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Abstract

This work deals with unsupervised sonar image segmentation. We present a new estimation and
segmentation procedure on images provided by a high resolution sonar. The sonar image is segmented
into two kinds of regions : shadow (corresponding to a lack of acoustic reverberation behind each object
lying on the seabed) and reverberation (due to the reflection of acoustic wave on the seabed and on
the objects). The unsupervised contextual method we propose is defined as a two-step process. Firstly,
the Iterative Conditional Estimation (ICE) is used for the estimation step in order to estimate the noise
model parameters and to accurately obtain the proportion of each class in the Maximum Likelihood (ML)
sense. Then, the learning of a Kohonen Self-Organizing Map (SOM) is performed directly on the input
image to approximate the discriminating functions i.e. the contextual distribution function of the grey
levels. Secondly, the previously estimated proportion , the contextual information and the Kohonen SOM,
after learning, are then used in the segmentation step in order to classify each pixel on the input image.
This technique has been successfully applied to real sonar images, and is compatible with an automatic
processing of massive amounts of data.

Key Words : Kohonen Self-Organizing Map, segmentation, parameter estimation, sonar imagery,
Markov Random Field.

1 INTRODUCTION

In high resolution sonar imagery!, three kinds of regions can be visualized : echo, shadow and sea-bottom
reverberation. The echo information is caused by the reflection of the acoustic wave from the object while the
shadow zone corresponds to a lack of acoustic reverberation behind this object. The remaining information
is called the sea-bottom reverberation area. On the pictures provided by a classification sonar, the echo
features are generally less discriminant than the shadow shape for the classification sonar of object lying on
the seafloor. For this reason, detection and classification of an object located on the seafloor (as wrecks,
rocks, man-made objects, and so on...) are generally based on the extraction and the identification of its
associated cast shadow [5]. Thus, before any classification step, one must segment the sonar image between
shadow areas and reverberation areas. In fact, the sea-bottom reverberation and the echo are considered as
a single class.

Unfortunately, sonar images contain speckle noise 7] which affects any simple segmentation scheme
such as a ML segmentation. In this simple case, each pixel is classified only from its associated grey level
intensity.

In order to face speckle noise and to obtain an accurate segmentation map, a solution consists in taking
into account the contextual information, i.e. class of the neighborhood pixels. This can be done using
Markov Random Field (MRF) models [2] and this is why Markovian assumption has been proposed in
sonar imagery [4]. In this global bayesian method, pixels are classified using the whole information contained

'The authors thank GESMA (Groupe d’Etude Sous Marine de I’Atlantique, Brest France) for having provided real sonar
images and REGION BRETAGNE for partial financial support of this work.
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in the observed image simultaneously. Nevertheless, simple spatial MRF model have a limited ability to
describe properties on large scale, and may be not sufficient to ensure the regularization process of the set
of labels when the sonar image contains high speckle noise. Such a model can be improved by using a larger
spatial neighborhood for each pixel [16], or a causal scale and spatial neighborhood [10] but this rapidily
increases the complexity of the segmentation algorithms and the parameter estimation procedure required
to make this segmentation unsupervised. Besides, the segmentation and the estimation procedure with such
a priort model requires a lot of computing time. Moreover, the use of such a global method does not allow
to take into account the noise correlation on the sonar image [14].

An alternate approach adopted here, uses a local method, i.e. takes into account the grey levels of the
neighborhood pixels. In this scheme, each pixel is classified from information contained in its neighbor-
hood. This method allowing to take into account the noise correlation is divided in two main steps : the
model parameter estimation [9] and the segmentation algorithm which is fed with the previously estimated
parameters.

In this paper, we adopt for the parameter estimation step an iterative method called Iterative Conditional
Estimation (ICE) [13] in order to estimate, in the ML sense, the noise model parameters and specially the
proportion of each class (shadow and reverberation). Followed by the training of a competitive neural
network as a Kohonen SOM [8] in order to approximate the discriminating function (i.e. the contextual
distribution function of the grey level). For the segmentation step, we develop a contextual segmentation
algorithm exploiting efficiently the previously estimated parameters, the input sonar image, and the topology
of the resulting kohonen SOM.

