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RESUME :

De nombreuses applications de vision, notamment en robotique, nécessitent l'identication d'objets tri-dimensionnels. L'emploi de méthodes complexes, à base de mise en correspondance avec des modèles, n'est pas toujours justié, et peut être jugé trop coûteux en temps de calcul. Nous proposons une méthode rapide, et de mise en oeuvre aisée, pour la reconnaissance d'objets 3D. La méthode exploite les capacités d'apprentissage et de généralisation d'un réseau d'automates. L'idée consiste à faire apprendre à un tel réseau un certain nombre de vues de chaque objet possible. Pour réduire la quantité de données à traiter, l'objet est caractérisé par sa silhouette. En n d'apprentissage, les capacités de généralisation du réseau d'automates lui permettent une reconnaissance sur des vues non apprises. Après une description de la méthode proposée, nous présenterons les résultats obtenus sur une base de données de 216 images.

MOTS CLES : Apprentissage, Descripteurs de Fourier, Réseaux d'Automates, Silhouette, Vision 3D. .

ABSTRACT :

A lot of vision applications, for instance in robotics, require identication of 3D objects. Use of complex methods, based on model matching, is not always necessary, and may be too computationally expensive. We propose a fast and simple method for recognition of 3D objects. The method takes prot of the learning capabilities of a neural network. The idea is to train a neural network on some views of each object. In order to reduce the amount of data, the object is characterized by its silhouette. At the end of the learning phase, the generalization capabilities of the network allow it to recognize non-learned views. After a description of the proposed method, we will present experimental results obtained on a data base of 216 images. KEYWORDS : Machine Learning, Fourier Descriptors, Neural Networks, Silhouette, 3D Vision.

Introduction

La reconnaissance automatique d'objets tri-dimensionnels est considérée comme une tâche difficile du fait de l'importance des données à traiter et de la complexité de l'information sous-jacente. En raison de l'essort de la robotique, ce domaine est appelé à se développer dans l'avenir.

Dans la littérature, plusieurs approches ont été proposées pour la reconnaissance d'objets 3D . La plupart des méthodes sont basées sur la comparaison avec des modèles des objets à reconnaître [START_REF] Bart | Classical approaches to 3 dimensional object recognition" Esprit II project n o 2059 "Pygmalion[END_REF]. On peut en première approximation les classer en 2 grandes catégories :

-Méthodes exploitant plusieurs vues de l'objet.

-Méthodes exploitant une seule vue de l'objet.

Le premier type de méthode consiste à reconstruire en 3 dimensions l'objet présent dans la scène (en mettant en oeuvre des techniques de type stéréoscopie), puis à réaliser la mise en correspondance avec des modèles 3D. Ces méthodes supposent la mise en place d'un dispositif d'acquisition important (au moins 2 caméras, parfaitement calibrées), et nécessitent un traitement informatique complexe (pour résoudre le problème de la mise en correspondance). Mais elles présentent l'intérêt de fournir la position précise de l'objet en plus de la reconnaissance.

Le second type de méthode consiste à tenter d'interpréter l'image comme la projection de l'un des modèles 3D dont on dispose. La focalisation sur des structures caractéristiques (par exemple des groupes de 3 segments adjacents) permet de réduire la complexité du problème [START_REF] Bart | Prototype implementation of a classical approach to 3D object recognition" Esprit II project n o 2059 "Pygmalion[END_REF].

Les 2 types de méthodes nécessitent la création préalable de modèles des objets. Ceci explique probablement le fait que les solutions proposées sont généralement limitées aux objets polygonaux [2] [4]. Les modèles polygonaux conduisent à manipuler des segments, alors que des modèles plus généraux nécessiteraient la gestion de primitives complexes. De plus, les segments sont des primitives relativement facile à détecter dans une image.

