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Block Digital Filtering (BDF) is a well known method for fast digital ltering. Indeed, it decomposes the input signal into blocks and takes prot of complexity reduction provided by the Fast Fourier Transform algorithm to considerably reduce the computational cost. In this paper, we propose a simple and efcient matrixoriented approach to compute and visualize the frequency response of a BDF, as well as to optimise the BDF coefcients. This approach can be considered as an interesting alternative to the traditional overlap-save method, because it provides better frequency responses.

Introduction

In many signal processing applications, fast digital ltering of a signal is required [START_REF] Lin | Overlapped Block Digital Filtering[END_REF] [START_REF] Loefer | Optimal Design of Periodically Time-Varying and Multirate Digital Filters[END_REF]. The usual solution to reduce computational complexity of digital lters is to take prot of the complexity reduction provided by the FFT (Fast Fourier Transform) algorithm, as illustrated on gure 1. An FFT-based Block Digital Filter (BDF) works as follows [START_REF] Vaidyanathan | Multirate Systems and Filters[END_REF]. The signal is divided into overlapping blocks of M samples (the amount of overlapping is M � L). Then, for each block, the following computations are performed: � The block is transformed through an M-points FFT;

� The transformed block is multiplied by the M-points FFT of the lter impulse response;

� An inverse M-points FFT is performed to obtain the ltered block;

� Only the L central points of the transformed block are kept.

The concatenation of the L points kept in each ltered block is the ltered signal. Under certain conditions, the obtained signal is equal to the signal that would be obtained by direct ltering. The interest of the approach is the large complexity reduction provided by the FFT algorithm.

However, the obtained signal is correct only if the lter impulse response is restricted to the interval [�d� �d], where d � �M � L� �2. To illustrate this point, let us consider the sample of the ltered signal which is marked by a small circle on gure 1. If the lter extension is larger than d, this sample depends partially on samples of the input signal which are outside the input block. Hence, it is clear that the block digital lter cannot compute its correct value. In other words, the problem is to ensure equality between the linear convolution (provided by direct ltering) and the circular convolution (provided by the block digital lter). If this is not realised, it can easily be proved that the BDF impulse response is not time-invariant, hence aliasing is present [3][5].

in "Advances in Simulation, Systems Theory, and Systems Engineering", N. Mastorakis, V. Kluev, D. Koruga Editors, Published by WSEAS Press, 2002, pp. 245-249, ISBN 960-8052-70-X

The method known as Overlap-Save ( [START_REF] Oppenheim | Discrete-time signal processing[END_REF] p. 558) is based on the principle shown on gure 1. The lter impulse response is restricted to the interval [�d� �d] in order to ensure that the obtained ltered signal is exactly the same as the signal that would be obtained by direct ltering.

In this paper, we use a different approach, in which difference between linear convolution and circular convolution (i.e. aliasing) is tolerated. The interest may not appear at a rst glance, and a classical objection could be: why use an imperfect method when an aliasing-free method (overlap-save) is known? In fact, this would be forgetting that a good lter is a lter which frequency response is as close as possible to the desired frequency response, and not necessarily a lter that is perfect in the sense of equivalence between linear and circular convolutions.

The interest of tolerating differences between linear convolution and circular convolution is that the lter impulse response is not restricted anymore to the interval [�d� �d]. Hence, it is possible to better match the desired frequency response. In this paper, we propose a fast method to compute the optimal coefcients of such a lter using a mean square criterion. Since the lter is optimal, it is always better than overlap-save, with the same computational cost.

Simple matrix-oriented tools are proposed in this paper to evaluate and design block digital lters. The article is organised as follows. In Section 2, a matrixoriented mathematical model of a BDF is provided. Then, in Section 3, the frequency response of a BDF is established, and a method for fast computation of the optimal BDF parameters is proposed in Section 4. Finally, experimental results are provided in Section 5 to illustrate the approach, and a conclusion is drawn in Section 6.

Mathematical model

Let us dene some notations: � e: an M-dimensional vector containing the samples of an input block;

� f : an L-dimensional vector containing the samples of an output block;

� W M : the M � M unitary matrix corresponding to the normalised (i.e. norm preserving) M-points DFT (Discrete Fourier Transform) matrix;

� G: a diagonal M � M matrix, the diagonal of which contains the lter coefcients;

� S: the L � M selection matrix.

The selection matrix is dened as:

S � [0 L�b I L�L 0 L�b ] (1) 
That is b null columns, an L � L identity matrix, and b null columns again. From gure 1 it is clear that we have:

f � Ae ( 2 
)
where A is the L � M matrix below ( � stands for the conjugate transpose):

A � SW � M GW M (3)
Let us note K � bL, where b is an integer, the number of points we want to consider on the frequency response. Due to the well known properties of the DFT, this allows considering periodical signals x of period K (indeed, with a K -points frequency resolution, considering signals of period K or non-periodical signals provide the same result). The ltered signal is:

y � H x (4)
where x and y are K -dimensional vectors and H is a K �K matrix containing b copies of matrix A, as shown on gure 2. 

