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Introduction

In many signal processing applications, fast digital ltering of a signal is required [ ] [START_REF] Loef Er | Optimal Design of Periodically Time-Varying and Multirate Digital Filters[END_REF]. The usual solution to reduce computational complexity of digital lters is to take pro t of the complexity reduction provided by the FFT (Fast Fourier Transform) algorithm, as illustrated on gure . An FFT-based Block Digital Filter (BDF) works as follows [START_REF] Vaidyanathan | Multirate Systems and Filters[END_REF]. The signal is divided into overlapping blocks of M samples (the amount of overlapping is M L). Then, for each block, the following computations are performed:

The block is transformed through an M-points FFT;

The transformed block is multiplied by the M-points FFT of the lter impulse response;

An inverse M-points FFT is performed to obtain the ltered block;

Only the L central points of the transformed block are kept.

The concatenation of the L points kept in each ltered block is the ltered signal. Under certain conditions, the obtained signal is equal to the signal that would be obtained by direct ltering. The interest of the approach is the large complexity reduction provided by the FFT algorithm.

However, the obtained signal is correct only if the lter impulse response is restricted to the interval [ d d], where d M L 2. To illustrate this point, let us consider the sample of the ltered signal which is marked by a small circle on gure . If the lter extension is larger than d, this sample depends partially on samples of the input signal which are outside the input block. Hence, it is clear that the block digital lter cannot compute its correct value. In other words, the problem is to ensure equality between the linear convolution (provided by direct ltering) and the circular convolution (provided by the block digital lter). If this is not realised, it can easily be proved that the BDF impulse response is not time-invariant, hence aliasing is present [START_REF] Malvar | Signal Processing with Lapped Transforms[END_REF] [START_REF] Shenoy | Linear Periodic Systems and Multirate Filter Design[END_REF].

The method known as Overlap-Save ( [START_REF] Oppenheim | Discrete-time signal processing[END_REF] p. 558) is based on the principle shown on gure . The lter impulse response is restricted to the interval [ d d] in order to ensure that the obtained ltered signal is exactly the same as the signal that would be obtained by direct ltering.

In this paper, we use a different approach, in which difference between linear convolution and circular convolution (i.e. aliasing) is tolerated. The interest may not appear at a rst glance, and a classical objection could be: why use an imperfect method when an aliasing-free method (overlap-save) is known? In fact, this would be forgetting that a good lter is a lter which frequency response is as close as possible to the desired frequency response, and not necessarily a lter that is perfect in the sense of equivalence between linear and circular convolutions.

The interest of tolerating differences between linear convolution and circular convolution is that the lter impulse response is not restricted anymore to the interval [ d d]. Hence, it is possible to better match the desired frequency response. In this paper, we propose a fast method to compute the optimal coef cients of such a lter using a mean square criterion. Since the lter is optimal, it is always better than overlap-save, with the same computational cost.

Simple matrix-oriented tools are proposed in this paper to evaluate and design block digital lters. The article is organised as follows. In Section 2, a matrixoriented mathematical model of a BDF is provided. Then, in Section 3, the frequency response of a BDF is established, and a method for fast computation of the optimal BDF parameters is proposed in Section 4. Finally, experimental results are provided in Section 5 to illustrate the approach, and a conclusion is drawn in Section 6.

Mathematical model

Let us de ne some notations:

e: an M-dimensional vector containing the samples of an input block; f : an L-dimensional vector containing the samples of an output block; W M : the M M unitary matrix corresponding to the normalised (i.e. norm preserving) M-points DFT (Discrete Fourier Transform) matrix; G: a diagonal M M matrix, the diagonal of which contains the lter coef cients; S: the L M selection matrix.

The selection matrix is de ned as:

S [0 L b I L L 0 L b ] ( )
That is b null columns, an L L identity matrix, and b null columns again. From gure it is clear that we have:

f Ae ( 2 
)
where A is the L M matrix below ( stands for the conjugate transpose):

A SW M GW M (3)
Let us note K bL, where b is an integer, the number of points we want to consider on the frequency response. Due to the well known properties of the DFT, this allows considering periodical signals x of period K (indeed, with a K -points frequency resolution, considering signals of period K or non-periodical signals provide the same result). The ltered signal is:

y H x (4)
where x and y are K -dimensional vectors and H is a K K matrix containing b copies of matrix A, as shown on gure 2. 

