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z SEFT, 18 rue du Dr. Zamenhof, 92130 Issy-Les-Moulineaux, France

Abstract. A six-degree-of-freedom robot with a CCD-camera at the

extremity of its end-e®ector, is associated to a closed loop control system.

An object moves freely in the 3D space (translation + rotation). The aim

is to servo the camera on the object, so that the image of the object on the

camera screen is always the \reference image", de¯ned by an arbitrary

reference position of the object versus the camera.

Classical mechanics equations are ¯rst studied, in order to determine

the signi¯cant parameters of the problem. Whereupon, a control system

based on the use of a MultiLayer Perceptron (MLP) is built. Results

and comparisons detailing the behavior of the system in di®erent cases

(uniform and non-uniform translations and rotations of the object) are

presented, and show the interest of the approach vs classical methods.

1 Introduction

This paper is interested in the following visual task servoing problem: a 6 degree-

of-freedom robot with a camera-in-the-hand is assigned to follow the movement

of an object in the 3D space, as shown in ¯gure (1). An arbitrary picture of the

object is ¯rst taken by the camera and is considered henceforth as the \reference

image" associated to this \reference position" of the camera relatively to the

object. As the object moves, it is desired that the control system should send

commands to the robot, so that the relative position between the camera and

the object should be as close as possible to its \reference position". This task is

said to be servoed visually, in the sense that the error criterion is the discrepancy

between the current and the reference image.

In order to ¯nd a neural solution to this control problem, classical equations are

¯rst derived (section 2). Then, in section 3, the signi¯cant parameters of the

problem are detailed, wherefrom a neural solution is investigated (section 4).

Finally, section 5 provides experimental results and comparisons with previous

work. Section 6 draws a conclusion on the neural approach.

2 General equations

The pinhole camera model is ¯rst presented, in order to de¯ne which parameters

are necessary in the equations of the system. These parameters will then be

calculated using the classical equations of mechanics.
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Fig. 1. A general overview of the system.

2.1 Pinhole camera model

The pinhole camera model can be de¯ned as a convention ruling the projection

of points of the 3D space onto the image plane, following notations of ¯gure (2).

The main pinhole camera model equations are:
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{ where (u; v) are the coordinates of point p on the image plane (in pixels),

{ (u0; v0) are the coordinates of the optical center on the image plane,

{ (XC ; YC ; ZC) are the coordinates of the objet point PC in the camera coor-

dinate system,

{ parameters SX and SY represent the pixel size, and f the focal.

Derivation of image parameters u and v with respect to time yields to:
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If we call I = [x y]T , we have:
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Fig. 2. Pinhole camera model.
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Therefore VC
P , the speed of object point PC in the camera referential, must be

evaluated in order to write the equations of the system. This is where we use

classical mechanics equations:

2.2 Classical mechanics equations

The intantaneous movement of an object can be de¯ned by CE(S):

CE(S) ´
½
!(S=E)
VE
P

where E is the referential, S the object, and P a point of S. !(S=E) is the
instantaneous rotation speed of S with respect to E , and VE

P is the translation

speed of point P in E .
Let R0 be a still referential, and R1 a (possibly) moving referential. The

relation describing the composition of movements is:

VR0

P = VR1
P +VR0

P2R1

where the last term represents the speed in R0 of the still point of R1 that

coincides with P at this very moment.

If we apply this relation to the still referential R of the robot and the refer-

ential C of the camera, we get:

VR
P = V

C
P +V

R
P2C

which yields to the value we were looking for:
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P = V

R
P ¡VR

P2C



To help in the calculation of these two terms, let us write the fundamental

relation of kinematics:

8(P;Q) 2 S2; VE
Q = V

E
P +!(S=E)^

¡!
PQ

and let us use it for VR
P2C :

VR
P2C = V

R
OC
+!(C=R)^

¡!
OCP

where OC is the origin of referential C. For the same respect, we can write for a

point P of the object:

VR
P = V

R
OO
+!(O=R)^

¡!
OOP

where OO is the origin of the referential of the object.

Finally, in the camera referential, the speed of a point of the object can be

written as:

VC
P = V

R
OO
+!(O=R)^

¡!
OOP ¡VR

OC
¡!(C=R)^

¡!
OCP (2)

It is interesting to note that the two ¯rst terms can be interpreted as the in°u-

ence of the absolute movement of the object in the camera referential, and the

two last terms as the in°uence of the movement of the camera.

3 Problem parameters

It is the fusion of the pinhole camera model approach with the classical mechanics

approach that enables the writing of the problem equations.

