
HAL Id: hal-03222628
https://hal.univ-brest.fr/hal-03222628

Submitted on 18 Mar 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

Vision Guided Servoing using Neural Networks
Nadine Rondel, Gilles Burel

To cite this version:
Nadine Rondel, Gilles Burel. Vision Guided Servoing using Neural Networks. International Conference
on Computational Engineering in Systems Applications (CESA96), IEEE-SMC (Institute of electrical
and electronics engineers, Systems, man, and cybernetics society) & IMACS (International Symposium
on Iterative Methods in Scientific Computing), Jul 1996, Lille, France. pp.128-133. �hal-03222628�

https://hal.univ-brest.fr/hal-03222628
https://hal.archives-ouvertes.fr

Vision Guided Servoing using Neural Networks

Nadine RONDEL & Gilles BUREL

Laboratoire d'Electronique, UFR Sciences

6 Av Le Gorgeu, BP 809, 29285 Brest cedex, France

e-mail: Gilles.Burel@univ-brest.fr

IEEE Int. Conf. on Computational Engineering in Systems

Applications (CESA'96), Lille, France, July 9-12, 1996

Abstract| In a closed loop control system,
a six-degree-of-freedom robot with a CCD-
camera mounted on its end-e®ector, is oper-
ated. An object moves freely in 3D space
(translation + rotation). The aim is to servo
the camera on the object, so that the image of
the object is always close to the \reference im-
age", de¯ned by a given reference position of
the object with respect to the camera.
Classical kinematics equations are ¯rst studied
in order to determine the signi¯cant parame-
ters of the problem. Two neural approaches are
then proposed: in the ¯rst solution, a Multi-
Layer Perceptron (MLP) is fed with the image
coordinates of feature points and with previous
robot commands. In the second solution, di®er-
ent neural input parameters are used, that are
based on a±ne transformations between suc-
ceeding image coordinates. Results and com-
parisons with the classical approach (uniform
and non-uniform translations of the object) are
presented, and show the interest of the ap-
proach vs. classical methods.

Keywords| Visual Servoing, Neural Net-
works, Automatic Learning, Kinematics

I. Introduction

This paper is concerned with the following visual task
servoing problem: a 6 degree-of-freedom robot with a
camera-in-hand is made to follow the movement of an
object in the 3D space, as shown in Figure (1). An
arbitrary picture of the object is ¯rst taken by the
camera and is considered thereafter as the \reference
image" associated to this \reference position" of the
camera relative to the object. As the object moves,
it is desired that the control system send commands
to the robot, so that the relative position between the
camera and the object should be as close as possible

1st axis

2nd axis

3rd axis

4th axis

6th axis

5th axis

camera

object

Figure 1: A general overview of the system.

to its \reference position". This task is said to be ser-
voed visually, in the sense that the error criterion is
the discrepancy between the current and the reference
image.
In order to ¯nd a neural solution to this control prob-
lem, the pinhole camera model equations are ¯rst stud-
ied (Section 2). Then, in Section 3, the signi¯cant pa-
rameters of the problem are detailed, wherefrom two
neural solutions are investigated (Section 4). Finally,
Section 5 provides experimental results and compar-
isons with previous work. Section 6 draws conclusions
on the neural approach.

II. Pinhole camera model

The pinhole camera model is ¯rst presented in order
to de¯ne which parameters are necessary in the equa-
tions of the system. These parameters will then be
calculated using the equations of classical mechanics.
The pinhole camera model can be de¯ned as a conven-
tion de¯ning the projection of points in 3D space onto

IEEE Int. Conf. on Computational Engineering in Systems Applications (CESA'96)
Lille, France, July 9-12, 1996

the image plane, following the notation of Figure (2).
Its main equations are:(

u

v

=

=

f
SX

XC

ZC
+ u0 = x+ u0

f
SY

YC
ZC
+ v0 = y + v0

² where (u; v) are the coordinates of point p on the
image plane (in pixels),

² (u0; v0) are the coordinates of the optical center
on the image plane,

² (XC ; YC ; ZC) are the coordinates of the object
point PC in the camera coordinate system,

² parameters SX and SY represent the pixel size,
and f the focal length.