Du fait de leur capacité d'apprentissage, les réseaux d'automates pourraient permettre d'éviter la phase de modélisation. Même si les performances obtenues (taux de reconnaissance) sont finalement plus faibles que celles des systèmes à base de modèle, ceci est une propriété intéressante qui permettrait de réduire le coût de mise au point d'un système. L'idée consiste à apprendre à un réseau d'automates un certain nombre de vues de chaque objet. En fin d'apprentissage, il devrait être capable de reconnaître des vues non apprises.

Nous avons spécifié et expérimenté une approche qui est basée sur la reconnaissance de l'objet à partir de sa silhouette (contour externe). La silhouette peut être entièrement décrite par un ensemble de coefficients complexes connus sous le nom de "descripteurs de Fourier" [START_REF] Granlund | Fourier processing for hand print character recognition[END_REF]. Cette description dans le domaine de Fourier présente les avantages suivants :

-Les descripteurs de Fourier portent la même information que le contour original (i.e. il est possible de reconstruire le contour à partir des descripteurs de Fourier).

-Ils constituent une représentation multi-résolution de la silhouette.

- 
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Normalisation

Les transformations géométriques de base (translation, rotation, homothétie) et le décalage du point de départ sur le contour agissent sur les descripteurs de Fourier comme suit :

Translation U m U m T C 0 C 0 T Rotation U m U m e j C n C n e j Homothétie U m U m C n C n Décalage U m U m k mod N C n C n e 2 j kn N
En conséquence, pour être invariant par rapport à ces transformations, nous réalisons les normalisations suivantes :

1. C 0 n'est pas pris en compte, donc l'invariance en TRANSLATION est assurée.

2. Tous les coefficients sont divisés par C 1 , donc les invariances en ROTATION et HOMOTHETIE sont assurées. Ceci peut aisément être vérifié : Compte tenu du nombre relativement faible d'exemples à notre disposition pour l'apprentissage (108 exemples), nous conserverons seulement les coefficients d'ordre inférieur à 16 (ces coefficients décrivent encore relativement bien la forme). Ceci permet de limiter la dimension du réseau de automates. En effet, un réseau sur-dimensionné risquerait de faire de l'apprentissage "par coeur", ce qui produirait une mauvaise généralisation. Nous avons utilisé un perceptron multi-couches (g 1), entraîné par l'algorithme de rétropropagation [START_REF] Rumelhart | Learning internal representations by error backpropagation[END_REF], auquel nous avons apporté diverses améliorations [START_REF] Burel | A connectionist system for recognition of 2D workpieces[END_REF] (réglage automatique des paramètres de l'algorithme et controle de la saturation). L'automate (g 2) est un sommateur pondéré suivi d'une fonction non-linéaire en tangente hyperbolique : 
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Le réseau d'automates
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Apprentissage et Classification

La base d'images a été divisée en 6 classes, et la couche de sortie du réseau d'automates contient 6 automates (un par classe). Le tableau suivant indique le vecteur de sortie souhaité pour chacune des 6 classes :

Classe Dénomination Sorties souhaitées 1 Scotch site=0 o 1 1 1 1 1 1 2 Scotch site=30 o 1 1 1 1 1 1 3 Stapler site=0 o 1 1 1 1 1 1 4 Stapler site=30 o 1 1 1 1 1 1 5 Workpiece site=0 o 1 1 1 1 1 1 6 Workpiece site=30 o 1 1 1 1 1 1
L'apprentissage consiste à adapter les coefcients de pondération W i j an d'obtenir la réponse souhaitée en sortie. Il se fait conformément à l'algorithme de rétropropagation. Lorsque l'apprentissage est terminé, le réseau peut traiter de nouvelles données.

Pour la classification, l'automate dont la sortie est la plus forte détermine la classe. Une mesure de confiance peut également être définie comme la moitié de l'écart entre la plus forte sortie et la sortie immédiatement inférieure. Ainsi, si les sorties obtenues sont 0 9 0 3 0 7 0 8 0 2 0 8 , la classe sera 3, et la conance sera 0 7 0 2 2, soit 0.25

Représentation des entrées

Trois possibilités pour représenter les descripteurs de Fourier en entrée du réseau d'automates ont été envisagées.