This paper is organized as follows. In section 2, we detail the parameter estimation step based on the
ICE procedure in section 2.1, and the training step of the SOM in subsection 2.2. Section 3 presents the
segmentation step. Experimental results both on real scenes and synthetic sonar images are presented in
subsection 3.3, where we compare the results obtained with the proposed scheme, a ML segmentation and
a classical monoscale Markovian segmentation. Then a conclusion is drawn in section 4.

2 ESTIMATION STEP

2.1 Iterative Conditional Estimation
2.1.1 Introduction

We consider a couple of random fields Z = (X,Y) with Y = {Yj,s € S} the field of observations located on
a lattice S of N sites s, and X = {X,s € S} the label field. Each Y; takes its value in Ay = {0, ..., 255}
and each X in {eg = shadow, e; = reverberation}. The distribution of (X,Y") is defined firstly by Px(z),
the distribution of X assumed to be stationary and Gibbsian (i.e. markovian) in this estimation step, and
secondly by the site-wise likelihoods Py, x, (ys/xs). In this work, these likelihoods depend on the class label
xs. The observation Y is called the incomplete data whereas Z stands for the complete data.

In this step, we estimate the parameter vector ®, which defines Py, x (y/z) by using the iterative method
of estimation called Iterative Conditional Estimation (ICE) [13]. This method requires to find an estimator,
namely ®,(X,Y’) for completely observed data. When X is unobservable, the iterative ICE procedure defines

A
@Lkﬂ] as conditional expectations of @, given Y = y, computed according to the current value <I>?[Jk]. This

is the best approximation of ®, in terms of the mean square error [13]. By denoting Ej, the conditional

expectation using @Lk], this iterative procedure is defined as follows :

e Initialize the noise model parameters to <I>[yo].

° <I>[yk+1] is computed from CIJEC] and Y =y by :

AN
o+ = By[d, /Y =y (1)

The computation of this expectation is impossible in practice, but we can approach equation (1) thanks
to the law of large numbers by :
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! {(/I\)y ($(1)7y) Tt (/I\)y (I(n)7y)] (2)

where x(;), with ¢ = 1, ..., n are realizations of X according to the posterior distribution

Ple+1]

Y n

P .
' . X/Y,2,(z/y,2y")
Finally, we can use the ICE procedure for our application because we get :

A
e An estimator ¢, (X,Y’) of the complete data : we use a Maximum Likelihood (ML) estimator for the
noise model parameter estimation (see subsection 2.1.2.)

e An initial value (I)go] not too far from the optimal parameters (see subsection 2.1.3).

e A way of simulating realizations of X according to the posterior distribution Py, x (y/z) by using the
Gibbs sampler [6]. For the prior model, we adopt an 8-connexity spatial neighborhood (see Figure 1)
in which 3, B35, 33, 34 represent the a prior: potential associated to the horizontal, vertical, right and
left diagonal binary cliques respectively. In our application, we want to favour homogeneous regions.
Then, we define potential functions associated to the two-site cliques of the form :

Bop = 11 = 6(ws, 21)] (3)

where 3,, = (3, B2, B3 or 3, according to the type of neighboring pair (s,t), y is a predetermined
positive constant and §(.) is the Kronecker function.

Uy | zg | us L1 | |_| |_| |_|
Vs |Ua]¥s B Ba fa B4

Figure 1: 2nd order neighborhood and two-site associated cliques

2.1.2 Estimation of the noise model parameters for the complete data

The Gaussian law N (i1, 0%), is an appropriate degradation model to describe the luminance y within shadow

A
regions (essentially due to electronical noise) [15]. The most natural choice of the estimator &, (v = eg,y)
is the empirical mean and the empirical variance. If Ny pixels are located in the shadow areas, we have :

A 1
KpmL= Fo Z Ys (4)
s€S:xs=eqg
1 A
U%ML = — Z (ys— #ML)2 (5)
No—1
s€S:xs=ep

In order to take into account the speckle noise phenomenon [7] in the reverberation areas, we model the
conditional density function of the reverberation class by a shifted Rayleigh law R(min, a?) [15] :

Ys — min (ys — min)T

P(ys/xs = e1) = 0 exp [— (6)

The maximum value of the log-likelihood function is used to determine a Maximum Likelihood estimator

a?

