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Abstract. A six-degree-of-freedom robot with a CCD-camera mounted on its end-effector
is operated in a closed loop control system. The aim is to servo the camera on an object
which moves freely in 3D space (translation + rotation), so that the image of the object
on the camera screen is always the “reference image”, defined by an arbitrary reference
position of the object with respect to the camera.
Classical mechanics equations are first studied in order to determine the significant param-
eters of the problem. Then, a control system based on the use of a MultiLayer Perceptron
(MLP) is built. Results and comparisons detailing the behavior of the system in different
cases (uniform and non-uniform translations and rotations of the object) are presented,
and show the interest of the approach vs. classical methods.

1 Introduction

This paper is concerned with the following visual task servoing problem: a 6 degree-of-freedom
robot with a camera-in-hand is made to follow the movement of an object in the 3D space,
as shown in Figure (1). An arbitrary picture of the object is first taken by the camera and
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Fig. 1. A general overview of the system.

is considered thereafter as the “reference image” associated to this “reference position” of the
camera relative to the object. As the object moves, it is desired that the control system send
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commands to the robot, so that the relative position between the camera and the object should
be as close as possible to its “reference position”. This task is said to be servoed visually, in the
sense that the error criterion is the discrepancy between the current and the reference image.
In order to find a neural solution to this control problem, classical equations are first de-
rived (Section 2). Then, in Section 3, the significant parameters of the problem are detailed,
wherefrom a neural solution is investigated (Section 4). Finally, Section 5 provides experimen-
tal results and comparisons with previous work. Section 6 draws conclusions on the neural
approach.

2 General equations

The pinhole camera model is first presented in order to define which parameters are necessary
in the equations of the system. These parameters will then be calculated using the equations
of classical mechanics.

2.1 Pinhole camera model

The pinhole camera model can be defined as a convention defining the projection of points in
3D space onto the image plane, following the notation of Figure (2).

The main pinhole camera model equations are:
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– where (u, v) are the coordinates of point p on the image plane (in pixels),
– (u0, v0) are the coordinates of the optical center on the image plane,
– (XC , YC , ZC) are the coordinates of the object point PC in the camera coordinate system,
– parameters SX and SY represent the pixel size, and f the focal length.

Derivation of image parameters u and v with respect to time yields:
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which is to say, in matrix form:
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If we call I = [x y]T , we have:
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(1)

Therefore VC
P , the speed of object point PC in the camera frame, must be evaluated in order

to write the system equations. This is where we use classical mechanics equations.
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Fig. 2. Pinhole camera model.

2.2 Classical mechanics equations

The intantaneous movement of an object can be defined by CE(S):

CE(S) ≡
(
ω(S/E)
VE

P

where E is the coordinate frame, S the object, and P a point of S. ω(S/E) is the instantaneous
rotation speed of S with respect to E , and VE

P is the translation speed of point P in E .
Let R0 be a fixed frame, and R1 a (possibly) moving frame. The relation describing the

composition of movements is:
VR0

P = VR1
P +VR0

P∈R1

where the last term represents the speed in R0 of the fixed point of R1 that coincides with P
at the same moment.

If we apply this relation to the fixed frame R of the robot and the camera frame C, we get:

VR
P = VC

P +VR
P∈C

which yields to the value we were looking for:

VC
P = VR

P −VR
P∈C

To aid in the calculation of these two terms, let us write the fundamental relation of kine-
matics:

∀(P,Q) ∈ S2,VE
Q = VE

P + ω(S/E)∧
−→
PQ

and let us use it for VR
P∈C :

VR
P∈C = VR

OC
+ ω(C/R)∧

−→
OCP

where OC is the origin of frame C. In the same way, we can write for a point P of the object:

VR
P = VR

OO
+ ω(O/R)∧

−→
OOP

where OO is the origin of the object frame.
Finally, in the camera frame, the speed of an object point can be written as:
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It is interesting to note that the two first terms can be interpreted as the influence of the ab-
solute movement of the object in the camera frame, and the two last terms as the influence of
the camera movement.

3 Problem parameters

It is the fusion of the pinhole camera model with the classical mechanics approach that enables
writing the problem equations.

3.1 Fundamental equation

The pinhole model described in equation (1) shows that the speed of an object point PC in the
image depends only on the following parameters: its position in the image (x and y), its depth
in the camera frame (ZC), and its speed VC

P in the camera frame:
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Remember that we said from Equation (2) that VC
P is the sum of two distinct terms: one term

which is due to the absolute movement of the object in the fixed frame, and another which is
due to the movement of the camera. Hence we can write:

dI
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=
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+
dIO
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(3)

where dIC
dt

is the term associated with the object movement in the image due to camera move-

ments only, and dIO
dt

is the term associated with the object movement in the image due to the
object’s own movements.