Représentation 100 Module P n cos phase P n sin phase P n Le sinus et le cosinus de la phase sont présentés à la place de la phase elle même, de façon à éviter le problème de discontinuité lors du passage de 359 o à 0 o . Le module est également multipliée par 100 afin de l'amener à l'ordre de grandeur des sinus et cosinus (cette multiplication ne change pas les performances obtenues, mais permet d'accélérer l'apprentissage).

La silhouette est décrite par les coefcients P 16 à P 1 et P 2 à P 16 , soit un total de 31 coefcients. La taille de la couche d'entrée du réseau d'automates sera donc 62, 31 ou 93 en fonction de la représentation choisie.

Pour information, les modules des descripteurs de Fourier pour les images de l'ensemble d'évaluation sont représentées sur la figure 9. Les modules sont représentées en luminance (la brillance est proportionnelle à la racine carrée du module). En abscisse, on a l'indice du descripteur (2 à 16, puis 16 à 1), et en ordonnée on a le numéro de l'image. De gauche à droite et de haut en bas, on a les 18 exemples de la classe 0, puis les 18 exemples de la classe 1, etc. Cette figure permet de mieux apprécier la difficulté du problème. Aucune classe ne se distingue en effet clairement des autres, si ce n'est l'agrafeuse sous 0 o d'élévation (classe 3) par l'importance des hautes fréquences. 

Résultats expérimentaux

FIG. 2 :

 2 FIG. 1: Perceptron multi-couches

  FIG. 3: SCOTCH, site=30 o , azimut=270 o

  

images et le traitement bas niveau 2.1 La base d'images

  Les expérimentations ont été conduites sur une base de 216 images dont la taille est d'environ 300x200 pixels. Il y a 3 objets différents : un distributeur de ruban adhésif (SCOTCH), une agrafeuse (STAPLER) et une pièce industrielle (WORKPIECE). Ces images font partie de l'ensemble d'images test utilisé dans le projet Esprit n o 2059 "Pygmalion". Pour chaque objet, il y a deux séries de 36 images. Elles ont été obtenues en plaçant l'objet sur un support que l'on fait tourner par pas de 10 On a utilisé ici un seuil fixe, réglé légèrement au dessus du niveau moyen du fond. Cependant, du fait des reets sur le fond, certaines zones du fond passent le seuil. Afin de les éliminer on effectue une détection de zones connexes. Seule la zone connexe de plus forte surface est conservée, ce qui permet d'éliminer les reets sur le fond, et de ne conserver que l'objet. Puis, on effectue un suivi de contour.
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	comme :			
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	Il y a N descripteurs de Fourier, et les indices peuvent
	être vus modulo N (car C n mation inverse est donnée par :	C n mod N ). La transfor-
					Pour information, quelques contours d'objets sont
					présentés sur les figures 6 et 7. On remarquera les
					perturbations importantes sur les contours (principale-
					ment pour la pièce industrielle), dûes aux problèmes
					d'ombres et de reets.
					3 Les descripteurs de Fourier
					3.1 Introduction
					Il est possible de les normaliser pour les rendre in-
					variants par rapport aux transformations de transla-
					tion, rotation, et homothétie dans le plan, ainsi que
	par rapport à un décalage du point de départ sur le contour. Le paragraphe suivant est une rapide description de la base dQuelques images sources sont visibles sur les figures 3 à 5. On remarquera des problèmes d'ombres et de reets. Ceci est particulièrement vrai pour la pièce Etant donné le contour (dans le sens trigonométri-industrielle, dont la surface métallique produit d'im-que) d'un objet sous forme d'une liste de coordonnées portants reets, de sorte que les contours extraits seront de pixels, nous construisons un contour de vélocité très bruités. Mais comme nous le verrons plus loin, uniforme de N points équidistants en re-échantillonnant les performances obtenues en reconnaissance sont le contour original. Sur le contour original, la dis-satisfaisantes, ce qui confirme la robustesse de la tance entre deux pixels 4-connexes est 1.0 et la méthode. distance entre deux pixels 8-connexes est 2. Après
					re-échantillonage, toutes les distances entre points
					successifs sont identiques. Un re-échantillonage plus
					élaboré, utilisant par exemple une fine approximation
	2.2 Extraction de la silhouette	polygonale pour la définition de l'abscisse curviligne, aurait pu être envisagée pour des images de plus faible
					résolution. Il n'est pas justifié ici.
					Notons U m les points du contour re-échantillonné (ils peuvent être vus comme des vecteurs dans le plan