A
of the complete data. If Y,i,is the minimum grey level in the reverberation areas and N; the number of

A
pixels located within this region, we obtain for &, (# = e1,y) the following results [15] :

1 —=
o = 2N, Z (ys — HllnML)2 (7)

sES: zs=e1



Pattern Recognition, Vol 33, No 9, pp. 15675-1584, April 2000
— A
minpr, =~ Ymin —1 (8)

In the two cases, the proportion 7y of the k* class is given by empirical frequency :

A Ny, )
= —r th k 1
Tk Not MV wi €{0,1} 9)

2.1.3 Initialisation

The initial parameter values have a significant impact on the rapidity of the convergence of the ICE procedure
and the quality of the final estimates. In our application, we use the following method : the initial parameters
of the noise model <I>1[,0] are determined by applying a small non overlapping sliding window over the image
and calculating the sample mean, variance and minimum grey level estimates. Fach estimation calculated
over the sliding window gives a ”sample” x; , a three component vector. These samples {x1, ..., X} are then
clustered into two classes {eg, e1 } using the K-means clustering procedure [1|. This algorithm uses a similarity
measure based on the Euclidean distance between samples. A criterion is based on the minimization of the
related cost-function defined by :

K
T=> > ha—al (10)
i=1 z;€C;

where the second sum is over all samples in the i*" cluster and ¢; is the center of this cluster. It is easy to
show that for a given set of samples and class assignments, J is minimized by choosing ¢; to be the sample
mean of the i'® cluster. Moreover, when ¢; is a sample mean, J is minimized by assigning x; to the class of
the cluster with the nearest mean. A number of other criteria are given in [1|. The complete algorithm is

outlined below :

1- Choose K initial clusters 0[11]’ . c[é]

. These could be arbitrarily chosen, but are usually defined by :
M=x;, (1<i<K) (11)
2 - At the k' step, assign the sample x; , (1 <1 < M) to cluster i if

‘ < Hxl - cg.’“]H (V) # 4 (12)

et

In fact, we reassign every sample to the cluster with the nearest mean. In the case of equality, we assign
x; arbitrary to ¢ or j .

3 - Let cgk] denote the i** cluster after Step 2. Determine new clusters by :
k1] _ 1
Loy &

where V; represents the number of samples in c£k]. Thus, the new cluster position is the mean of the

samples in the previous one.
[k+1] _ Cgk] Vi

4 - Repeat until convergence is achieved, say c;
Although it is possible to find pathological cases where convergence never occurs [1], the algorithm does
converge in all tested examples. The rapidity of convergence depends on the number K, the choice of initial
cluster centers and the order in which the samples are considered. In our application K = 2. Figure 2.a
represents a sonar image and the result of the K-means clustering algorithm is reported in Figure 2.b.

On one hand, a small size window increases the accuracy of the segmentation and then the precision of
the distribution mixture estimation. On the other hand, it decreases the number of pixels with which x;’s
are computed and may increase the misclassification error. In our application, good results are obtained
with a 6 X 6 pixels window. The ML estimation is then used over the K-means segmentation in order to

find @1[,0] .



Pattern Recognition, Vol 33, No 9, pp. 1575-1584, April 2000

Figure 2: K-means clustering procedure. a) sonar picture involving an object and a rock shadows b)
Segmentation according to the Maximum Likelihood criterion with parameter estimation given by the K-
means algorithm

2.1.4 Parameter estimation procedure for the incomplete data

We can use the following algorithm to estimate the noise model parameters. Let us recall that this method
takes into account the diversity of the laws in the distribution mixture estimation.

e Parameter initialization :
The K-means algorithm is used. Let us denote (P[yo], the obtained result.

e ICE procedure :

(]

(I)gﬂ_l] is computed from ®;" in the following way :

> Using the Gibbs sampler, n realizations x(yy, ..., T(,) are simulated according to the posterior distribution

with parameter vector CI)[yk] , and with :
Py, /x,(ys/zs = eq) a Gaussian law for shadow area
Py, x,(ys/zs = e1) a shifted Rayleigh law for reverberation area

> For each z(; with ¢ = 1,...,n , the parameter vector @, is estimated with the ML estimator on each
class:
> <I>g€+1] is obtained from ®y(x;),y) with (1 <4 <n) by using equation (2).