Let us explain the value of dIC
dt

: the movement of the camera in the absolute (or fixed) frame R
produces a movement of the points in the image such that:
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Yet a simple computation gives:
∀(a,b), a ∧ b = ã. b

where
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therefore we can write
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Equation (4) may be rewritten in matrix form:
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which gives, using the definitions of x and y:
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where B is the following 6× 6 matrix:

B =


−

f
SXZC

0 x
ZC

SY

f
xy −

�
f
SX

+ SX

f
x2

�
SY

SX
y

0 − f
SY ZC

y
ZC

f
SY

+ SY

f
y2 −SX

f
xy −SX

SY
x


 (5)

Let us call uC the 6× 1 vector defined by:

uC =

"
VR

OC

ω(C/R)

#

and rewrite Equation (3) using this notation:

I•(t) =
dI

dt
= BuC +

dIO
dt

At times t and t− 1 we can write:

I•(t) = B(t)uC(t) + I•0 (t)

I•(t− 1) = B(t− 1)uC(t− 1) + I•0 (t− 1)

If we assume that the time interval between two image acquisitions is short enough, we can
make the hypothesis that the movements of points in the image due to object movements are
uniform, that is to say I•0 (t) is constant over time. Therefore, the two preceeding equations can
be subtracted and simplified:

I•(t)− I•(t− 1) = B(t)uC(t)− B(t− 1)uC(t− 1)

Finally, with notations I•(t) = I(t+1)−I(t)
T

, and B = T.B, we get the fundamental equation of
the problem:

B(t)uC(t) = I(t+ 1)− 2I(t) + I(t− 1) + B(t− 1)uC(t− 1) (6)

3.2 Estimators and prediction

The original visual task problem can now be clearly defined, using the introduced notations, as
the estimation of the instantaneous speed of the camera uC(t) as a function of parameters B, I
and uC at past instants. The estimated speed vector uC(t) is assumed to bring the camera into a
position such that, at time t+1, the image I(t+1) on the camera screen is the “reference image”
Iref . Furthermore, an estimation of uC(t) using fundamental Equation (6) requires knowledge of
I(t). However, since uC(t) is to be calculated before time t, and since I(t) is obviously unknown
before time t, an estimation Î(t) has to be made. Here again, an expression of the fundamental
Equation (6) at time t− 1 is needed:

Î(t) = 2I(t− 1)− I(t− 2) + B(t− 1)uC(t− 1)− B(t− 2)uC(t− 2) (7)

Finally, Î(t + 1) = Iref and the estimation of Î(t) are introduced in (6) to give the estimation
of uC(t):

uC(t) = B+(t){Iref − 3I(t− 1) + 2I(t− 2)− B(t− 1)uC(t− 1) + 2B(t− 2)uC(t− 2)} (8)



Just before time t, parameters I(t− 1), I(t− 2),uC(t− 1) and uC(t− 2) are perfectly known.
Moreover, it can be seen from Equation (5) that B(t) depends on parameters x(t), y(t) and
ZC(t) only. x(t) and y(t) are easily deduced from I(t), but the depth ZC(t) is more difficult
to estimate. This is why most articles (see [2] and [3] for example) consider matrix B as a
constant, using the fact that, when the camera follows the object nicely, the current image is
constantly equal to the “reference image”. Therefore B is calculated using the reference image,
and its values are kept thereafter. The simplified expression of uC(t) is now estimated as:

uC(t) = B+{Iref − 3I(t− 1) + 2I(t− 2)}− uC(t− 1) + 2uC(t− 2) (9)

In [4] Papanikolopoulos proposed a method to estimate matrix B at each iteration when the
distance between the camera and the object is fixed and known, but judged that for full 3D
tracking it is still an open problem.

4 A neural solution

We have seen that the classical solution to the visual task problem can be reduced to Equation
(9), therefore merely requiring knowledge of I(t − 1), I(t − 2),uC(t − 1) and uC(t − 2). Since
these vectors clearly represent the significant parameters, it appears feasible to train (see [6]
and [1] for more details concerning the training of neural networks) a neural network (namely
a Multi-Layer Perceptron) to learn this control task. Furthermore, having trained the MLP, it
would be interesting to compare its performances to those of the classical solution. The main
problem here is to build a data base representative of the space of possible movements, such
that the network responds correctly to any movement or any series of movements of the object.