3.1 Fundamental equation

The pinhole model described in equation (1) shows that the speed of an object

point PC in the image depends only on the following parameters: its position in

the image (x and y), its depth in the camera referential (ZC), and its speed V
C
P

in the camera referential:
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Remember that we said from equation (2) that VC
P is the sum of two distinct

terms: one term is due to the absolute movement of the object in the still ref-

erential, and the other term is due to the movement of the camera. Thence we

can write:
dI

dt
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dIC
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+
dIO

dt
(3)



where dIC
dt

is the term associated to the object movement in the image due to

camera movements only, and dIO
dt
is the term associated to the object movement

in the image due to the object own movements.

Let the value of dIC
dt

be explained: the movement of the camera in the abso-

lute (or still) referential R produces a movement of the points in the image such

that:
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Yet a simple computation gives:
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therefore we can write
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Equation (4) then rewrites, under the matrix form:
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which gives, using the de¯nitions of x and y:
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where B is the 6£ 6 following matrix:
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Let us call uC the 6£ 1 vector de¯ned by:

uC =

·
VR
OC

!(C=R)

¸

and rewrite equation (3) using this notation:

I²(t) =
dI

dt
= BuC +

dIO

dt



At times t and t¡ 1 we can write:
I²(t) = B(t)uC(t) + I

²
0 (t)

I²(t¡ 1) = B(t¡ 1)uC(t¡ 1) + I²0 (t¡ 1)
If we assume that the time interval between two snapshots is short enough, we

can make the hypothesis that the movements of points in the image due to object

movements are uniform, that is to say I²0 (t) is constant over time. Therefore, the
two preceeding equations can be subtracted and simpli¯ed:

I²(t)¡ I²(t¡ 1) = B(t)uC(t)¡B(t¡ 1)uC(t¡ 1)
Finally, with notations I²(t) = I(t+1)¡I(t)

T
, and B = T:B, we get the fundamental

equation of the problem:

B(t)uC(t) = I(t+ 1)¡ 2I(t) + I(t¡ 1) + B(t¡ 1)uC(t¡ 1) (6)

3.2 Estimators and prediction

The original task visual problem can now be de¯ned clearly, using the introduced

notations, as the estimation of the instantaneous speed of the camera uC(t) as

a function of parameters B, I and uC at times gone by. The estimated speed

vector uC(t) is assumed to bring the camera in a position such that, at time

t + 1, the image I(t + 1) on the camera screen is the \reference image" Iref .

Furthermore, an estimation of uC(t) using fundamental equation (6) requires

the knowledge of I(t). However, since uC(t) is to be calculated before time t,

and since I(t) is obviously unknown before time t, an estimation Î(t) has to be

made. Here again, an expression of the fundamental equation (6) at time t ¡ 1
is needed:

Î(t) = 2I(t¡ 1)¡ I(t¡ 2) + B(t¡ 1)uC(t¡ 1)¡ B(t¡ 2)uC(t¡ 2) (7)

Finally, Î(t+ 1) = Iref and the estimation of Î(t) are introduced in (6) to give

the estimation of uC(t):

uC(t) = B
+(t)fIref¡3I(t¡1)+2I(t¡2)¡B(t¡1)uC(t¡1)+2B(t¡2)uC(t¡2)g

(8)

Just before time t, parameters I(t ¡ 1); I(t ¡ 2);uC(t ¡ 1) and uC(t ¡ 2) are
perfectly known. Moreover, it can be seen from equation (5) that B(t) depends

on parameters x(t); y(t) and ZC(t) only. x(t) and y(t) are easily deduced from

I(t), but the depth ZC(t) is more di±cult to estimate. This is why most articles

(see [2] and [3] for example) consider matrix B as a constant, using the fact

that, when the camera follows the object nicely, the current image is constantly

equal to the \reference image". Therefore B is calculated using the reference

image, and its values are kept thereafter. The simpli¯ed expression of uC(t) is

now estimated as:

uC(t) = B
+fIref ¡ 3I(t¡ 1) + 2I(t¡ 2)g ¡ uC(t¡ 1) + 2uC(t¡ 2) (9)

In [4] Papanikolopoulos proposed a method to estimate matrix B at each itera-

tion when the distance between the camera and the object is ¯xed and known,

but reckoned that for full 3D tracking it is still an open problem.



4 A neural solution

We have seen that the classical solution to the task visual problem can be reduced

to equation (9), therefore merely needs the knowledge of I(t¡1); I(t¡2);uC(t¡1)
and uC(t ¡ 2). Since these vectors clearly represent the signi¯cant parameters,
it would be a good idea to train (see [6] and [1] for more details concerning the

training of neural networks) a neural network (namely a Multi-Layer Percep-

tron) to learn this control task. Furthermore, having trained the MLP, it would

be interesting to compare its performances to those of the classical solution. The

main problem here, is to build a data base representative of the possible move-

ments space, such that the network answers correctly to any movement or any

series of movements of the object.

