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NEURAL NETWORKS FOR VEHICLE DETECTION AND CLASSIFICATION

Automatic classication of vehicles on infra-red images is a hard image processing problem. Because it is difcult to use a pattern recognition method based on models, an alternative approach, based on learning by example, is investigated. The approach involves neural network techniques. Experimental results show that classication rates around 92% can be obtained with a training base of 1000 examples.

Introduction

Recent experiments concerning detection and classication of vehicles on infra-red images are presented. Classical approach to pattern recognition is usually based on structural analysis and comparison with models. However, because of noise level, and relatively impredictable target signature, pattern recognition is much more difcult on infra-red images than on images of the visible domain. Hence, an alternative approach, based on learning by example, is proposed in this paper. The approach involves two neural network techniques (Multi-Layer Perceptron, and Learning Vector Quantization), which are described in sections 2 and 3. Section 4 describes the method for vehicle classication, and provides experimental results. In section 5, an extension of this method to detection of vehicles is proposed.

The Multi-Layer Perceptron

The Multi-Layer Perceptron is a popular neural network model, which has been succesfully used in a variety of image processing and pattern recognition applications. The Multi-Layer Perceptron is trained by the backpropagation algorithm [START_REF] Rumelhart | Learning internal representations by error backpropagation[END_REF]. An example of such a neural network structure is shown on gure 1. The neuron model is shown on gure 2. It is a weighted summator followed by a non-linear function. First, the neuron's potential X j is computed as weighted sum of its inputs O i : X j i W i j O i . Then, the neuron's output O j is computed as a non-linear function of its potential: O j F X j tanh X j . Adding special neurons, called "threshold neurons", whose output is always 1, improves the performances of the network. For instance, for a 3 classes problem, there are 3 neurons on the output layer (one for each class), and the desired output values are: Let us note g i j e S W i j , S j the desired outputs, and O j the obtained outputs. It has been proved [START_REF] Rumelhart | Learning internal representations by error backpropagation[END_REF] that g i j j O i , where j O j S j F X j when j is on the output layer, and j successor s j k W jk F X j when j is on another layer. Since the examples are extracted in random order (and provided that the training set is signicant), the gradient of e M S can be approximated by low pass ltering of g i j :
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The backpropagation algorithm performs a gradient descent according to:

W i j t g i j t
Once learning is achieved, the network can deal with new data. For classication, the neuron whose output value is the highest determines the class.

A condence measure (between 0 and 1) can also be dened as : condence = 1 2 ( highest output -second highest output )

Learning Vector Quantization

Learning Vector Quantization is a neural network algorithm proposed by Kohonen [START_REF] Kohonen | The Self-Organizing Map[END_REF], which involves 2 main steps: Unsupervised representation of the data, using the Topological Maps model. Supervised ne tuning of the neural network.

The Topological Maps

The Kohonen network, also known as the "topologic maps model", is inspired from a special structure found in some cortex areas (g 3). The neurons are organized in layers, and, inside a layer, each neuron sends excitatory connections towards its nearest neighbours, and inhibitory connections towards the other neurons. All neurons receive the same inputs from the external world. Kohonen simulated the behaviour of this kind of neural network [START_REF] Kohonen | Self-Organization and Associative Memory[END_REF], and showed that it can be approximated by the following algorithm. Let us consider a network with M neurons, and let us note K the number of inputs, and x [x 1 x 2

x K ] T an input vector. The input vectors are extracted from a set A, called "the learning set". This set contains card A vectors. Each neuron is characterized by a vector of weights W j [W 1 j W K j ] T , where j is the index of the neuron. In response to an input vector x, the neuron such that the quadratic distance W j x 2 is minimal is called the winner. We will note O j the output of neuron j:

O j W j x 2 K i 1 W i j x i 2
The learning algorithm is the following (t is the iteration index, and T is the total number of iterations):

1. t 0 Initialization of the weight vectors W 1 W 2 W M 2. n 1
Let be a random permutation of the set 1 2 card A 3. Presentation of the vector x n on input.

Computation of neurons outputs O j

5. Determination of the winner (neuron k which provides the lowest output) 6. Modication of the weights according to:

W j jk t [ x W j ] 7. n n 1 If n card A , go to (3) 8. t=t+1 If t T go to (2)
The coefcients jk t are of the form t d j k . The distance d denes the dimension of the network. For 1D networks arranged in ring, such as the one we used for our application, we have d j k min j k M j k . We propose to use:

jk t 0 e d 2 j k 2 2 t
The constant 0 is called "the learning rate". Kohonen suggests values around 10 1 . The standard deviation t decreases with t according to an exponential rule:

t 0 T 1 0 t T 1
It is clear that, at each step, the winner and its neighbours will move their weights in direction of the input vector x. Hence, the network's dynamics could be seen as the result of an external force (adaptation to input vectors), and an internal force (the neighbourhood relations, that force nearby neurons to have close weights). Kohonen validated his algorithm on speech data, and showed that the neurons organize their weights in order to become representative of phonemes. Furthermore, topological relations are preserved (close neurons react to close phonemes).

x y Figure 4: Self-organization inside a triangle Properties of Kohonen's algorithm may be illustrated on a simple example. Let us assume that the input vectors are of dimension 2, and that their components are coordinates of a point randomly selected inside a triangle. Each neuron has two weights, so we can represent it by a point in the 2D plane. Figure 4 shows the network state after learning. Hence, the neural network, that can be seen as a one dimensional curve, has performed an approximation of a 2D domain (the triangle).

Kohonen's algorithm may be easily generalized to higher network's dimensions. For example, a 2D network is shown on gure 5. 