If the sequence <I>7[f] becomes steady, the ICE procedure is ended and one proceeds the segmentation
using the estimated parameters. We can use all these estimated parameters in order to get a complete
unsupervised Markovian segmentation (see subsection 3.2) or only use the proportion of each class in the
Kohonen SOM-based unsupervised segmentation described in subsection 2.2.

We calibrate the weight of the ”stochastic” aspect of the ICKE by choosing n. When n increases, the
"stochastic” aspect of the algorithm decreases. The choice of a small value for n (n =1 in our application)
can increase its efficiency [3].

Figure 3 represents the mixture of distributions of the sonar image reported in Figure 2.a. The obtained
results are given in table 1.

The quality of the estimations is difficult to appreciate in absence of real values. We can roughly perform
such evaluation by comparing the image histogram with the probability density mixture corresponding to the
estimated parameters. Figure 3.a shows the resulting mixture solution in graphical form. The two dashed
curves in the figures represent the individual components Py x, (y/em) with 0 < m < K. The histogram
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Figure 3: Image histogram of the picture reported in Figure 2 with the estimated Gaussian and Rayleigh
laws.

is quite close to the mixture densities based on the estimated parameters, and a segmentation with these
estimates can be done as shown in the following section.

Initialisation of K-means procedure
[final]

g[/f(shac]iow) 004(77) 36(#) 55(‘72)
inal
(by(sea—bottom) 096(7") 39(min) 1061(a2)

ICE procedure
[final]
(by(shadow) 003(7") 32(#) 17(‘72)
0.97(x) | 39(min) 1591 42y

[final]
(py(sea—bottom)

Table 1 : Estimated parameters on the pictures reported in Fig.2a. 7 stands for the proportion
of the two classes within the sonar image. p and o2 are the Gaussian parameters (shadow

area). min and « are the Rayleigh law parameters (reverberation area). (D?[JO] represents

A
the initial parameter estimates and the final estimates are denoted Dy -

2.2 Self-Organizing Map
2.2.1 Introduction

Researchs on neurobiology have shown that centers of diverses activities as thought, speech, vision, hearing,
lie in specific areas of the cortex and these areas are ordered to preserve the topological relations between
informations while performing a dimensionality reduction of the representation space. Such organization led
Kohonen to develop the Self-Organizing Map (SOM) algorithm [8]. This kind of competitive neural network
is composed of one or two dimensional array of processing elements or neurons in the input space. All these
neurons receive the same inputs from external world. Learning is accomplished by iterative application of
unlabeled input data. As training process, the neurons evolve in the input space in order to approximate the
distribution function of the input vectors. After this step, large-dimensional input vectors are, in a sense,
projected down on the one or two-dimensional map in a way that maintains the natural order of the input
data. This dimensional reduction could allow us to visualize and to use easily, on a one or two-dimensional
array, important relationships among the data that might go unnoticed in a high-dimensional space.

The model of SOM used in our application is a one-dimensional array of n nodes. To each neuron N; ,
a weight vector w; = (wj1,w;, ..., w;p)" € RP is associated. During learning procedure, an input vector x €
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RP randomly selected among vectors of the training set, is connected to all neurons in parallel. The input x
is compared with all the neurons in the Euclidian distance sense via variable scalar weight w;;. At the kth
step, we assign the vector x to the winning or leader neuron N if :

o] o e s

All the neurons within a certain neighborhood around the leader participate in the weight-update process.
(0]

Considering random initial values for w; " (0 <1 < n) , this learning process can be described by the following

iterative procedure :

W£k+1] _ Wl[-k] + Hl[/:] (X[k] _ Wik]) (15)

The lateral interactions among topographically close elements are modeled by the application of a neigh-
borhood function or a smoothing Kernel defined over the winning neuron [8]. This Kernel can be written in
terms of the Gaussian function :

2 .
RNT RG]
H;;" = o™ exp < CCIE (16)
where d(l,7) = ||l —i|| is the distance between the node [ and i in the array, alfl(t) is the learning-rate

factor and ol¥! defines the width of the Kernel at the iteration k . For the convergence, it is necessary that
Hl[f] — 0 when k — T, where T is the total number of steps of the process [8]. Therefore, for the first step,
al®l should start with a value that is close to unity, thereafter decreasing monotonically [8]. To achieve this
task, we use :

k
k] — Q0 = 2
« a1 T) (17)

Moreover, as learning proceeds, the size of the neighborhood should be diminished until it encompasses
only a single unit. So, we applied for the width of the Kernel the monotonically decreasing function:

k/(T-1)
oIT—1]
UW:UM( i ) (18)

olo]

The ordering of the map occurs during the first steps, while the remaining steps are only needed for the
fine adjustement of the weight values.

