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Introduction

Multi-Input Multi-Output (MIMO) digital transmission systems currently retain more and more attention due to the very high spectral efficiencies they can achieve. Most existing systems such as spatial multiplexing [START_REF] Foschini | Layered Space-Time Architecture for Wireless Communication in a Fading Environment When Using Multi-Element Antennas[END_REF] or space-time coding [START_REF] Tarokh | Space-time codes for high data rate wireless communication: performance criterion and code construction[END_REF] assume no channel knowledge at the transmitter. However, in many wireless applications, feedback does exist (e.g., symmetric or asymmetric duplex transmissions), and channel information can be made available at the transmitter. Indeed, only a very small data rate is used to provide channel information to the transmitter.

The question, then, is how to take profit of this information to globally optimize the transmission system. In [START_REF] Sampath | Optimum precoder and equalizer designs for fixed rate MIMO systems[END_REF][START_REF] Sampath | Joint Transmit and Receive Optimization for High Data Rate Wireless Communications using Multiple Antennas[END_REF] Sampath et al. designed a jointly optimum linear precoder and equalizer for MIMO systems according to the Minimum Mean Square Error (MMSE) criterion.

In this article, using the Maximum Likelihood detection, we propose a new precoder which minimizes the Bit Error Rate (MBER) instead of the Mean Square Error. In a first step, our approach takes profit of an interesting property of the system proposed in [START_REF] Sampath | Optimum precoder and equalizer designs for fixed rate MIMO systems[END_REF]: the precoder and equalizer which minimize the MMSE criterion appear to diagonalize the global transmission system. Hence, we can express the BER in a quite simple way.

Then, using Lagrange multipliers, we derive the coefficients of the precoder which provides the minimum BER, under the constraint of a given transmission power. This second step guarantees minimization of the overall BER of the diagonalized system, independently on the way the channel was diagonalized.

The paper is organized as follows. In Section 2, we introduce the system model and we show that the system proposed in [START_REF] Sampath | Optimum precoder and equalizer designs for fixed rate MIMO systems[END_REF] is able to transform a MIMO system into independent virtual data streams. Then, in Section 3, we explain how to derive the precoder which minimizes the BER. Simulation results are provided in Section 4. Finally, a conclusion is drawn in Section 5.

An interesting property of MMSEoptimized MIMO system

Consider a MIMO system with n r receive and n t transmit antennas, over which we want to send b independent data streams (see Fig. 1). The system equation is:

y = GHF s + Gn ( 1 
)
where H is an (n r × n t ) channel matrix, F an (n t ×b) precoder matrix and G a (b×n r ) equalizer matrix. s is the (b×1) transmitted vector of symbols and n is the (n r ×1) noise vector. We assume that channel information can be made available at the transmitter side. We assume1 :

E {ss * } = I, E {nn * } = R n and E {sn * } = 0.
Let us note k the rank of H. Obviously, we must have 1 ≤ b ≤ k ≤ min(n t , n r ). 
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In [START_REF] Sampath | Optimum precoder and equalizer designs for fixed rate MIMO systems[END_REF], Sampath et al. designed F and G matrices to minimize any weighted sum of symbol estimation errors, subject to the constraint trace {F F * } = p 0 , where p 0 is the available transmission power.

We will take profit of one property of their approach, which is the fact that the optimum matrices decouple the MIMO channel into b parallel and independent data streams2 . Indeed, if we note D the matrix which links the global system output to the system input, and R nv the covariance matrix of the noise affecting the global output, we have:

D = GHF = Φ g ΛΦ f (2) 
R nv = GR n G * = Φ g ΛΦ * g ( 3 
)
where Φ f , Φ g and Λ are b × b diagonal matrices with real non-negative elements. These equations clearly show that D and R nv are diagonal matrices, hence the MIMO system can be considered as a set of independent virtual data streams. The procedure to compute Φ f , Φ g and Λ is described in [START_REF] Sampath | Optimum precoder and equalizer designs for fixed rate MIMO systems[END_REF]. Eq. ( 2) directly derives from Lemma 2 in [START_REF] Sampath | Optimum precoder and equalizer designs for fixed rate MIMO systems[END_REF] and Eq. ( 3) is straightforward by using ( 14) and ( 12) in [START_REF] Sampath | Optimum precoder and equalizer designs for fixed rate MIMO systems[END_REF].

Using the optimum MMSE precoder and equalizer, the transmission model (corresponding to right dashed box in Fig. 2) for sub-channel number i is then:

y i = d i s i + n vi (4)
where d i is the (i, i) th entry of diagonal matrix D given by Eq. ( 2), and n vi is the (i) th component of noise vector n v . The covariance matrix of this noise vector is

R nv = E[n v n * v ] = diag{σ 2 i } b i=1
given by Eq. (3).

Precoder optimization for minimum BER

In this section, we assume that the symbol decision is performed with the ML criterion. The ML implementation is trivial, because the transmission system can be seen as b parallel and independent data streams, as explained in the previous section (hence the decision reduces to taking the nearest-neighbor in the constellation). For clarity of presentation, we assume that the symbols belong to an M -QAM constellation. The approach can be adapted to any other constellation for which an expression of the BER is available.
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Figure 2. Equivalent MIMO system with an additive diagonal precoder E

We propose to add a diagonal precoder E (the resultant precoder F r is then F r = F E) in order to minimize the BER (see Fig. 2). Please note that the extra cost of this precoder is negligible because i) it is diagonal and ii) it can be included in the global precoder matrix.