4.1 The training base

The training base we want to build is composed of associated input and output

vectors. Obviously here, the output vector is a 6 £ 1 vector representing the
instantaneous speed uC(t). In order to give the neural network the same chances

as the classical method, the inputs will be composed of a vector comprising

I(t¡ 1); I(t¡ 2);uC(t¡ 1) and uC(t¡ 2). This is a 2£ 6 + 4£N vector, for I

represents the x and y coordinates of N caracteristic points.

To begin with, we would like to remind that, for any pair of referentials R0
and R1, the transformation matrix between R0 and R1 is the 4£4 matrix de¯ned
by:

MR1

R0
=

µ
R T

0 0 0 1

¶

where R is the rotation matrix between R0 and R1, and T is the translation

vector between the origin of R0 and the origin of R1. I(t¡ 2) is the projection
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Fig. 3. Evolution of the relative positions between object and camera through time.

of the caracteristic points of the object onto the camera at time t¡ 2. Therefore



to compute I(t¡2), we needMco(t¡2), the transformation matrix between the
referential of the object and the referential of the camera (see ¯gure (3)). It is

assumed that I(t ¡ 2) and Iref are close, hence Mco(t ¡ 2) is considered as a
\noisy" reference position matrix:

Mco(t¡ 2) =Mco refMu(t¡ 2)

where Mu(t ¡ 2) is a \noise" random transformation matrix created by the

following process: a \noise" rotation and translation vector nu(t ¡ 2) is drawn
uniformly, whereupon noise matrix Mu(t ¡ 2) is calculated (see Appendix A)
using Rodrigues formula [5].

Once this ¯rst position is set, a ¯rst translational and rotational object speed

U0(t¡2) is drawn uniformly at random. The transformation matrix towards the
new object referential, Moo0(t¡ 2), is calculated from U0(t¡ 2) using Rodrigues
formula as previously. The camera is supposed to follow this movement so as

to keep its reference position with respect to the object: the \ideal" Mco(t¡ 1)
matrix equals Mco ref and:

M ideal
cc0 (t¡ 2) =Mco(t¡ 2)Moo0(t¡ 2)M¡1

co ref (10)

The ideal camera speed UC(t¡2) is extracted fromM ideal
cc0 (t¡2) using the inverse

Rodrigues formula. However, since usual movements are rarely perfect, a small

random noise vector is added to UC(t¡ 2): uC(t¡ 2) = UC(t¡ 2) + nC(t¡ 2),
from which the true Mcc0(t¡ 2) matrix is recalculated with Rodrigues formula.
Equation (10) is then modi¯ed to let the new relationship between object and

camera referentials appear:

Mco(t¡ 1) =M¡1
cc0 (t¡ 2)Mco(t¡ 2)Moo0(t¡ 2) (11)

wherefrom I(t¡ 1) is deduced.
The whole process is rerun for the following iteration (from time t ¡ 1 to

time t). However this time a constraint is applied, that comes from simple phys-

ical considerations: for an object moving at reasonable speed, and for su±cient

sampling over time, it seems probable that the instantaneous speed of the object

cannot vary tremendously between two iterations. Therefore U0(t¡1) is assumed
to obey:

U0(t¡ 1) = U0(t¡ 2) + d0(t¡ 1)
where d0(t ¡ 1) is a noise vector drawn at random between limits the tenth of

the limits used in the drawing of U0(t¡ 2).
The same process is rerun once more (from time t to time t+1): noise vector

d0(t) is drawn at random and U0(t) = U0(t ¡ 1) + d0(t) yields to the compu-
tation of the object movement matrix Moo0(t). However now, since the network

is supposed to be trained to cope perfectly with the various movements of the

object, no spurious noise will be added to the \ideal" camera speed extracted

from matrix

Mcc0(t) =Mco(t)Moo0(t)M
¡1
co ref (12)



Therefore uC(t) is calculated directly fromMcc0(t) by the inversion of Rodrigues

formula. We have now created randomly all the parameters necessary for the

training of a network: inputs I(t¡2); I(t¡1);uC(t¡2);uC(t¡1), and the output
uC(t). The drawing of parameters in random directions ensures the adaptativity

of the network for any possible movement of the object. Furthermore, non con-

stant object speed (speeds at time t, t¡1 and t¡2 are di®erent) should provide
the possibility to follow an object, even when its speed is varying (non uniform

movement).

4.2 The network

The training base previously detailed comprises 1000 examples. A two-layer (lin-

ear) perceptron is trained on this base: in our experiments, we used an object

with N = 5 caracteristic points (corners), presented on ¯gure (4). Therefore

2 £ N = 10 values are needed to represent every image I, which makes a

Fig. 4. Location of the characteristic points of the object.