4.1 The training set

The training set we want should consist of associated input and output vectors. Obviously, the
output vector is a 6 × 1 vector representing the instantaneous speed uC(t). In order to give
the neural network the same data as in the classical method, the inputs will consist of a vector
containing I(t − 1), I(t − 2),uC(t − 1) and uC(t − 2). This is a 2 × 6 + 4 × N vector, as I
represents the x and y coordinates of N caracteristic points.

To begin with, we should remind that, for any two frames R0 and R1, the transformation
matrix between R0 and R1 is the 4× 4 matrix defined by:

MR1
R0

=

 
R T

0 0 0 1

!

where R is the rotation matrix between R0 and R1, and T is the translation vector between
the origin of R0 and the origin of R1. I(t − 2) is the projection of the caracteristic points of
the object onto the camera at time t − 2. Therefore to compute I(t − 2), we need Mco(t − 2),
the transformation matrix between the object frame and the camera frame (see Figure (3)). It
is assumed that I(t− 2) and Iref are close, hence Mco(t− 2) is considered a “noisy” reference-
position matrix:

Mco(t− 2) = Mco refMu(t− 2)

where Mu(t− 2) is a random “noise” transformation matrix created by the following process: a
uniform rotation and translation “noise” vector nu(t−2) is generated, whereupon noise matrix
Mu(t− 2) is calculated (see Appendix A) using Rodrigues’ formula [5].

Once this first position is set, a first translational and rotational object speed U0(t − 2) is
randomly chosen. The transformation matrix to the new object frame, Moo′(t−2), is calculated
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Fig. 3. Evolution of the relative positions between object and camera through time.

from U0(t − 2) using Rodrigues’ formula as previously. The camera is supposed to follow this
movement so as to maintain its reference position with respect to the object: the “ideal”Mco(t−
1) matrix equals Mco ref and:

M ideal
cc′ (t− 2) = Mco(t− 2)Moo′(t− 2)M−1

co ref (10)

The ideal camera speed UC(t−2) is extracted from M ideal
cc′ (t−2) using the inverse of Rodrigues’

formula. However, since usual movements are rarely perfect, a small random noise vector is
added to UC(t−2): uC(t−2) = UC(t−2)+nC(t−2), from which the true Mcc′(t−2) matrix is
recalculated with Rodrigues’ formula. Equation (10) is then modified to let the new relationship
between object and camera referentials appear as:

Mco(t− 1) = M−1
cc′ (t− 2)Mco(t− 2)Moo′(t− 2) (11)

from which I(t− 1) is deduced.
The whole process is rerun for the following iterations (from time t− 1 to time t). However,

this time a constraint is applied, which comes from simple physical considerations: for an object
moving at a reasonable speed, and for sufficient sampling over time, it seems probable that the
instantaneous speed of the object cannot vary tremendously between two iterations. Therefore
U0(t− 1) is assumed to obey:

U0(t− 1) = U0(t− 2) + d0(t− 1)

where d0(t− 1) is a noise vector chosen at random between one tenth of the range used in the
choosing U0(t− 2).

The same process is rerun once more (from time t to time t + 1): a noise vector d0(t) is
chosen at random and U0(t) = U0(t − 1) + d0(t) yields the object movement matrix Moo′(t).
However, since the network is now supposed to be trained to cope perfectly with the various
movements of the object, no spurious noise will be added to the “ideal” camera speed extracted
from matrix

Mcc′(t) = Mco(t)Moo′(t)M
−1
co ref (12)

Therefore uC(t) is calculated directly from Mcc′(t) by the inversion of Rodrigues’ formula. We
have now created randomly all the parameters necessary for the training of a network: inputs
I(t − 2), I(t − 1),uC(t − 2),uC(t − 1), and the output uC(t). The choosing of parameters in
random directions ensures the adaptativity of the network for any possible movement of the



object. Furthermore, varying the object speed (speeds at time t, t− 1 and t− 2 are different)
should provide the possibility to follow an object, even when its speed is changing (non-uniform
movement).