We will now derive a closed form solution for the optimum precoder E that minimizes the BER of the transmission. Since virtual channel matrix D and output noise covariance matrix R nv are diagonal, we restrict our search to a diagonal matrix E = diag{e i } b i=1 . The transmission model (see Fig. 2) for sub-channel number i is then:

y i = d i e i s i + n vi (5) 
Note that the elements d i are real and positive, hence we will choose real and positive values for the e i (it is easy to show that considering negative or complex values would not modify the signal to noise ratio (SNR), hence would not improve the BER). The SNR for each sub-channel is:

ρ i = d 2 i e 2 i σ 2 i ( 6 
)
For a square M -QAM constellation, the BER is P e = 1 b b i=1 P e,i where the BER in sub-channel i is [START_REF] Proakis | Digital communications[END_REF]:

P e,i = α M × erfc β M × ρ i (7) with α M = 2 log 2 M (1 1 √ M ) and β M = 3 2(M 1)
. In order to keep the same total transmission power p 0 as previously, we determine the e i which minimize P e , under the constraint trace(F EE * F * ) = p 0 . This constraint is equivalent to:

b i=1 c i e 2 i = p 0 (8) with c i = nt j=1 |F ji | 2 (F ji
is the (j, i) th entry of F ). Using Lagrange multiplier µ, the criterion to optimize is:

C = α M b b i=1 erfc √ β M d i e i σ i +µ b i=1 c i e 2 i p 0 (9) 
Cancellation of ∂C ∂ei provides:

e 2 i = σ 2 i 2β M d 2 i W 0 2d 4 i α 2 M β 2 M µ 2 πσ 4 i b 2 c 2 i ( 10 
)
where W 0 stands for Lambert's W function of index 0 [START_REF] Corless | On the Lambert W Function[END_REF]. This function W 0 (x) is an increasing function. It is positive for x > 0, and W 0 (0) = 0. Hence, when µ 2 increases, the e 2 i decrease. Therefore, µ 2 can be easily determined, using the constraint (8).

Let us summarize the proposed method. First, given channel matrix H and noise covariance matrix R n , we compute the precoder F and the equalizer G using the MMSE criterion under the constraint trace(F F * ) = p 0 , as described in [START_REF] Sampath | Optimum precoder and equalizer designs for fixed rate MIMO systems[END_REF]. Second, a new diagonal precoder E is added. The diagonal elements of this precoder are given by Eq. ( 10) where µ is determined using constraint (8).

Simulation results

For our Monte-Carlo simulations, we use the same configuration as in [START_REF] Sampath | Optimum precoder and equalizer designs for fixed rate MIMO systems[END_REF], that is n t = 5 transmitters, n r = 5 receivers, and we transmit 4 independent data streams over the system. A 4-QAM constellation is used. For each SNR, 10, 000, 000 vectors of 4 symbols are transmitted during the Monte-Carlo simulations. Every 1, 000 transmitted vectors, a new H and a new R n are randomly chosen, in order to obtain results that do not depend on a particular channel, nor on particular noise statistics. Entries of H are i.i.d. zero-mean unit-variance complex Gaussian random variables. Matrices R n are obtained by R n = T n T * n (where entries of T n are i.i.d. zero-mean unit-variance complex Gaussian random variables) and then scaled according to the desired SNR. The SNR is defined as the ratio of the total transmitted power p 0 to the total received noise power. The ML detection is performed on the received symbols.

Fig. 3 represents the BER with respect to the SNR, for both systems: MBER and MMSE. The "theoretical" BER is numerically evaluated by averaging Eq. ( 7) over ρ i for each realization of H and R n . The additional precoder E obviously reduces the BER. We can also note that the improvement increases with the SNR. For large SNR, the MBER precoder provides an improvement about a factor of 2.5 over the MMSE precoder, for a negligible additional computational cost. In order to illustrate the impact of the MBER precoder on each sub-channel, Fig. 4 shows the sub-channels BERs for both systems. We observe that the BER improvement is focused only on the less favored sub-channel (symbol '+' on Fig. 4).

Conclusion

In this paper, we derived the optimum precoder for MIMO channels under the Minimum Bit Error Rate criterion. Sampath et al. proposed in [START_REF] Sampath | Optimum precoder and equalizer designs for fixed rate MIMO systems[END_REF] a joint transmit and receive optimization scheme for a MMSE criterion. Thanks to the diagonality of the obtained global system a new diagonal precoder can be designed which guarantees better results in term of BER. In order to show the efficiency of our method, we have made comparisons between MIMO systems with the MMSE precoder and the proposed MBER precoder through Monte-Carlo simulations. This kind of transmission scheme is directly applicable to narrowband wireless channels, in which channel information can be made available at the transmitter. 
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 3 Figure 3. BER with respect to SNR
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 4 Figure 4. Sub-channel BER with respect to SNR

The symbol * denotes transpose conjugate.

This property was not searched for by the authors of[START_REF] Sampath | Optimum precoder and equalizer designs for fixed rate MIMO systems[END_REF]: it just appears to be an interesting consequence of the MMSE criterion optimization.