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Minimum BER Diagonal Precoder for MIMO Digital Transmissions

P. Rostainga, O. Berdera G. Burela and L. Collinb

a LEST, Université de Bretagne Occidentale, 6 av. Le Gorgeu, BP 809, 29285 Brest cedex, France

b Institut de Recherche de l’Ecole Navale, BP 600, 29240 Brest Naval, France

We propose a Minimum Bit Error Rate (MBER) diagonal Precoder for Multi-Input Multi-Output (MIMO)
transmission systems. This work is based on previous results obtained by Sampath et al. [1] in which the global
transmission system (precoder and equalizer) is optimized with the Minimum Mean Square Error (MMSE) crite-
rion. This process leads to an interesting diagonality property which decouples the MIMO channel into parallel
and independent data streams and allows to perform an easy ML detection. This system is then optimized
using a new diagonal precoder that minimizes the BER. Our work is motivated by the fact that, from a prac-
tical point of view, people are likely to prefer a system that minimizes the BER rather than the Mean Square
Error. The performance improvement is illustrated via Monte Carlo simulations using a Quadratic Amplitude
Modulation (QAM).

1. Introduction

Multi-Input Multi-Output (MIMO) digital
transmission systems currently retain more and
more attention due to the very high spectral effi-
ciencies they can achieve. Most existing systems
such as spatial multiplexing [6] or space-time cod-
ing [5] assume no channel knowledge at the trans-
mitter. However, in many wireless applications,
feedback does exist (e.g., symmetric or asymmet-
ric duplex transmissions), and channel informa-
tion can be made available at the transmitter.
Indeed, only a very small data rate is used to
provide channel information to the transmitter.
The question, then, is how to take profit of this

information to globally optimize the transmission
system. In [1,2] Sampath et al. designed a jointly
optimum linear precoder and equalizer for MIMO
systems according to the Minimum Mean Square
Error (MMSE) criterion.
In this article, using the Maximum Likelihood

detection, we propose a new precoder which min-
imizes the Bit Error Rate (MBER) instead of the
Mean Square Error. In a first step, our approach
takes profit of an interesting property of the sys-
tem proposed in [1]: the precoder and equalizer
which minimize the MMSE criterion appear to di-
agonalize the global transmission system. Hence,
we can express the BER in a quite simple way.

Then, using Lagrange multipliers, we derive the
coefficients of the precoder which provides the
minimum BER, under the constraint of a given
transmission power. This second step guarantees
minimization of the overall BER of the diagonal-
ized system, independently on the way the chan-
nel was diagonalized.
The paper is organized as follows. In Section 2,

we introduce the system model and we show that
the system proposed in [1] is able to transform
a MIMO system into independent virtual data
streams. Then, in Section 3, we explain how to
derive the precoder which minimizes the BER.
Simulation results are provided in Section 4. Fi-
nally, a conclusion is drawn in Section 5.

2. An interesting property of MMSE-
optimized MIMO system

Consider a MIMO system with nr receive and
nt transmit antennas, over which we want to send
b independent data streams (see Fig.1). The sys-
tem equation is:

y = GHFs +Gn (1)

where H is an (nr × nt) channel matrix, F an
(nt×b) precoder matrix and G a (b×nr) equalizer
matrix. s is the (b×1) transmitted vector of sym-
bols and n is the (nr×1) noise vector. We assume
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that channel information can be made available
at the transmitter side.

We assume1: E {ss∗} = I, E {nn∗} = Rn

and E {sn∗} = 0.
Let us note k the rank of H . Obviously, we

must have 1 ≤ b ≤ k ≤ min(nt, nr).
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Figure 1. MIMO system

In [1], Sampath et al. designed F and G ma-
trices to minimize any weighted sum of sym-
bol estimation errors, subject to the constraint
trace {FF ∗} = p0, where p0 is the available trans-
mission power.

We will take profit of one property of their ap-
proach, which is the fact that the optimum ma-
trices decouple the MIMO channel into b parallel
and independent data streams2. Indeed, if we
note D the matrix which links the global system
output to the system input, and Rnv the covari-
ance matrix of the noise affecting the global out-
put, we have:

D = GHF = ΦgΛΦf (2)
Rnv = GRnG

∗ = ΦgΛΦ∗
g (3)

where Φf , Φg and Λ are b × b diagonal matrices
with real non-negative elements. These equations
clearly show that D and Rnv are diagonal matri-
ces, hence the MIMO system can be considered
as a set of independent virtual data streams.

The procedure to compute Φf , Φg and Λ is
described in [1]. Eq. (2) directly derives from

1The symbol ∗ denotes transpose conjugate.
2This property was not searched for by the authors of [1]:
it just appears to be an interesting consequence of the
MMSE criterion optimization.

Lemma 2 in [1] and Eq. (3) is straightforward by
using (14) and (12) in [1].
Using the optimum MMSE precoder and equal-

izer, the transmission model (corresponding to
right dashed box in Fig. 2) for sub-channel num-
ber i is then:

yi = disi + nvi (4)

where di is the (i, i)th entry of diagonal matrix D
given by Eq. (2), and nvi is the (i)th component
of noise vector nv. The covariance matrix of this
noise vector is Rnv = E[nvn

∗
v] = diag{σ2

i }b
i=1

given by Eq. (3).