4.2 The network

The training set previously described comprises 1000 examples. A two-layer (linear) perceptron
is trained on this data: in our experiments, we used an object with N = 5 caracteristic points
(corners), presented in Figure (4). Therefore 2 ×N = 10 values are needed to represent every
image I, which makes a 2× 2×N +2× 6 = 32 input vector for the network. The output uC(t)

Fig. 4. Location of the characteristic points of the object.

comprises 6 units. A 32-input, 6-output, two-layer perceptron with linear activation-function
neurons is created and trained on the database until the output error is sufficiently small:
learning is considered optimal when the variance of the ouput errors of the network on the
training set is smaller than the mean of the output errors of the classical approach [2] [3] on
the same data. Once the network has learned, experiments are conducted on various movement
cases: linear and non linear translations and rotations.

5 Experiments and discussion

The first part of the experiments is concerned with uniform movement: the object translates or
rotates at a constant speed, and the performance criterion is the mean square error between the
current position and the reference position of the N = 5 caracteristic points over m iterations:

eMS(m) =
1

m

mX

n=1

s
1

N
∥I(n)− Iref∥2

It is important to note that, in order to present more realistic experiments, the image pixels
in I(n) are rounded up to the nearest even value (instead of a usual round-up to the nearest
integer value). Moreover, a uniform pixel noise between −1 and 1 has been added to each
pixel coordinate, so as to be as close as possible to real image processing system defects. In
order to show the performances of both the classical method and the neural approach, various
object speeds have been tested: Figure (5a) shows the average error in pixels as a function
of the translational speed of the object along the X axis (in cm/s). The sampling rate is 4
iterations/second, and each point of the graph represents the average over m = 200 iterations.
The same experiment was conducted for a uniform rotation of the object. As in the case of
translation, it should be noted that the neural network performance is very promising, and even
proves to be slightly better than that of the classical approach.
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Fig. 5. Compared performances of the classical method and the neural approach in the case of uniform
object speeds: (a) translation, (b) rotation.

The case of non-uniform object movements is also investigated. In the first non-uniform
experiment, the position of the object along the X-axis is a sinusoidal function of the form:

xpos(n) = A sin(2πfn) (13)

where n is the number of iterations. The amplitude A of the movement is set to 30cm, while
the frequency f varies. For each frequency, a trial is performed for 1000 iterations. The graph
showing the average pixel error over 1000 iterations, with respect to the associated frequency,
is depicted in Figure (6a). The validity of the neural approach for non-uniform rotations is
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Fig. 6. Compared performances of the classical method and the neural approach in the case of non-u-
niform object speeds: (a) sinusoidal translation, (b) sinusoidal rotation.



also illustrated: sinusoidal rotations around the X-axis are performed (see Figure (6b)) for a
rotation angle θ such that:

θ(n) =
π

3
sin(2πfn) (14)

Sinusoidal (therefore non-uniform) movements appear to prove that the neural approach can
handle the problem in a satisfactory way. As is the case for uniform movements, the neural
network can compete positively with the classical method, therefore showing its interesting and
wide capabilities.

6 Conclusions and perspectives

In a visual task-reference problem, a robot with a camera mounted on its end-effector is used
to follow the movement of an object in 3D space: the link between the camera and the object is
desired to be rigid. After having identified the significant parameters, it is possible to design and
train a two-layer perceptron dedicated to this control problem. Various experiments, including
highly non-uniform movements for the object, have been presented and compared with the
classical method, showing the interest of the approach. Furthermore, one advantage is the ease
with which the neural approach may be extended to non-linear loops, and/or to control loops
taking more information into account: such extensions merely require extra or new training.

Further studies include the extension to three-layer (non linear) perceptrons used in a par-
ticular way: once the two-layer perceptron has learned, a three-layer perceptron is trained to
correct the two-layer MLP, that is to say its inputs are the same, but its outputs are the differ-
ence between the correct answer and the answer provided by the two-layer MLP. This way the
three-layer MLP can only improve the performances of the two-layer MLP, and the learning
phase is much quicker than a direct three-layer learning. Other extensions are planned using
more than two iterations in the prediction process, e.g. I(t− 3) and uC(t− 3) might be added
to the network inputs.
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Appendix A

For a unit time the transformation matrix Mu associated to the 6× 1 rotation and translation
speed vector u = [t,ω]T is

Mu =

 
Ru t

0 0 0 1

!

Ru is calculated with the aid of Rodrigues’ formula:

Ru = I + sin θU + (1− cos θ)U2

where I is the 3 × 3 identity matrix, θ is the norm (or length) of rotation vector ω, and U is
the 3× 3 antisymmetric matrix such that:

U =




0 −c b

c 0 −a

−b a 0




where v = [a b c]T is the unit vector collinear to ω: v = ω/∥ω∥.