Derivation of image parameters u and v with respect
to time yields:·

du
dt
dv
dt

¸
=

"
f

SXZC
0 ¡ fXC

SXZ2C

0 f
SY ZC

¡ fYC
SY Z2C

#24 dXC

dt
dYC
dt
dZC
dt

35
If we call I = [x y]T , we have:

Pc

p

Zc

y

x

v

u0,v0

0,0

u

Oc

f

Yc

Xc

Figure 2: Pinhole camera model.

dI

dt
=

"
f

SXZC
0 ¡ x

ZC

0 f
SY ZC

¡ y
ZC

#
~V CP (1)

Therefore ~V CP , the speed of object point PC in the
camera frame, must be evaluated in order to write the
system equations. Classical mechanics equations show
that in the camera frame, the speed of an object point
can be written as [5]:

~V CP = ~V ROO
+ ~!(O=R)^

¡!
OOP

¡~V ROC
¡ ~!(C=R)^

¡!
OCP (2)

where for any frame E , OE stands as the origin of E ,
and ~!(S=E) is the instantaneous rotation speed of ob-
ject S with respect to E .
It is interesting to note that the two ¯rst terms can be
interpreted as the in°uence of the absolute movement
of the object in the camera frame, and the two last
terms as the in°uence of the camera movement.

III. Problem parameters

It is the fusion of the pinhole camera model with the
classical mechanics approach that enables writing the
problem equations.

A. Fundamental equation

The pinhole model described in Equation (1) shows
that the speed of an object point PC in the image
depends only on the following parameters: its position
in the image (x and y), its depth in the camera frame

(ZC), and its speed ~V
C
P in the camera frame.

Remember that we said from Equation (2) that ~V CP is
the sum of two distinct terms: one term which is due
to the absolute movement of the object in the ¯xed
frame, and another which is due to the movement of
the camera. Hence we can write:

dI

dt
=
dIC
dt

+
dIO
dt

(3)

where dICdt is the term associated with the object move-
ment in the image due to camera movements only, and
dIO
dt is the term associated with the object movement
in the image due to the object's own movements.

Let us explain the value of dICdt : the movement of the
camera in the absolute (or ¯xed) frame R produces a
movement of the points in the image such that:

dIC
dt

=

"
f

SXZC
0 ¡ x

ZC

0 f
SY ZC

¡ y
ZC

#

£
µ
¡~V ROC

¡ ~!(C=R)^
¡!
OCP

¶
(4)

which can be rewritten in matrix form:

dIC
dt

=

"
f

SXZC
0 ¡ x

ZC

0 f
SY ZC

¡ y
ZC

#

£
24 ¡1 0 0 0 ¡ZC Yc

0 ¡1 0 ZC 0 ¡XC
0 0 ¡1 ¡YC XC 0

35" ~V ROC

~!(C=R)

#

which gives, using the de¯nitions of x and y:

dIC
dt

= B

"
~V ROC

~!(C=R)

#

IEEE Int. Conf. on Computational Engineering in Systems Applications (CESA'96)
Lille, France, July 9-12, 1996

where B is the following 2£ 6 matrix:

B =

"
¡ f
SXZC

0 x
ZC

0 ¡ f
SY ZC

y
ZC

SY
f xy ¡

³
f
SX
+ SX

f x
2
´

SY
SX
y

f
SY
+ SY

f y
2 ¡SX

f xy ¡SX
SY
x

#
(5)

Let us call ~uC the 6£ 1 vector de¯ned by:

~uC =

"
~V ROC

~!(C=R)

#

and rewrite Equation (3) using this notation:

I²(t) =
dI

dt
= B~uC +

dIO
dt

At times t and t¡ 1 we can write1:
I²(t) = B(t)~uC(t) + I

²
0 (t)

I²(t¡ 1) = B(t¡ 1)~uC(t¡ 1) + I²0 (t¡ 1)
If we assume that the time interval between two image
acquisitions is short enough, we can make the hypoth-
esis that the movements of points in the image due
to object movements are uniform, that is to say I²0 (t)
is constant over time. Therefore, the two preceeding
equations can be subtracted and simpli¯ed:

I²(t)¡ I²(t¡ 1) = B(t)~uC(t)¡B(t¡ 1)~uC(t¡ 1)
When we have N feature points, the matrices B are
2N £ 6 matrices, and the size of vectors I is 2N . Fi-
nally, with notations I²(t) = I(t+1)¡I(t)

T , and B = T:B,
we get the fundamental equation of the problem:

B(t)~uC(t) = I(t+ 1)¡ 2I(t) + I(t¡ 1)
+B(t¡ 1)~uC(t¡ 1) (6)

B. Estimators and prediction

The original visual task problem can now be clearly
de¯ned, using the introduced notations, as the estima-
tion of the instantaneous speed of the camera ~uC(t) as
a function of parameters B, I and ~uC at past instants.
The estimated speed vector ~uC(t) is assumed to bring
the camera into a position such that, at time t+1, the
image I(t+ 1) on the camera screen is the \reference
image" Iref . Furthermore, an estimation of ~uC(t) us-
ing fundamental Equation (6) requires knowledge of
I(t). However, since ~uC(t) is to be calculated before
time t, and since I(t) is obviously unknown before time
t, an estimation Î(t) has to be made. Here again, an

1For convenience, we write t¡1, t¡2, instead of t¡T , t¡2T ,
where T is the sampling period

expression of the fundamental Equation (6) at time
t¡ 1 is needed:
Î(t) = 2I(t¡ 1)¡ I(t¡ 2)

+B(t¡ 1)~uC(t¡ 1)¡ B(t¡ 2)~uC(t¡ 2)
Finally, Î(t+ 1) = Iref and the estimation of Î(t) are
introduced in (6) to give the estimation of ~uC(t):

~uC(t) = B+(t)fIref ¡ 3I(t¡ 1) + 2I(t¡ 2)
¡B(t¡ 1)~uC(t¡ 1) + 2B(t¡ 2)~uC(t¡ 2)g

where B+ is the pseudo-inverse of B. Just before
time t, parameters I(t ¡ 1); I(t ¡ 2); ~uC(t ¡ 1) and
~uC(t ¡ 2) are perfectly known. Moreover, it can be
seen from Equation (5) that B(t) depends on parame-
ters x(t); y(t) and ZC(t) only. x(t) and y(t) are easily
deduced from I(t), but the depth ZC(t) is more dif-
¯cult to estimate. This is why most articles (see [2]
and [3] for example) consider matrix B as a constant,
using the fact that, when the camera follows the ob-
ject nicely, the current image is constantly close to
the \reference image". Therefore B is calculated using
the reference image, and its values are kept thereafter.
The simpli¯ed expression of ~uC(t) is now estimated as:

~uC(t) = B+fIref ¡ 3I(t¡ 1) + 2I(t¡ 2)g
¡~uC(t¡ 1) + 2~uC(t¡ 2) (7)

In [4] Papanikolopoulos proposed a method to esti-
mate matrix B at each iteration when the distance be-
tween the camera and the object is ¯xed and known,
but judged that for full 3D tracking it is still an open
problem.