Supervised ne tuning of the neural network

Starting from a topological map which has converged, a class is assigned to each neuron by majority voting (among the examples for which this neuron is the winner). Then, the network is tuned in order to improve its classication accuracy. Kohonen has proposed 3 methods (LVQ1, LVQ2, LVQ3) for ne tuning. LVQ2 is supposed to be an improved version of LVQ1, and LVQ3 an improved version of LVQ2, although, for some applications, LVQ1 may provide the best results.

LVQ1

The examples are presented randomly and, for each example, the weights of the winner ( j ) are tuned as below (c is the class of the example):

W j x W j if c j W j x W j if c j

LVQ2

Let us note j the winner, and k the next-to-nearest neuron. Let us note also d j

x W j and d k x W k . If the class assigned to k is the same as the class of x, and is different to the class assigned to j, and if d k s d j (s 1 2), then:

W j x W j W k x W k

LVQ3

If the class assigned to k is the same as the class of x, and is different to the class assigned to j, and if d k s d j (s 1 2), then:

W j x W j W k x W k
If x, j , k, belong to the same class, then:

W j x W j W k x W k

Classication

Classication of vehicles on infra-red images leads to serious difculties, due to the following variabilities:

The background is unknown.

The meteorological conditions are uncontrolled.

The orientation of the vehicle with respect to the camera is unknown.

The including frame provided by a detector is approximate, hence there may be slight variations of the apparent size of the vehicle.

These variabilities are taken into account by creating a large training base, containing various vehicles in many orientations, with many backgrounds and environmental conditions. Furthermore, to take into account the fact that the including frame is approximate, slight homotheties are performed on the examples of this data base.

The image to classify is normalized in mean and variance, in order to obtain some insensibility with respect to camera gain. Then it is normalized in size, because the input size of a neural network is xed. For our experiments, this size was 24x16 pixels.

Six classes of vehicles have been dened: helicopter, truck, and four classes of tanks. A data base of 945 images of vehicles has been created to train the neural network. A second data base of 1407 images of vehicles has been created to test the generalization capabilities of the neural network (these images are not used for training).

Two kinds of neural networks have been compared:

A 3-layer perceptron (384 + 15 + 6 neurons), trained by the backpropagation algorithm A LVQ network (384 inputs, 32 neurons). The LVQ1 method for ne tuning has been used.

The obtained generalization rate is: 92% with the 3-layer perceptron 89% with the LVQ network

The required training time (on a Sun workstation) is 10 hours for the 3-layer perceptron and 30mn for the LVQ network. Classication of a normalized image requires 385x15+16x6 = 5871 multiplications with the 3-layer perceptron, and 384x32 = 12288 multiplications with the LVQ network.

The conclusion is that the performances of these neural networks are quite similar (92% and 89%), but the MLP is twice faster at recognition. However, since the training time required by the LVQ network is 20 times lower than the training time required by the MLP, the LVQ network should be used preferently if one wants to compare quickly the interest of new training bases. 

Detection

The approach may be extended to vehicle detection by considering that detection is some kind of classication problem, where the classes are "vehicle" and "background". However, a specic difculty must be stressed: we do not know the distance between the vehicle and the camera. Hence, the apparent size of the vehicle on the image is unknown.

The proposed approach consists in scanning the image at various resolutions. For each location and size of the scanning window, the window content is normalized in mean and variance, then normalized in size, and nally propagated through a neural network.

The neural network provides a class (vehicle or background), and a condence associated to this decision.

All the local decisions are then fused to suppress multiple detections at close spatial locations. To achieve this task, we search for the strongly overlapping detections. Two detections are considered as strongly overlapping if the center of one window is included in the other window. For such congurations, we suppress the detection which has the lower condence.

For experimentation, we have created a training base of 4647 images (1407 images of vehicles and 3240 images of backgrounds). It is good to have more backgrounds than vehicles in the training base, in order to keep the false alarm rate at a low level. MLP and LVQ networks provide comparable results. On a typical test sequence showing 3 tanks moving at various distances, the 3 vehicles are detected almost on each image of the sequence, while two or three false alarms may appear stealthy. Since the location of these false alarms seem to be almost random, they might be suppressed by temporal analysis.

Conclusion

An approach to vehicle detection and classication on infra-red images has been proposed in this paper. The approach is based on learning by example and neural network techniques. Concerning classication, 6 classes have been dened: helicopter, truck, and 4 classes of tanks. A neural network has been trained to recognize these classes independently of vehicle orientation and environment conditions. Two kinds of neural networks have been compared: the multi-layer perceptron and Kohonen's learning vector quantization. Experimental results obtained on 1400 examples show that a classication rate of 92% can be expected. An extension of this approach for detection purpose has been proposed. The image is analysed by multi-resolution scanning. For each resolution and each window location, the content of the window is normalized in size, average brightness, and contrast. Then, it is propagated through a neural network, which provides a decision ("vehicle" or "background") and a condence measure. All the decisions are then fused across the various resolutions in order to suppress multiple detections at the same location. The fusion is based on analysis of condence.
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 1 Figure 1: An example of Multi-Layer Perceptron
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 3 Figure 3: The topologic maps model (1D)
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 5 Figure 5: Topologic maps model (2D)
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 6 Figure6shows the weights of the LVQ network after training. Although the weights are difcult to interpret, one may recognize patterns similar to helicopters, trucks, and tanks by careful examination of this image.
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 6 Figure 6: Weights of the LVQ network
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 2 The neuron modelLet us note E the mathematical expectancy. The learning algorithm adjusts the weights in order to provide correct outputs when examples extracted (in a random order) from a training set are presented on the network input layer. To perform this task, a mean square error is dened as:
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