2.2.2 Iterative learning step

The learning process is performed directly on the real image to be segmented. An input vector is filled
with the grey levels of the pixels contained in a 3 x 3 pixels window sliding over the image (cf. figure 4).
Therefore, each neuron has nine weights allowing to locate it in the input space. At each step, the location
of the window in the image is randomly chosen and the weights are modified according to (15). Experiments
have shown that this trainning strategy provides as good results as an ordered image scanning process while
spending less processing time.

o has a significant impact on the quality of the convergence. We have to start with a fairly large value
to globally order the map. The initial value og of ¢ can be half the length of the network. During learning,
o has to decrease monotonically until it reaches a small value. Experiments have shown that o1 = 0.1 is
a good choice and provides the minimum quantization error defined by :

N
1
Equant = N Z HX’L - Wl” (19)
=1

where the summation is over all the NV windows of the image and w; is the weight vector associated to
the leader neuron of the input vector x; after learning step.
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neuron 1

W

sliding window

Figure 4: Model of the SOM used for the segmentation. An 3x3 sliding window is used to feed the SOM.
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Figure 5: The distance graph between the 100 neurons of the SOM before learning.
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Figure 6: The distance graph between neurons obtained after learning

3 Segmentation step

3.1 SOM Segmentation

The classification task consists in running the sliding window over the image. For each location of the
window, the corresponding input vector x is compared with all the neurons using (14). The winning neuron,
the one which leads to the smallest distance, gives the class of the pixel located in the center of the window.
However, before any classification task, we have to calibrate the map in order to associate the label shadow
or reverberation to each neuron.

Assuming that the input vector xo = (0, ...,0)" should represent a window setting on a perfect shadow
area, it is very useful to define the distance graph representing the Euclidean distance in the 9-dimensional
space between the point x¢ and all the neurons. Such a graph is given in figure 5, before and after learning
for a hundred-neuron network.

Both these figures show that the maximal distance between two successive cells is widely smaller after
learning than before. We can deduce that, after learning, neurons that are topologically close in the array
are close in the input space too. As a matter of fact, neurons that are physical neighbors should respond
to a similar input vectors. The calibration of the map uses this topological property and the portion g
estimated in subsection 2.1 of the pixels labelled as shadow in the image. This process can be summarized
as follows:

1 - Initially, we affect the class reverberation to all neurons.

2 - We seek the most evident prototype of the shadow class. This neuron is the winning unit according to
equation (14) when inputting the vectors xo. Then, we affect it to the shadow class.

3 - We affect the shadow class to pixels for which the leader neuron belongs to the shadow class. We can
deduce the intermediate shadow portion m;,; provided by the resulting image.

4 - If ;e is smaller than 7, we have to select an additional prototype of a shadow class among neurons of
the reverberation class. According to the topological preserving properties of the map, this additional
neuron should be a direct neighbor of an already shadow labelled neuron. Among both the possible
neighbors, we take the one which has the smallest Euclidean distance with the point xg. Go to 3.

5 - If 7y is larger than 7y, we stop the process.
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Experiments have shown that Egyans is @ monotonically decreasing function of the number of steps and
reaches an asymptotic value for large value of 7. One hundred times the number of network units sems to
be a reasonable compromise solution between speed and quality of learning. In our application, 100 neurons
have been chosen for the network.

3.2 Markovian segmentation

The segmentation of sonar images in two classes can be viewed as a statistical labelling problem according
to a global Bayesian formulation in which the posterior distribution Py/y (2/y) o exp [~U(x,y)] has to be
maximized [2]. In our case, the corresponding posterior energy U(x,y) to be minimized is :

Ulw,y) =) s(@s,ys) + ) Bay[L—0(s, 1)) (20)

seS )

Uy (Iyy) U;(rm)

where U; denotes the adequacy between observations and labels (\I/s(a:s,ys) =In [PXS /Ys (s /ys)]) and Us
expresses the energy of a priori model. In order to minimize this energy function, we use a deterministic
relaxation technique called ICM algorithm [2, 4, 16, 11].