'images constituée pour les expérimentations et du traitement bas niveau mis en oeuvre. Ensuite, nous détaillerons la méthode adoptée pour utiliser les descripteurs de Fourier en association avec un réseau d'automates pour l'identification d'objets 3D. La méthode inclut une normalisation par rapport à une translation de l'objet dans le plan image, à une rotation de la caméra autour de son axe et à une modification de la distance caméra-objet. Nous étudierons également diverses stratégies pour fournir les données au réseau d'automates dans une représentation adéquate. Les résultats expérimentaux en apprentissage et généralisation seront ensuite présentés. 2 La base d'o autour de l'axe vertical. Une série a été réalisée avec la caméra sous une élévation de 0 o , et l'autre série avec la caméra sous une élévation de 30 o . Dans les 2 cas, la caméra vise approximativement le centre de gravité de l'objet. Ces 216 images ont été divisées en 2 groupes de 108 images : l'ensemble d'apprentissage, qui permet d'entrainer notre système, et l'ensemble d'évaluation qui permet de tester ses performances. L'ensemble d'apprentissage contient les images prises sous un azimut multiple de 20 o (0 o 20 o 40 o 340 o ). L'ensemble d'évaluation contient les autres images (azimut = 10 o 30 o 350 o ). L'objet est en moyenne de brillance supérieure au fond. Par conséquent, un simple seuillage permet d'isoler la plus grande partie des pixels correspondant à l'objet. La théorie des descripteurs de Fourier est une méthode de décomposition d'une forme en série de Fourier [5] [7]. Il s'agit d'une transformation qui présente des propriétés intéressantes : les opérations de translation, rotation, dilatation et permutation circulaire des indices s'expriment de façon très simple dans le domaine transformé. De nombreux auteurs ont étendu la liste des propriétés connues des descripteurs et les méthodes de normalisation [7] [6].

  Cette normalisation n'est efficace que sous réserve que le module des coefficients C 1 et C 2 ne soit pas trop faible. En effet, dans le cas contraire, l'imprécision sur leur phase est importante. On peut montrer que le module du coefficient C 1 est le rayon du cercle qui approxime au mieux la forme. Ce module est donc assez élevé pour les objets réels. Quant au module de
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		les interpréter comme étant les descripteurs d'un
		objet réel, obtenu en faisant subir à l'objet source
		des transformations géométriques de base, et un
		décalage du point de départ sur le contour. Ceci
		peut facilement être vérifié en reconstruisant le
		contour à partir des descripteurs de Fourier.
		C 2 , la figure 9 (sur laquelle nous reviendrons), montre quelle est généralement assez importante. Lorsque ceci
		n'est pas le cas, on peut envisager une méthode de
		normalisation plus élaborée.
		Il est important de noter qu'il n'y a pas de perte
		d'information conçernant la forme des objets dans
		notre prétraitement. L'application de la transformation
		inverse aux coefficients normalisés P n fournit une silhouette identique à l'originale, à une transformation
		géométrique près (composition d'une translation, d'une
		rotation, et d'une homothétie).
		La figure 8 montre la reconstruction de l'agrafeuse (vue sous 0 o d'élévation et 90 o d'azimut) en fonction du
		nombre de coefficients conservés. On ne conserve que
		les coefficients d'indice n tel que	n	, pour
		les valeurs		1 2 4 6 8 10 16 32. On constatera
		que les coefficients d'ordre inférieur à 32 sont très
		largement suffisants pour reconstruire fidèlement la
		forme. Les coefficients d'ordre élevé correspondent
		à des hautes fréquences qui ne sont pas utiles pour la
		représentation de la forme (ces coefficients représentent

