but faster one, such as [2]) is used to es-
timate the transmitted symbols from the components of the
received mixture.

When the bandwidth is narrow, the MIMO channel is
modelled by an nR nT randommatrix H , and the received
vector y (dimension nR) is given by the equation below:

y Hx n ( )

where n is the noise vector (dimension nR) and x the
transmitted vector (dimension nT ). The noise covariance
matrix is 2 InR .

When the bandwidth is large, OFDM can be used to
divide the large bandwidth into narrow ones [3], and the
model above is used in each subband. Typical applica-
tions ofMIMO systems are indoor (wireless local areas net-
works) or urban mobile wireless communications. Using
MIMO, spectral ef ciencies far above the ef ciency pro-
vided by single antenna transmission systems can be ob-
tained (e.g. 20 bits/s/Hz [2]). The most widely used model
for indoor or urban channels is the Rayleigh model [4]: the
entries of H are independent identically distributed circu-
lar complex gaussian random variables with zero mean and
unit variance. Please note that considering unit variance
does not imply any loss of generality because multiplying
y by any normalization constant does not modify the error
rate. Similarly, the total transmit power is usually normal-
ized to one (i.e. E x 2 ). In this paper, we will also
use these usual normalization hypotheses.

A problem that people in charge of designing MIMO
systems are faced to is the determination of the number of
antennas. Each additional receive antenna improves per-
formances (in terms of error rate), but increases the cost
and the complexity of the system. A MIMO system can be
simulated, but simulations are extremely long, especially
when the number of antennas becomes large and/or when
the signal to noise ratio is high.

In this paper, we use randommatrices theory to derive
a theoretical estimation of the error rate. The probability of
error we consider is the probability of vector error, that is
the probability that the vector estimated by the Maximum
Likelihood receiver is wrong. Thanks to this result long
and complex simulations can be avoided.

Application of random matrices theory to MIMO
channels still represents a little part of scienti c work con-
cerning MIMO transmissions, while a few very recent
works (such as [5] for theoretical prediction of capacity),
begin to be published. The major part of work in theMIMO
transmissions domain is dedicated to space-time coding
and receiver or precoder algorithms [6][7]. However, the-
oretical study of MIMO channels from the random matri-
ces theory point of view is of crucial importance and can
provide a lot of new results, because MIMO channel are
basically multidimensional random channels.

The paper is organized as follows. In Section 2, we
recall a few mathematical results about chi-square distribu-
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tions and the Gamma function. In Section 3, we explain
why the minimum distance between noise-free received
vectors is important to characterize the performances of a
MIMO channel. Then, in Section 4, we derive the statisti-
cal distribution of the minimum distance, and in Section 5
we provide a theoretical approximation of the error rate for
channels with a given minimum distance. Finally, in Sec-
tion 6 we combine results from Sections 4 and 5 to provide
a theoretical estimation of the error rate, and we illustrate
these results in Section 7.

People who are interested in using the results and not
in the proofs can go directly to Section 6 (equation 48).

2 Mathematical recalls

The Gamma function p and the incomplete Gamma
function a p are de ned below:

p
0
t p e t dt (2)

p ! (if p is a positive integer) (3)

a p p

a

0
t p e t dt (4)

e a
p

k 0

ak

k!
(if p is a positive integer) (5)

The probability density function (pdf) of the sum of
the squares ofmr independent identically distributed (i.i.d.)
real gaussian random variables with zero mean and vari-
ance 2

r is a chi-square distribution withmr degrees of free-
dom ([4] p. 42):

pr t
2 2
r
mr 2 mr 2

tmr 2 e t 2 2
r (6)

It follows that the pdf of the sum of the square moduli
ofm i.i.d. circular complex gaussian random variables with
zero mean and variance 2

c is

pc t 2m
c m

tm e t 2
c (7)

because it is the sum of the squares of mr 2m i.i.d.
real gaussian random variables with zero mean and vari-
ance 2

r
2
c 2. Its cumulative distribution function (cdf)

is:

Fc a
a

0
pc t dt (8)

2m
c m

a

0
tm e t 2

c dt (9)
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0

t
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m
e t 2

c d
t
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c

( 0)

m

a 2
c

0

m e d ( )

a 2
c
m ( 2)

3 De nition of the minimum distance

Let us consider a MIMO transmission channel with nT
transmit antennas and nR receive antennas nR nT ,
and let us note M the number of symbols in the basic con-
stellation (for instance, M 4 for a QPSK modulation).
The channel is modelled by an nR nT random matrix
H mentioned in the introduction (see Eq. ). We note
S sp p MnT the set of all possible transmit-
ted vectors (i.e. multidimensional constellation). As usual,
the vectors sp are assumed to be normalized in order to
have a total transmit power equal to . That is:

MnT

MnT

p
sp

2 ( 3)

For example, for a BPSK (Binary Phase Shift Keying)
signalling and nT 2 transmitters, we have:

S
2 2 2 2

( 4)

From S, we de ne the set of difference vectors S.
This set contains all the vectors sp sq , with p q. Hence,
S sk k N with N MnT MnT and any
sk is the difference between two vectors of S.