Frequency response of a BDF

Let us note y and x the DFTs of y and x. The frequency response of the BDF will be characterised by a K � K matrix H such that:

y � H x (5)
From equation 4 we have:

W K y � W K H x (6) � � W K H W � K � �W K x� (7)
Hence:

H � W K H W � K (8)

Computation of the optimal lter

Let us note h d the K -dimensional vector containing the desired frequency response, and H d a diagonal matrix, the diagonal of which is h d . The quadratic error e Q is a good measure of the quality of the obtained frequency response:

e Q � � � �H � H d � � � 2 (9) 
where ��� 2 stands for the Frobenius norm. Using equation 8 and the norm preserving properties of unitary matrices, we can write:

e Q � � � �WK H W � K � H d � � � 2 (10) � � � �H � W � K H W � � � 2 (11) � �H � H d � 2 (12)
From the structure of H (see gure 2), it is clear that minimizing e Q is equivalent to minimizing �A � A d � 2 (A d is extracted from H d , according to the structure shown on the gure). Then, we can write:

�A � A d � 2 � � � SW � M GW M � A d � � 2 (13) � � � W M S � SW � M G � W M S � A d W � M � � 2 (14) � �PG � Q� 2 (15) � M � n�1 �g nn p n � q n � 2 (16) 
where:

P � W M S � SW � M ( 17 
)
and

Q � W M S � A d W � M (18)
Vectors p n and q n stand, respectively, for column n of P and Q. Using the pseudo-inverse, we obtain the optimal coefcients of matrix G:

g nn � � p n � �2 � p n � � q n ( 19 
)
Since P � P � P and P � Q � Q, this equation can be simplied:

g nn � q nn p nn ( 20 
)
This matrix-oriented method to compute the optimal lter is simple and can be easily programmed. Using matrix-based languages, such as Matlab or Octave, it requires only a few lines of program. Furthermore, the method is very fast because it requires no iterative algorithm and uses FFT. Let us summarize it: � Choose the desired lter frequency response h d (Kdimensional vector);

� Build a K � K diagonal matrix H d , the diagonal of which is h d ; � Compute H d � W � K H d W K ( K -points
FFT on the columns of H d followed by a K -points inverse FFT on the rows of the obtained matrix);

� From H d extract A d (from any location shown on gure 2);

� Compute P � W M S � SW � M and Q � W M S � A d W � M
(please note that P could be precomputed because it does not depend on H d ). For fast computation, remind that left multiplication by W M is equivalent to an M-points FFT on the rows, and rightmultiplication by W � M is equivalent to an M-points inverse FFT on the columns; � Compute matrix G. It is a diagonal matrix, the diagonal elements of which are g nn � q nn � p nn .

Experimental results

In order to illustrate the approach and to make visualisations easier, we use a relatively small block size: M � 32. For each block, L � 24 samples are kept. The frequency response is analysed with K � 72 points (that is, here, K � 3L).

The signal sampling frequency is F e � 100 k H z. The desired frequency response is a raised cosine with centre frequency 25 k H z, roll-off 0�2, and bandwidth 20 k H z.

Using the approach described above, we can compute the optimal matrix G. Figure 3 shows the values obtained on the diagonal of G. For comparison, the values obtained by overlap-save are also shown. From matrix G, we can compute matrix A (see Eq. 3), which is shown on gure 4. The gray level is an increasing function of the modulus of the corresponding matrix element. Matrix A determines matrix H , as was explained on gure 2. Here, we have b � K �L � 3 and the obtained matrices H are shown on gure 5. We remind that matrix H determines the link between the input signal x and the output signal y (see Eq. 4). We can see that overlap-save provides a matrix H with all rows equal (up to a circular permutation). As a consequence, the impulse response of the obtained BDF is time-invariant. This is not the case with matrix H provided by the optimal method. As a consequence, the BDF impulse response is time-varying. This may appear as a drawback of the optimal method. However, as we will see below, the global performances are better with this method. From matrix H , we can compute matrix H using Eq. 8. Figure 6 shows matrix H, for both methods. We remind that this matrix determines the link between the input and output spectra (see Eq. 5). As expected, overlap-save provides a diagonal matrix (hence, there is no aliasing), while the optimal method provides a nondiagonal one (hence, aliasing is present). The table below shows the diagonal and off-diagonal quadratic error (between the obtained and desired frequency response), and the global quadratic error. method optimal overlap-save diagonal error 0.38 0.88 off-diagonal error 0.14 0 global error 0.52 0.88

We can see that tolerating a small amount of offdiagonal error allows the optimal method to provide a large improvement on time-invariant (i.e. diagonal) error.

Figure 7 shows the obtained and desired timeinvariant frequency responses (i.e. the diagonals of matrices H and H d ) for the optimal method and the overlap-save. It is clear that the optimal method provides the response that best matches the desired one. 

Conclusion

In this article, we have described a simple and efcient matrix-oriented method to analyse and optimise block digital lters. We have also shown that tolerating a small amount of aliasing yields a large improvement of obtained frequencies responses. Hence, except for applications for which there is a good reason to refuse to tolerate a small amount of aliasing, this simple approach is an interesting alternative to overlap-save because it provides improvement of obtained frequency response, without increasing complexity.
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 1 Figure 1: Principle of a Block Digital Filter
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 2 Figure 2: Structure of matrix H (for b � 4)
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 3 Figure 3: Diagonal of matrix G (top: optimal method, bottom: overlap-save).
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 4 Figure 4: Matrix A (left: optimal method, right: overlap-save)
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 5 Figure 5: Matrix H (left: optimal method, right: overlap-save).
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 6 Figure 6: Bidimensional frequency response (matrix H ). Left: optimal method. Right: overlap-save.
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 7 Figure 7: Obtained and desired time-invariant frequency response (top: optimal method, bottom: overlap-save).
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