3. Precoder optimization for minimum
BER

In this section, we assume that the symbol de-
cision is performed with the ML criterion. The
ML implementation is trivial, because the trans-
mission system can be seen as b parallel and inde-
pendent data streams, as explained in the previ-
ous section (hence the decision reduces to taking
the nearest-neighbor in the constellation). For
clarity of presentation, we assume that the sym-
bols belong to anM -QAM constellation. The ap-
proach can be adapted to any other constellation
for which an expression of the BER is available.
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Figure 2. Equivalent MIMO system with an ad-
ditive diagonal precoder E

We propose to add a diagonal precoder E (the
resultant precoder Fr is then Fr = FE) in order
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to minimize the BER (see Fig. 2). Please note
that the extra cost of this precoder is negligible
because i) it is diagonal and ii) it can be included
in the global precoder matrix.
We will now derive a closed form solution for

the optimum precoder E that minimizes the BER
of the transmission. Since virtual channel matrix
D and output noise covariance matrix Rnv are
diagonal, we restrict our search to a diagonal ma-
trix E = diag{ei}b

i=1. The transmission model
(see Fig. 2) for sub-channel number i is then:

yi = dieisi + nvi (5)

Note that the elements di are real and positive,
hence we will choose real and positive values for
the ei (it is easy to show that considering negative
or complex values would not modify the signal to
noise ratio (SNR), hence would not improve the
BER). The SNR for each sub-channel is:

ρi =
d2i e

2
i

σ2
i

(6)

For a squareM -QAM constellation, the BER is
Pe = 1

b

∑b
i=1 Pe,i where the BER in sub-channel

i is [4]:

Pe,i = αM × erfc
√
βM × ρi (7)

with αM = 2
log2 M (1 1√

M
) and βM = 3

2(M 1) .
In order to keep the same total transmis-

sion power p0 as previously, we determine the
ei which minimize Pe, under the constraint
trace(FEE∗F ∗) = p0 . This constraint is equiv-
alent to:

b∑
i=1

ci e
2
i = p0 (8)

with ci =
∑nt

j=1 |Fji|2 (Fji is the (j, i)th entry of
F ). Using Lagrange multiplier µ, the criterion to
optimize is:

C =
αM

b

b∑
i=1

erfc
(√
βMdiei
σi

)
+µ

((
b∑

i=1

ci e
2
i

)
p0

)

(9)

Cancellation of ∂C
∂ei

provides:

e2i =
σ2

i

2βMd2i
W0

(
2d4iα

2
Mβ

2
M

µ2πσ4
i b

2c2i

)
(10)

where W0 stands for Lambert’s W function of in-
dex 0 [3]. This function W0 (x) is an increasing
function. It is positive for x > 0, and W0 (0) = 0.
Hence, when µ2 increases, the e2i decrease. There-
fore, µ2 can be easily determined, using the con-
straint (8).
Let us summarize the proposed method. First,

given channel matrix H and noise covariance ma-
trix Rn, we compute the precoder F and the
equalizer G using the MMSE criterion under the
constraint trace(FF ∗) = p0, as described in [1].
Second, a new diagonal precoder E is added.
The diagonal elements of this precoder are given
by Eq. (10) where µ is determined using con-
straint (8).

4. Simulation results

For our Monte-Carlo simulations, we use the
same configuration as in [1], that is nt = 5 trans-
mitters, nr = 5 receivers, and we transmit 4
independent data streams over the system. A
4-QAM constellation is used. For each SNR,
10, 000, 000 vectors of 4 symbols are transmit-
ted during the Monte-Carlo simulations. Every
1, 000 transmitted vectors, a new H and a new
Rn are randomly chosen, in order to obtain re-
sults that do not depend on a particular chan-
nel, nor on particular noise statistics. Entries
of H are i.i.d. zero-mean unit-variance complex
Gaussian random variables. Matrices Rn are ob-
tained by Rn = TnT

∗
n (where entries of Tn are

i.i.d. zero-mean unit-variance complex Gaussian
random variables) and then scaled according to
the desired SNR. The SNR is defined as the ra-
tio of the total transmitted power p0 to the total
received noise power. The ML detection is per-
formed on the received symbols.
Fig. 3 represents the BER with respect to the

SNR, for both systems: MBER and MMSE. The
“theoretical” BER is numerically evaluated by
averaging Eq. (7) over ρi for each realization
of H and Rn. The additional precoder E obvi-
ously reduces the BER. We can also note that
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Figure 3. BER with respect to SNR

the improvement increases with the SNR. For
large SNR, the MBER precoder provides an im-
provement about a factor of 2.5 over the MMSE
precoder, for a negligible additional computa-
tional cost. In order to illustrate the impact of
the MBER precoder on each sub-channel, Fig. 4
shows the sub-channels BERs for both systems.
We observe that the BER improvement is focused
only on the less favored sub-channel (symbol ’+’
on Fig. 4).

5. Conclusion

In this paper, we derived the optimum precoder
for MIMO channels under the Minimum Bit Er-
ror Rate criterion. Sampath et al. proposed in [1]
a joint transmit and receive optimization scheme
for a MMSE criterion. Thanks to the diagonal-
ity of the obtained global system a new diagonal
precoder can be designed which guarantees better
results in term of BER. In order to show the effi-
ciency of our method, we have made comparisons
between MIMO systems with the MMSE pre-
coder and the proposed MBER precoder through
Monte-Carlo simulations. This kind of transmis-
sion scheme is directly applicable to narrowband
wireless channels, in which channel information
can be made available at the transmitter.
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Figure 4. Sub-channel BER with respect to SNR
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