Let us note d0 the minimum distance between the el-
ements of S. It is equal to the minimum norm of the vec-
tors of S. For instance, for the BPSK example mentioned
above, we have d0 2.

The noise-free received vectors belong to the setR
rp p MnT where rp Hsp. The probability
of error is strongly linked to the minimum distance dmin be-
tween the elements ofR. Indeed, the maximum likelihood
receiver searches the element of R which is the closest to
the actual received vector y. If dmin is small, some vectors
of R are close together and a small noise is suf cient to
cause an error. The minimum distance is:

dmin min
p q

rp rq ( 5)

min
p q

H sp sq ( 6)

min
k

Hsk ( 7)
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Actual computation of dmin can be time-consuming.
Indeed, if we consider, for example, a QAM- 6 constella-
tion (M 6), and nT 6 transmitters, the number of
possible noise-free received vectors rp is 66 7 07
and the number of difference vectors rp rq to consider is
approximately the square of this value, that is 2 8 0 4.

However, one can notice that the vectors sk which are
the most likely to provide the minimum distance are vectors
whose norm is d0. Since each transmitter uses the same
constellation, it is obvious that, whatever the constellation
is, the minimum of sp sq is provided by vectors sp and
sq who differ by one component only. Hence, sk d0
implies that the elements of sk are equal to zero, except one
element whose value will be noted d0ei . Then, the general
form of a vector sk such that sk d0 is:

sk d0ei um ( 8)

where um is the unit vector with the mth component equal
to and all other elements equal to 0:

um 0 0

m

0 0 T ( 9)

Possible values of depend on the basic constella-
tion. For example, for the BPSK case mentioned above,

0 . For a QPSK, 0 2 3 2 . Finally,
since has no impact on the norm of Hsk , we can write:

dmin min d0 Hum m nT (20)

which is equivalent to:

dmin d0 min
m nT

hm (2 )

where hm is the mth column of H . This formula is
important because it shows that the statistical distribution
of dmin is determined by the statistical distribution of the
norms of the columns of H .

In the following, we will note m0 the value of m
which provides the minimum distance in equation 2
(hence, dmin d0 hm0 ). We will also note hm0 the nor-
malized vector hm0 , that is hm0 hm0 .

4 Cumulative distribution function of the
minimum distance

A large value of dmin guarantees a low probability of er-
ror. Hence, knowing the statistical distribution of dmin is
of great importance to characterize a MIMO transmission
system and predict its error rate. In this section, we use
Equation 2 to derive the statistical distribution of dmin.

hm 2 is the sum of nR square moduli of complex
i.i.d. circular gaussian random variables with variances .
Hence, it is chi-square distributed and, using equation 7, its
pdf is:

ph t nR !
tnR e t (22)

Using equation 2, we can see that its cdf is:

Fh u P hm 2 u (23)

u nR (24)

Hence, the cdf of dmin is:

F a P dmin a (25)
nT

m
P d20 hm 2 a2 (26)

Fh a d0 2
nT

(27)

that is:

F a a d0 2 nR
nT

(28)

where we recall that d0 is the minimum distance be-
tween the possible transmitted vectors.

5 Probability of error for a given minimum
distance

In the sequel, Pe dmin stands for the probability of error,
given that the minimum distance is dmin.

Let us consider a noise-free received vector Hsq . As
already mentioned, its nearest neighbors (i.e. neighbors at
distance dmin) are likely to be vectors Hsp, such that sp
sq d0ei um0 . Most errors are due to confusion between
the received noisy vector Hsq n and one of its nearest
neighbors Hsp. Such an error occurs when:

Hsq n Hsp Hsq n Hsq (29)

That is:

2Re n H sp sq H sp sq
2 (30)

where n is the conjugate transpose of the noise vec-
tor. We have (for notations used, see Section 3):

H sp sq Hd0ei um0 (3 )

d0ei hm0 (32)

dminei hm0 (33)

Inserting (33) in (30), we obtain:

Re ei n hm0 dmin 2 (34)

n hm0 is a circular complex random variable with
zero mean and variance 2, which will be noted . Then,
we have:

Re ei dmin 2 (35)
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If can take only one value for a given sp (this is the
case for BPSK), the probability of error is then:

Pe inf dmin P Re ei dmin 2 (36)

2
erf c

dmin
2

(37)

If can take more than one value for a given sp (this
is the case for all constellation other than BPSK), the ex-
pression above is a lower bound.