2£2£N+2£6 = 32 input vector for the network. The output uC(t) comprises
6 units. A 32-input 6-output two-layer perceptron with linear activation func-

tion neurons is created, and trained on the database until the output error is

su±ciently small: learning is considered optimal when the variance of the ouput

errors of the network on the training base is smaller than the mean of the output

errors of the classical approach [2] [3] on the same base. Once the network has

learned, experiments are conducted on various movement cases: linear and non

linear translations and rotations.

5 Experiments and discussion

The ¯rst part of the experiments is interested in uniform movement: the object

translates or rotates at a constant speed, and the performance criterion is the

mean square error between the current position and the reference position of the

N = 5 caracteristic points over m iterations:

eMS(m) =
1

m

mX

n=1

r
1

N
kI(n)¡ Irefk2



It is important to note that, in order to present more realistic experiments, the

image pixels in I(n) are rounded up to the nearest even value (instead of a usual

round up to the nearest integer value). Moreover, a uniform pixel noise between

¡1 and 1 has been added to each pixel coordinate, so as to be as close as possible
to real image processing system defects. In order to show the performances of

both the classical method and the neural approach, various object speeds have

been tested: ¯gure (5a) shows the average error in pixels as a function of the

translational speed of the object along the X axis (in cm/s). The sampling rate

is 4 iterations/second, and each point of the graph represents the average over

m = 200 iterations. The same experiment was conducted for a uniform rotation
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Fig. 5. Compared performances of the classical method and the neural approach in the

case of uniform object speeds: (a) translation, (b) rotation.

of the object. As in the case of translation, it should be noticed that the neural

network performances are very promising, and they even prove to be slightly

better than the performances of the classical approach.

The case of non-uniform object movements is also investigated. In the ¯rst

non-uniform experiment, the position of the object along the X-axis is a sinu-

soidal function following the form:

xpos(n) = A sin(2¼fn) (13)

where n is the number of iterations. The amplitude A of the movement is set to

30cm, while the frequency f varies. For each frequency, an experiment is launched

during 1000 iterations. The graph showing the average pixel error over 1000

iterations, with respect to the associated frequency, is depicted on ¯gure (6a).

The validity of the neural approach for non-uniform rotations is also illustrated:

sinusoidal rotations around the X-axis are experienced (see ¯gure (6b)) for a
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Fig. 6. Compared performances of the classical method and the neural approach in the

case of non-uniform object speeds: (a) sinusoidal translation, (b) sinusoidal rotation.

rotation angle µ such that:

µ(n) =
¼

3
sin(2¼fn) (14)

Sinusoidal (therefore non-uniform) movements tend to prove that the neural

approach can handle the problem in a satisfactory way. As is the case for uniform

movements, the neural network can compete positively with the classical method,

therefore showing its interesting and wide capabilities.

6 Conclusion and perspectives

In a visual task-reference problem, a robot with a camera at the extremity of

its end-e®ector, is used to follow the movement of an object in the 3D space:

the link between the camera and the object is desired to be rigid. After hav-

ing identi¯ed the signi¯cant parameters, it is possible to design and train a

two-layer perceptron dedicated to this control problem. Various experiments, in-

cluding highly non-uniform movements for the object, have been presented and

compared with the classical method, showing the interest of the approach. Fur-

thermore, one advantage is the easiness to extend the neural approach to non

linear loops, and/or control loops taking more information into account: such

extensions merely require extra or new training.

Further studies include the extension to three-layer (non linear) perceptrons

used in a particular way: once the two-layer perceptron has learned, a three-

layer perceptron is trained to correct the two-layer MLP, that is to say its inputs

are the same, but its outputs are the di®erence between the correct answer and

the answer provided out of the two-layer MLP. This way the three-layer MLP



can only improve the performances of the two-layer MLP, though the learning

phase is much quicker than a direct three-layer learning. Other extensions are

interested in using more than two iterations in the prediction process, that is

to say, for exemple, I(t¡3) and uC(t¡3) might be added to the network inputs.
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Appendix A

For a unit time the transformation matrix Mu associated to the 6£ 1 rotation
and translation speed vector u = [t;!]T is

Mu =

µ
Ru t

0 0 0 1

¶

Ru is calculated with the help of Rodrigues formula:

Ru = I + sin µU + (1¡ cos µ)U2

where I is the 3£ 3 identity matrix, µ is the norm (or length) of rotation vector

!, and U is the 3£ 3 antisymmetric matrix such that:

U =

0
@
0 ¡c b

c 0 ¡a
¡b a 0

1
A

where v = [a b c]T is the unitary vector collinear to !: v = !=k!k.
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