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Abstract : � Block Digital Filtering (BDF) is a well known method for fast digital ltering. Indeed, it decomposes
the input signal into blocks and takes prot of complexity reduction provided by the Fast Fourier Transform
algorithm to considerably reduce the computational cost. In this paper, we propose a simple and efcient matrix-
oriented approach to compute and visualize the frequency response of a BDF, as well as to optimise the BDF
coefcients. This approach can be considered as an interesting alternative to the traditional overlap-save method,
because it provides better frequency responses.
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1 Introduction

In many signal processing applications, fast digital l-
tering of a signal is required [1][2]. The usual solution
to reduce computational complexity of digital lters is
to take prot of the complexity reduction provided by
the FFT (Fast Fourier Transform) algorithm, as illus-
trated on gure 1.
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Figure 1: Principle of a Block Digital Filter

An FFT-based Block Digital Filter (BDF) works as
follows [6]. The signal is divided into overlapping
blocks of M samples (the amount of overlapping is
M � L). Then, for each block, the following compu-
tations are performed:

� The block is transformed through an M-points FFT;

� The transformed block is multiplied by the M-points
FFT of the lter impulse response;

� An inverse M-points FFT is performed to obtain the
ltered block;

� Only the L central points of the transformed block
are kept.

The concatenation of the L points kept in each l-
tered block is the ltered signal. Under certain con-
ditions, the obtained signal is equal to the signal that
would be obtained by direct ltering. The interest of
the approach is the large complexity reduction provided
by the FFT algorithm.

However, the obtained signal is correct only if the
lter impulse response is restricted to the interval
[�d��d], where d � �M � L� �2. To illustrate this
point, let us consider the sample of the ltered signal
which is marked by a small circle on gure 1. If the
lter extension is larger than d , this sample depends
partially on samples of the input signal which are out-
side the input block. Hence, it is clear that the block
digital lter cannot compute its correct value. In other
words, the problem is to ensure equality between the
linear convolution (provided by direct ltering) and the
circular convolution (provided by the block digital l-
ter). If this is not realised, it can easily be proved that
the BDF impulse response is not time-invariant, hence
aliasing is present [3][5].
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The method known as Overlap-Save ([4] p. 558) is
based on the principle shown on gure 1. The lter im-
pulse response is restricted to the interval [�d��d] in
order to ensure that the obtained ltered signal is ex-
actly the same as the signal that would be obtained by
direct ltering.

In this paper, we use a different approach, in which
difference between linear convolution and circular con-
volution (i.e. aliasing) is tolerated. The interest may not
appear at a rst glance, and a classical objection could
be: why use an imperfect method when an aliasing-free
method (overlap-save) is known? In fact, this would be
forgetting that a good lter is a lter which frequency
response is as close as possible to the desired frequency
response, and not necessarily a lter that is perfect in the
sense of equivalence between linear and circular convo-
lutions.

The interest of tolerating differences between linear
convolution and circular convolution is that the lter im-
pulse response is not restricted anymore to the interval
[�d��d]. Hence, it is possible to better match the de-
sired frequency response. In this paper, we propose a
fast method to compute the optimal coefcients of such
a lter using a mean square criterion. Since the lter is
optimal, it is always better than overlap-save, with the
same computational cost.

Simple matrix-oriented tools are proposed in this pa-
per to evaluate and design block digital lters. The ar-
ticle is organised as follows. In Section 2, a matrix-
oriented mathematical model of a BDF is provided.
Then, in Section 3, the frequency response of a BDF
is established, and a method for fast computation of
the optimal BDF parameters is proposed in Section 4.
Finally, experimental results are provided in Section 5
to illustrate the approach, and a conclusion is drawn in
Section 6.

2 Mathematical model

Let us dene some notations:

� e: an M-dimensional vector containing the samples
of an input block;

� f : an L-dimensional vector containing the samples
of an output block;

� WM : the M � M unitary matrix corresponding to
the normalised (i.e. norm preserving) M-points DFT
(Discrete Fourier Transform) matrix;

� G: a diagonal M �M matrix, the diagonal of which
contains the lter coefcients;

� S: the L � M selection matrix.

The selection matrix is dened as:

S � [0L�b IL�L 0L�b] (1)

That is b null columns, an L � L identity matrix, and
b null columns again. From gure 1 it is clear that we
have:

f � Ae (2)

where A is the L �M matrix below ( � stands for the
conjugate transpose):

A � SW �
MGWM (3)

Let us note K � bL, where b is an integer, the num-
ber of points we want to consider on the frequency re-
sponse. Due to the well known properties of the DFT,
this allows considering periodical signals x of period
K (indeed, with a K -points frequency resolution, con-
sidering signals of period K or non-periodical signals
provide the same result). The ltered signal is:

y � Hx (4)

where x and y are K -dimensional vectors and H is a
K�K matrix containing b copies of matrix A, as shown
on gure 2.
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Figure 2: Structure of matrix H (for b � 4)



3 Frequency response of a BDF

Let us note y and x the DFTs of y and x . The frequency
response of the BDF will be characterised by a K � K
matrix H such that:

y � H x (5)

From equation 4 we have:

WK y � WK H x (6)

�
�
WK H W �

K

�
�WK x� (7)

Hence:

H � WK H W �
K (8)