IV. Neural solutions

We have seen that the classical solution to the visual
task problem can be reduced to Equation (7), there-
fore merely requiring knowledge of Iref ; I(t¡ 1); I(t¡
2); ~uC(t¡1) and ~uC(t¡2). Since these vectors clearly
represent the signi¯cant parameters, it appears feasi-
ble to train (see [6] and [1] for more details concern-
ing the training of neural networks) a neural network
(namely a Multi-Layer Perceptron) to learn this con-
trol task. Furthermore, having trained the MLP, it
would be interesting to compare its performances to
those of the classical solution. The main problem here
is to build a data base representative of the space of
possible movements, such that the network responds
correctly to any movement or any series of movements
of the object.

A. The training set

The training set we want should consist of associated
input and output vectors. Obviously, the output vec-
tor is a 6 £ 1 vector representing the instantaneous

IEEE Int. Conf. on Computational Engineering in Systems Applications (CESA'96)
Lille, France, July 9-12, 1996

speed ~uC(t). In order to give the neural network the
same data as in the classical method, the inputs will
consist of a vector containing I(t¡1); I(t¡2); ~uC(t¡1)
and ~uC(t ¡ 2). This is a 2 £ 6 + 4 £ N vector, as I
represents the x and y coordinates of N characteristic
points.
The method used to create the training set is described
in [5]. Basically, it consists in choosing random move-
ments of the object and of the camera, under some
constraints, as illustrated on Figure 3. Since the ob-
ject movement is not chosen perfectly uniform, the net-
work learns to follow an object, even when its speed
is changing. ~uC(t) is computed in order that the ref-
erence position is obtained at time t+ 1.

Figure 3: Evolution of the relative positions between
object and camera through time.

B. A ¯rst network

Denoting J(:) = I(:) ¡ Iref , Equation (7) can be
rewritten as:

~uC(t) = B
+f2J(t¡2)¡3J(t¡1)g¡~uC(t¡1)+2~uC(t¡2)

which shows that the signi¯cant parameters of this
command equation are J(t¡1); J(t¡2); ~uC(t¡1) and
~uC(t¡ 2). These parameters are used as inputs to the
¯rst network. The training set previously mentioned
comprises 2000 examples. An MLP with linear out-
puts is trained on this data: in our experiments, we
used an object with N = 5 feature points (corners),
presented in Figure (4). Therefore 2 £ N = 10 val-
ues are needed to represent every image di®erence J ,
which makes a 2£ 2£N +2£ 6 = 32 input vector for
the network. The output ~uC(t) comprises 6 units. A
32-input, 6-output MLP is created and trained on the
database until the output error is su±ciently small:
learning is considered optimal when the variance of
the ouput errors of the network on the training set

Figure 4: Location of the feature points of the object.

is smaller than the mean of the output errors of the
classical approach [2] [3] on the same data.

C. Improving the neural approach

One disadvantage of the ¯rst neural approach, is that
the size of the input layer is strongly dependent on the
number N of characteristic points. Indeed, the size of
input data such as J(t¡1) = I(t¡1)¡Iref , where each
I(t¡1) represents the coordinates (xit¡1; yit¡1) of each
of the N characteristic points, is obviously dependent
on N .
It would be interesting to replace parameter vectors
J(t¡ 1) and J(t¡ 2) by other, more compact, param-
eters, that would still represent I(t ¡ 1); I(t ¡ 2) and
Iref , but would not depend on N . Instead of feeding
the network with J(t¡2) = I(t¡2)¡Iref , for example,
one could use the parameters of the a±ne transforma-
tion (2D space to 2D space) that transforms Iref into
I(t¡ 2).
Let P i be a characteristic point of the object, and
let P iref be its reference position. The operation that

transforms the 2D coordinates of P it¡1 into the 2D co-
ordinates of P iref can be approximated by:"

xiref
yiref

#
=

µ
a b

c d

¶·
xit¡1
yit¡1

¸
+

·
e

f

¸
or, under matrix form:

Iiref = AI
i
t¡1 +D (8)

If image I(t¡ 1) is not too di®erent from image Iref ,
the relation between points at time t¡2 and points in
the reference image, is the same for all points:

8i 2 [1; N]; Iiref = AIit¡1 +D (9)

Let Gt¡1 be the center of gravity of the 2D character-
istic points in the image at time t¡ 1 and let Gref be
their center of gravity in the reference position. We
have:

G(t¡ 1) =
1

N

NX
i=1

Iit¡1

IEEE Int. Conf. on Computational Engineering in Systems Applications (CESA'96)
Lille, France, July 9-12, 1996

Gref =
1

N

NX
i=1

Iiref

Relation (8) is still valid for the center of gravity:

Gref = AGt¡1 +D

therefore we can express the unknown 2£ 1 vector D
as a function of A:

D = Gref ¡AGt¡1
Replacing D in (9), we get:

8i 2 [1; N]; Iiref = AIit¡1 + (Gref ¡AGt¡1)

that is to say:

8i 2 [1; N]; £Iiref ¡Gref¤ = A £Iit¡1 ¡Gt¡1¤
Denoting

¹Iiref = Iiref ¡Gref
and ¹Iit¡1 = Iit¡1 ¡Gt¡1

yields a very simple matrix equation:

8i; ¹Iiref = A¹Iit¡1 (10)

Thus, with

Kref =
£
¹I1ref ; ¹I

2
ref ; :::; ¹I

N
ref

¤
and Kt¡1 =

£
¹I1t¡1; ¹I

2
t¡1; :::; ¹I

N
t¡1
¤

where Kref and Kt¡1 are 2 £ N matrices, Equation
(10) can be rewritten more globally:

Kref = AKt¡1

wherefrom we get

KrefK
T
t¡1 = A

£
Kt¡1KT

t¡1
¤

Since at least 3 of the N characteristic points are not
aligned, matrix Kt¡1KT

t¡1 is invertible, and we have

A = KrefK
T
t¡1

£
Kt¡1KT

t¡1
¤¡1

Hence D is calculated as

D = Gref ¡KrefKT
t¡1

£
Kt¡1KT

t¡1
¤¡1

Gt¡1

Similarly, it is possible to ¯nd the a±ne transformation
(A0;D0) between I(t¡ 2) and I(t¡ 1):

8i 2 [1; N]; Iit¡1 = A0Iit¡2 +D0

we obtain:

A0 = Kt¡1KT
t¡2

£
Kt¡2KT

t¡2
¤¡1

D0 = Gt¡1 ¡Kt¡1KT
t¡2

£
Kt¡2KT

t¡2
¤¡1

Gt¡2

Each matrix A or A0 is composed of 4 parameters,
and each vector D or D0 of 2 parameters. There-
fore, using (A;A0;D;D0) as neural inputs2 instead of
(J(t¡2); J(t¡1)), means using 12 parameters instead
of 4N parameters as before (N being usually higher
than 5, and always greater than 3).
The advantages are obvious: ¯rst, the size of the net-
work input layer is reduced. Second, the size is no
more dependent on N , therefore if the image process-
ing unit should miss a point at one iteration, the sys-
tem could still work. Finally, this new representation
makes the neural inputs be more robust to noise (im-
age processing errors).

V. Experiments and discussion

The ¯rst part of the experiments is concerned with
uniform movement: the object translates at a constant
speed, and the performance criterion is the average dis-
tance between the current position and the reference
position of the N = 5 feature points over m samples:

error =
1

m

mX
n=1

r
1

N
kI(n)¡ Irefk2

Experiments have been done using simulation. In or-
der to present more realistic experiments, the image
pixels in I(n) are rounded up to the nearest even value.
This simulates the case where the image size is divided
by 2 in each direction in order to speed up image pro-
cessing. Moreover, a uniform pixel noise between ¡1
and 1 has been added to each pixel coordinate, so as to
be as close as possible to real image processing system
defects.
In order to show the performances of both the clas-
sical method and the neural approach, various object
speeds have been tested: Figure (5a) shows the aver-
age error in pixels as a function of the translational
speed of the object along the X axis (in cm/s). The
sampling rate is 4 samples/second, and each point of
the graph represents the average over m = 200 sam-
ples. The case of non-uniform object movements is
also investigated. In this non-uniform experiment, the
position of the object along the X-axis is a sinusoidal
function of the form:

Xpos(n) = A sin(2¼fn) (11)

where n is the number of the sample. The amplitude
A of the movement is set to 30cm, while the frequency

2In practice, these values are normalized: the unit matrix is
substracted to A and A0, and D and D0 are divided by 100

IEEE Int. Conf. on Computational Engineering in Systems Applications (CESA'96)
Lille, France, July 9-12, 1996

classical approach
MLP (input: image coord.)
MLP (input: affine transform)

mean error

(cm/s)
speed

4

6

8

10

12

14

16

0 5 10 15 20 25 30

(pixels)

Figure 5: Compared performances of the classical
method and the neural approaches in the case of a uni-
form object translation.

f varies. For each frequency, a trial is performed for
1000 samples. The graph showing the average pixel
error over 1000 samples, with respect to the associ-
ated frequency, is depicted in Figure (6a). Sinusoidal

classical approach
MLP (input: image coord.)
MLP (input: affine transform)

mean error

(cycles/sample)
frequency

5

10

15

20

25

30

35

40

45

50

55

0 0.01 0.02 0.03 0.04
0

(pixels)

Figure 6: Compared performances of the classical
method and the neural approaches in the case of a non-
uniform (sinusoidal) translation.

(therefore non-uniform) movements appear to prove
that the neural approach can handle the problem in
a satisfactory way. As is the case for uniform move-
ments, the neural network can compete positively with
the classical method, therefore showing its interesting
and wide capabilities.

VI. Conclusion

In a visual task-reference problem, a robot with a
camera mounted on its end-e®ector is used to follow
the movement of an object in 3D space: the link be-
tween the camera and the object is desired to be rigid.
After having identi¯ed the signi¯cant parameters, it
is possible to design and train a two-layer percep-
tron dedicated to this control problem. The approach
can be further improved by replacing the image fea-
tures on network input with parameters that model
image transformations. Doing this yields to faster
training and better performances. Experiments, in-
cluding highly non-uniform movements for the object,
have been presented and compared with the classical
method, showing the interest of the approach.

References

[1] G. Burel, \R¶eseaux de neurones en traitement
d'images: des modµeles th¶eoriques aux applications
industrielles", Ph.D. Thesis, University of Brest,
France, Dec. 1991

[2] F. Chaumette, P. Rives & B. Espiau, \Position-
ing of a Robot with respect to an Object, Track-
ing it and Estimating its Velocity by Visual Ser-
voing", IEEE Int. Conf. on Robotics and Automa-
tion, Sacramento, CA, pp 2248-2253, Apr. 1991

[3] B. Espiau, F. Chaumette & P. Rives, \A New
Approach to Visual Servoing in Robotics", IEEE
Trans. on Robotics and Automation, 8 (3), pp 313-
326, June 1992

[4] N.P. Papanikolopoulos, P.K. Khosla, & T. Kanade,
\Visual Tracking of a Moving Target by a Camera
Mounted on a Robot: a Combination of Control
and Vision", IEEE Trans. on Robotics and Au-
tomation, 9 (1), Feb. 1993

[5] N. Rondel & G. Burel, \Multi-Layer Perceptrons
for Task Visual Servoing in Robotics", IEEE In-
ternational Conference on Fuzzy Logic and Neural
Networks, Funchal, Portugal, 3-6 Oct, 1995

[6] D. Rumelhart, & J. McClelland, \Parallel Dis-
tributed Processing", chapter 7, MIT Press, 1986

IEEE Int. Conf. on Computational Engineering in Systems Applications (CESA'96)
Lille, France, July 9-12, 1996