3.3 Results on real scenes

We compare the segmentation performance of the proposed SOM-based algorithm described in subsection
3.1 with a ML segmentation and a classical markovian segmentation using a deterministic relaxation tech-
nique such as the ICM [2]. All the segmentation results exploit the parameter estimation step presented in
section 2.1. This estimation step is used to estimate both the noise model parameters for the ML segmen-
tation, the markovian segmentation and the proportion of the shadow class for the SOM segmentation.

N
f

—— ] e ——————— I —

(c) ICM (d) SOM

Figure 7: (a) - A real sonar image involving a sandy sea floor with the cast shadow of a tyre. Two-class
segmentation results obtained with this image using: (b) - ML segmentation, (c) - Markovian segmentation
with a deterministic relaxation technique as ICM, (d) - The SOM based segmentation result. (see Table
2 for the estimated parameters). The SOM segmentation exhibits a good robustness againts the speckle
noise (which induces false small shadow areas compared to the others approaches)

10
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(a) (b) ML

(c) ICM (d) SOM

Figure 8: (a) - A real sonar image involving an object and a rock shadows. Two-class segmentation results
obtained with (a). (b) - ML segmentation, (c) - Markovian segmentation with ICM technique, (d) - SOM-
based segmentation method. (see Table 3 for the estimated parameters). The ML and the ICM do not
permit to totally eliminate the speckle noise effect (creating shadow mislabelled isolated pixels).

i :
| :
(a) (b) ML
|
[
i
(c) ICM (d) SOM

Figure 9: (a) - A synthetic sonar image of a sphere lying on the seabed. Segmentation results obtained with:
(b) - ML segmentation, (c) - Markovian ICM technique, (d) - SOM-based segmentation method.

11
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Figure 10: Real sonar images of a cylindrical object (a) and of ridges of sand (c). Their corresponding
SOM-based segmentation results are depicted respectively in (b) and (d):

Fig.6 ICE procedure

[final]
(I)%/f(“shalt]iow) 002(”) 36(#) 85(02)
(I)y(sea—bottom) 098(“) 46(m1n) 1878(0‘2)

Table 2 : Estimated parameters on the picture reported in Fi.6

Fig.7 ICE procedure

[final]
<D?[J]£'Shal dou) 0.03() | 25(,) 32(2)
éy(sea—bottom) 097(”) 35(min) 1430(‘12)

Table 3 : Estimated parameters on the picture reported in Fi.7

Fig.8 ICE procedure
[final]
pishadou) 0.03(r) | 34(u) 39(2)
inal
y(reverberation) 097(7") 42(min) 1412(0‘2)

Table 4 : Estimated parameters on the picture reported in Fi.8

Figures 6, 7, 8 and 9 show the segmentation results obtained with the different methods. Example of
the noise model parameters ®, obtained with our scheme are given in Tables 2, 3 and 4.

Experiments indicate that the SOM segmentation requires less computation than the markovian seg-
mentation (30”7 for the SOM estimation-segmentation whereas roughly 100” are required for unsupervised

12
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scale causal Markovian modelization [12] on IBM 43P-200MHz workstation). Besides, the ICM algorithm
do not permit to decrease the number of false alarm (wrong detections) due to the speckle noise effect. The
SOM segmentation performs better, exhibits a good robustness versus speckle noise (false alarms have been
eliminated), and allows us to preserve the shadow shapes of little rocks.

Manufactured objects or rock shadows are better segmented with our method than with the others (cf.
Figures 6 and 7) and their shape are close to the result we expected. The cast shadow of a manufactured
object (a cylinder) reported in Figure 7 has a geometric shape (contrary to the cast shadow of the rock)
that will be discriminant for the classification step.

4 Conclusion

We have described an unsupervised segmentation procedure based on a parameter estimation step (which
offers an appropriate estimation of the noise model) and a segmentation step well adapted for sonar image
segmentation problem. The estimation step takes into account the diversity of the laws in the distribution
mixture of a sonar image and can be used with the Kohonen SOM-based segmentation in order to solve
the difficult problem of unsupervised sonar image segmentation. This scheme is computationally simple and
appears as an interessing alternative to existing complex hierarchical markovian methods. This method has
been validated on several real sonar images demontrating the efficiency and robustness of this scheme.
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