Frequency response of a BDF

Let us note y and x the DFTs of y and x. The frequency response of the BDF will be characterised by a K K matrix H such that:

y H x (5)
From equation 4 we have:

W K y W K H x (6) W K H W K W K x (7)
Hence:

H W K H W K (8)

Computation of the optimal lter

Let us note h d the K -dimensional vector containing the desired frequency response, and H d a diagonal matrix, the diagonal of which is h d . The quadratic error e Q is a good measure of the quality of the obtained frequency response:

e Q H H d 2 (9) 
where 2 stands for the Frobenius norm. Using equation 8 and the norm preserving properties of unitary matrices, we can write:

e Q W K H W K H d 2 ( 0) H W K H d W K 2 ( ) H H d 2 ( 2) 
From the structure of H (see gure 2), it is clear that minimizing e Q is equivalent to minimizing A A d 2 (A d is extracted from H d , according to the structure shown on the gure). Then, we can write:

A A d 2 SW M GW M A d 2 ( 3) W M S SW M G W M S A d W M 2 ( 4) PG Q 2 ( 5) M n g nn p n q n 2 ( 6) 
where:

P W M S SW M ( 7)
and

Q W M S A d W M ( 8)
Vectors p n and q n stand, respectively, for column n of P and Q. Using the pseudo-inverse, we obtain the optimal coef cients of matrix G: g nn p n 2 p n q n ( 9)

Since P P P and P Q Q, this equation can be simpli ed:

g nn q nn p nn ( 20 
)
This matrix-oriented method to compute the optimal lter is simple and can be easily programmed. Using matrix-based languages, such as Matlab or Octave, it requires only a few lines of program. Furthermore, the method is very fast because it requires no iterative algorithm and uses FFT. Let us summarize it:

Choose the desired lter frequency response h d (Kdimensional vector); Compute P W M S SW M and Q W M S A d W M (please note that P could be precomputed because it does not depend on H d ). For fast computation, remind that left multiplication by W M is equivalent to an M-points FFT on the rows, and rightmultiplication by W M is equivalent to an M-points inverse FFT on the columns; Compute matrix G. It is a diagonal matrix, the diagonal elements of which are g nn q nn p nn .

Build a K K diagonal matrix H d , the diagonal of which is h d ; Compute H d W K H d W K ( K -points FFT

Experimental results

In order to illustrate the approach and to make visualisations easier, we use a relatively small block size: M 32. For each block, L 24 samples are kept. The frequency response is analysed with K 72 points (that is, here, K 3L).

The signal sampling frequency is F e 00 k H z. The desired frequency response is a raised cosine with centre frequency 25 k H z, roll-off 0 2, and bandwidth 20 k H z.

Using the approach described above, we can compute the optimal matrix G. Figure 3 shows the values obtained on the diagonal of G. For comparison, the values obtained by overlap-save are also shown. From matrix G, we can compute matrix A (see Eq. 3), which is shown on gure 4. The gray level is an increasing function of the modulus of the corresponding matrix element. Matrix A determines matrix H , as was explained on gure 2. Here, we have b K L 3 and the obtained matrices H are shown on gure 5. We remind that matrix H determines the link between the input signal x and the output signal y (see Eq. 4). We can see that overlap-save provides a matrix H with all rows equal (up to a circular permutation). As a consequence, the impulse response of the obtained BDF is time-invariant. This is not the case with matrix H provided by the optimal method. As a consequence, the BDF impulse response is time-varying. This may appear as a drawback of the optimal method. However, as we will see below, the global performances are better with this method. From matrix H , we can compute matrix H using Eq. 8. Figure 6 shows matrix H, for both methods. We remind that this matrix determines the link between the input and output spectra (see Eq. 5). As expected, overlap-save provides a diagonal matrix (hence, there is no aliasing), while the optimal method provides a nondiagonal one (hence, aliasing is present). We can see that tolerating a small amount of offdiagonal error allows the optimal method to provide a large improvement on time-invariant (i.e. diagonal) error.

Figure 7 shows the obtained and desired timeinvariant frequency responses (i.e. the diagonals of matrices H and H d ) for the optimal method and the overlap-save. It is clear that the optimal method provides the response that best matches the desired one. 

Conclusion

In this article, we have described a simple and ef cient matrix-oriented method to analyse and optimise block digital lters. We have also shown that tolerating a small amount of aliasing yields a large improvement of obtained frequencies responses. Hence, except for applications for which there is a good reason to refuse to tolerate a small amount of aliasing, this simple approach is an interesting alternative to overlap-save because it provides improvement of obtained frequency response, without increasing complexity.
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 2 Figure 2: Structure of matrix H (for b 4)

  on the columns of H d followed by a K -points inverse FFT on the rows of the obtained matrix); From H d extract A d (from any location shown on gure 2);
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 3 Figure 3: Diagonal of matrix G (top: optimal method, bottom: overlap-save).
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 4 Figure 4: Matrix A (left: optimal method, right: overlap-save)
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 5 Figure 5: Matrix H (left: optimal method, right: overlap-save).
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 6 Figure 6: Bidimensional frequency response (matrix H ). Left: optimal method. Right: overlap-save.
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 7 Figure 7: Obtained and desired time-invariant frequency response (top: optimal method, bottom: overlap-save).