An upper bound is provided by evaluating the proba-
bility of the event below:

dmin 2 (38)

Since is a complex circular gaussian random vari-
able with variance 2, the cdf of its square modulus is (see
Eq. 2 and 5 with m ):

F 2 u P 2 u (39)

u 2 (40)

e u 2
(4 )

The upper bound is then:

Pe sup dmin P 2 dmin 2 2 (42)

F 2 dmin 2 2 (43)

exp
dmin
2

2
(44)

A good compromise, which provides good results for
usual constellations (except BPSK) is:

Pe dmin erf c
dmin
2

(45)

6 Theoretical estimation of the probability of
error

The probability of error can be written:

Pe
0
p dmin Pe dmin ddmin (46)

where Pe dmin is the average probability of error for
channels whose minimum distance is dmin, and p dmin is
the probability density function (pdf) of dmin. Using inte-
gration by parts, we can write:

Pe [F dmin Pe dmin ]0
0
F dmin Pe dmin ddmin

(47)

where Pe dmin the derivative of Pe dmin with re-
spect to dmin and F dmin the cumulative distribution func-
tion of dmin. Since F 0 0 and Pe 0, we have:

Pe
0
F dmin Pe dmin ddmin (48)

This integral can be computed numerically. F dmin
is provided by equation 28. Pe dmin is given by one of the
three equations below (respectively for the lower bound,
upper bound, and good compromise):

Pe inf dmin 2
exp

dmin
2

2
(49)

Pe sup dmin
dmin
2 2 exp

dmin
2

2
(50)

Pe dmin exp
dmin
2

2
(5 )

7 Illustration

First of all, let us check our theoretical results. Consider a
MIMO transmission system with nT 2 transmit anten-
nas, nR 3 receive antennas and BPSK signalling. Figure
shows the experimental and theoretical estimations of the
probability of error with respect to the snr, which is de ned
as snr 20 log 0 . We recall that the average total
transmit power is normalized to , as well as the variance
of the elements of matrix H .

0 1 2 3 4 5 6 7 8 9 10
10-3

10-2

10-1

100

experimental estimation
theoretical estimation (lower bound)

Figure . Comparison of the experimental and theoretical
estimations of the probability of error nT 2 nR 3 .
The horizontal axis is snr

The theoretical estimation is provided by equation 48
(with equations 28 and 49). The experimental estimation is
obtained by averaging over 000 random matrices H , and
200000 random noise vectors for each H .

Figure 2 shows the theoretical estimation of the prob-
ability of error with respect to snr , for nT 3 transmit
antennas and a number of receive antennas varying from
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3 to 7 (nR is mentioned near each curve). These curves
are obtained using equation 48 (with equations 28 and 5 ).
This gure is obtained in less than one second with a non
optimized Matlab program, while weeks of computations
are required to obtain the same results by simulation.

0 2 4 6 8 10 12 14 16 18
10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

3

4

5

6

7

Figure 2. Probability of error with respect to snr, for nT
3 transmit antennas and nR 3 to 7 receive antennas

We can use these results to determine the required
number of antennas. For example, if a probability of er-
ror lower than 0 4 at snr 4dB is required, Fig. 2
shows that at least nR 6 receive antennas are required.

Figure 3 shows the error curves for nT 6 transmit
antennas and a number of receive antennas between 6 and
0. Here again, the gure is obtained is less than one sec-
ond. In this case, due to the number of transmit antennas,
obtaining the same result by simulation, with a suf cient
accuracy, is not feasible in reasonable time, unless, maybe,
sophisticated importance sampling techniques are used.

Here, if a probability of error lower than 0 4 at
snr 4dB is required, Fig. 3 shows that at least nR 9
receive antennas are required.

8 Conclusion

In this paper we have developed a fast and ef cient method
to predict the error rate in MIMO transmission systems.
These results can be used to determine the required number
of antennas in the MIMO system. The method is extremely
easy to implement, because it requires only equation 48
with Eq. 28 and 5 (or, alternatively, Eq. 49 or 50).

Using random matrices theory, we derived the statis-
tical distribution of the minimum distance in a MIMO sys-
tem, from which we then obtained a theoretical expression
of the probability of error. Thanks to this result, computa-
tionally intensive simulations can be avoided. Furthermore,
the theoretical formulae point out the important system pa-
rameters, and could be used for further developments.

0 2 4 6 8 10 12 14 16 18
10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

6

7

8

9

10

Figure 3. Probability of error with respect to snr, for nT
6 transmit antennas and nR 6 to 0 receive antennas
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