4 Computation of the optimal lter

Let us note hd the K -dimensional vector containing the

desired frequency response, and Hd a diagonal matrix,
the diagonal of which is hd . The quadratic error eQ is a
good measure of the quality of the obtained frequency
response:

eQ �
���H � Hd

���
2

(9)

where ���2 stands for the Frobenius norm. Using
equation 8 and the norm preserving properties of uni-
tary matrices, we can write:

eQ �
���WK HW �

K � Hd
���

2
(10)

�
���H �W �

K HdWK
���

2
(11)

� �H � Hd�2 (12)

From the structure of H (see gure 2), it is clear that
minimizing eQ is equivalent to minimizing �A � Ad�2

(Ad is extracted from Hd , according to the structure
shown on the gure). Then, we can write:

�A� Ad�2 �
��SW �

MGWM � Ad
��2

(13)

�
��WMS�SW �

MG �WMS�AdW �
M

��2

(14)

� �PG � Q�2 (15)

�
M�

n�1
�gnn pn � qn�2 (16)

where:

P � WMS
�SW �

M (17)

and

Q � WMS�AdW �
M (18)

Vectors pn and qn stand, respectively, for column n
of P and Q. Using the pseudo-inverse, we obtain the
optimal coefcients of matrix G:

gnn � �pn��2 �pn�� qn (19)

Since P�P � P and P�Q � Q, this equation can be
simplied:

gnn �
qnn
pnn

(20)

This matrix-oriented method to compute the optimal
lter is simple and can be easily programmed. Using
matrix-based languages, such as Matlab or Octave, it
requires only a few lines of program. Furthermore, the
method is very fast because it requires no iterative algo-
rithm and uses FFT. Let us summarize it:

� Choose the desired lter frequency response hd (K -
dimensional vector);

� Build a K � K diagonal matrix Hd , the diagonal of
which is hd ;

� Compute Hd � W �
K HdWK ( K -points FFT on the

columns of Hd followed by a K -points inverse FFT
on the rows of the obtained matrix);

� From Hd extract Ad (from any location shown on
gure 2);

� Compute P � WMS�SW �
M and Q � WMS�AdW �

M
(please note that P could be precomputed because

it does not depend on Hd). For fast computation,
remind that left multiplication by WM is equiva-
lent to an M-points FFT on the rows, and right-
multiplication by W �

M is equivalent to an M-points
inverse FFT on the columns;

� Compute matrix G. It is a diagonal matrix, the diag-
onal elements of which are gnn � qnn�pnn.

5 Experimental results

In order to illustrate the approach and to make visu-
alisations easier, we use a relatively small block size:
M � 32. For each block, L � 24 samples are kept.
The frequency response is analysed with K � 72 points
(that is, here, K � 3L).



The signal sampling frequency is Fe � 100 kHz.
The desired frequency response is a raised cosine with
centre frequency 25 kHz, roll-off 0�2, and bandwidth
20 kHz.

Using the approach described above, we can compute
the optimal matrix G. Figure 3 shows the values ob-
tained on the diagonal of G. For comparison, the values
obtained by overlap-save are also shown.
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Figure 3: Diagonal of matrix G (top: optimal method,
bottom: overlap-save).

From matrix G, we can compute matrix A (see Eq.
3), which is shown on gure 4. The gray level is an
increasing function of the modulus of the corresponding
matrix element.
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Figure 4: Matrix A (left: optimal method, right:
overlap-save)

Matrix A determines matrix H , as was explained on
gure 2. Here, we have b � K�L � 3 and the obtained
matrices H are shown on gure 5. We remind that ma-
trix H determines the link between the input signal x
and the output signal y (see Eq. 4). We can see that
overlap-save provides a matrix H with all rows equal
(up to a circular permutation). As a consequence, the
impulse response of the obtained BDF is time-invariant.

This is not the case with matrix H provided by the op-
timal method. As a consequence, the BDF impulse re-
sponse is time-varying. This may appear as a drawback
of the optimal method. However, as we will see below,
the global performances are better with this method.
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Figure 5: Matrix H (left: optimal method, right:
overlap-save).

From matrix H , we can compute matrix H using Eq.

8. Figure 6 shows matrix H , for both methods. We re-
mind that this matrix determines the link between the
input and output spectra (see Eq. 5). As expected,
overlap-save provides a diagonal matrix (hence, there is
no aliasing), while the optimal method provides a non-
diagonal one (hence, aliasing is present).
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Figure 6: Bidimensional frequency response (matrix

H ). Left: optimal method. Right: overlap-save.

The table below shows the diagonal and off-diagonal
quadratic error (between the obtained and desired fre-
quency response), and the global quadratic error.

method optimal overlap-save
diagonal error 0.38 0.88

off-diagonal error 0.14 0
global error 0.52 0.88

We can see that tolerating a small amount of off-
diagonal error allows the optimal method to provide a



large improvement on time-invariant (i.e. diagonal) er-
ror.

Figure 7 shows the obtained and desired time-
invariant frequency responses (i.e. the diagonals of

matrices H and Hd) for the optimal method and the
overlap-save. It is clear that the optimal method pro-
vides the response that best matches the desired one.
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Figure 7: Obtained and desired time-invariant fre-
quency response (top: optimal method, bottom:
overlap-save).

6 Conclusion

In this article, we have described a simple and efcient
matrix-oriented method to analyse and optimise block
digital lters. We have also shown that tolerating a
small amount of aliasing yields a large improvement of
obtained frequencies responses. Hence, except for ap-
plications for which there is a good reason to refuse to
tolerate a small amount of aliasing, this simple approach
is an interesting alternative to overlap-save because it
provides improvement of obtained frequency response,
without increasing complexity.
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