2 j k n 1 N 3. Tous les coefficients K n sont ensuite multipliés par e j 1 n 2 , où 2 est la phase de K 2 . Comme

  Si la caméra est xée sur le bras d'un robot, une bonne stratégie consisterait à déplacer le bras et acquérir une nouvelle vue lorsqu'il y a rejet. Nous avons spécifié et expérimenté une méthode de reconnaissance d'objets 3D qui a l'avantage d'être simple à mettre en oeuvre. En dépit de problèmes d'éclairage (ombres et reets), les résultats obtenus sont satisfaisants, ce qui prouve la robustesse de la méthode face à un prétraitement ou une acquisition déficients. Le système proposé est facile à implémenter et à utiliser car il n'y a ni modélisation, ni stéréoscopie, ni reconstruction 3D (une seule vue est suffisante). De plus la reconnaissance est très rapide. Des expérimentations futures seront menées sur un plus grand nombre d'images. En particulier, la représentation polaire nous semble préférable à la représentation sous forme de module uniquement, car elle n'induit pas de perte d'information. Le fait que cette représentation n'ait pas conduit aux meilleurs résultats dans nos expérimentations nous semble plutôt dû au faible nombre d'exemples disponibles (ce qui favorise les réseaux de faible taille).

	Les tableaux ci-dessous comparent les résultats obtenus avec différents réseaux d'automates : un réseau à 2 couches, un réseau à 3 couches (9 automates sur la couche intermédiaire, automate seuil non compris) et un réseau à 4 couches (9 et 6 automates sur les couches intermédiaires). A titre de comparaison, les résultats obtenus en remplaçant le réseau d'automates par un classieur aux k-Plus-Proches-Voisins (k-ppv) sont également indiqués. La dernière colonne indique le nombre de multiplications. Les classieurs sont rangés par ordre décroissant des taux de généralisation : Représentation cartésienne : Classieur Apprentissage Généralisation mult. 4 couches 93% 70% 648 ppv 100% 65% 6696 3 couches 91% 63% 612 3-ppv 67% 59% 6696 2 couches 90% 57% 372 5-ppv 55% 52% 6696 Module : Classieur Apprentissage Généralisation mult. 4 couches 94% 90% 369 3 couches 92% 86% 333 3-ppv 95% 84% 3348 2 couches 87% 83% 3348 ppv 100% 80% 186 5-ppv 90% 75% 3348 des cas. 6 Conclusion Classieur Apprentissage Généralisation mult. 4 couches 96% 86% 927 3-ppv 94% 84% 10044 3 couches 95% 83% 891 ppv 100% 81% 10044 5-ppv 91% 77% 10044 2 couches 93% 72% 558 La matrice de confusion du réseau à 4 couches avec une représentation "module" est la suivante : Classe Matrice de confusion 0 83% 17% 0% 0% 0% 0% 1 0% 94% 0% 0% 6% 0% 2 0% 0% 100% 0% 0% 0% 3 0% 0% 6% 83% 0% 11% 4 0% 5% 0% 6% 89% 0% 5 0% 0% 0% 0% 11% 89% Taux moyen de généralisation : 90% En concaténant les lignes et colonnes correspondant à un même objet, on obtient la matrice de confusion suivante : Classe Effectif Matrice de confusion 0-1 36 ( 33.3%) 97% 0% 3% 2-3 36 ( 33.3%) 0% 94% 6% 4-5 36 ( 33.3%) 3% 3% 94% Taux moyen de généralisation : 95% Enfin, dans le cas à 6 classes, en rejetant les formes pour lesquelles la confiance est inférieure à 0.33, on obtient les résultats suivants sur l'ensemble d'évalua-tion : correct : 81% rejet : 17% erreur : 2% Il est donc possible de faire passer le taux d'erreur de 10% à 2%, au prix d'une non-décision dans 17%
	Représentation polaire :