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Abstract - The performance of the maximum-SNR design
for multiple-input multiple-output (MIMO) systems is ana-
lyzed. An average symbol error probability (SEP), expressed
in closed form, is derived assuming both i.i.d. Rayleigh
fading MIMO channel and coherently detected M -ary
PSK/QAM. This form highlights a modulation gain, which
permits comparison of SEP performances between different
modulations schemes. The maximum diversity advantage
can be retrieved by using a Taylor series expansion around
infinity from the exact SEP. The performance of the max-
SNR MIMO systems is compared by changing the transmit
and receive diversity, modulations and constellation size.
Keywords - MIMO, Maximum-SNR, Maximum eigenvalue
p.d.f., Performances, Modulation gain, Diversity order.

I. INTRODUCTION

In the recent years, multiple-input multiple-output
(MIMO) systems have known an increasingly fast develop-
ment thanks to rich scattering wireless channels [1][2]. The
reliability of the transmission can be improved by choosing
a communication strategy that can withstand the multipath
propagation-caused fading dips in the received signal-to-
noise ratio (SNR). Under the assumption of channel state
information (CSI) known both at the transmitter and the
receiver, an efficient solution, denoted maximum-SNR (max-
SNR), can be used to improve transmission robustness. This
scheme is, sometimes, referred to as beamforming or MIMO
maximum ratio combiner (MRC) [3]. This solution consists
in transmitting the signals along the strongest direction of the
channel, i.e. the direction of the eigenvector corresponding to
the largest eigenvalue of1 W = HH∗ where H = [hij ]

nR,nT
i,j=1

is the nR × nT channel matrix with hij the gain factor
from the jth transmit antenna to the ith receive antenna, nT
and nR are the number of transmit and receive antennas,
respectively.

The input-output relation is then:

y =
√
P0w

∗
RHwT s+w∗Rn (1)

where wT and wR are the transmit and receive weight
vectors, s is the transmit symbol with E[|s|2] = 1, P0 is
the average power of the received signal at each receive
antenna and n is the complex circular Gaussian noise vector

1The symbol ∗ denotes transpose conjugate.

with covariance matrix Rn = E[nn∗] = σ2InR . The
weight vectors, wT and wR, are respectively the principal
right and left singular vectors to the matrix H, so that the
channel matrix can be seen as only the largest singular value
σmax =

√
λmax of H; the receiver SNR is thus maximized

[3] and given by γ0 = P0λmax/σ
2. The equivalent input-

output relation (1) becomes:

y =
√
P0 λmax s+ n (2)

where n = w∗Rn is a complex circular Gaussian random
variable (RV) with E[|n|2] = σ2.

In the present paper, we base our work on Dighe et al. [4]
and Kang et al. [5] to evaluate the performance of the max-
SNR system theoretically in term of symbol error probability
(SEP) by assuming an i.i.d. Rayleigh fading channel; i.e. the
channel gains between any pair of antennas are supposed to
be i.i.d. with zero-mean complex circular Gaussian RV and
unit variance. Indeed, SEP is attributable to the determination
of the marginal probability density function (p.d.f.) of the
maximal eigenvalue λmax of the Wishart matrix W [5], [6].
Then, we determine from the SEP the parameters able to
provide information about the performances of the max-SNR
systems: the diversity order and a modulation gain.

The next Section of this paper deals with the determination
of the p.d.f. of the maximal eigenvalue. Section III describes
the calculation of the average SEP expressed in closed form
to get an exploitable and convenient analytical formula. It
also shows that this procedure yields a modulation gain
useful for SEP comparisons. From this theoretical SEP and
by using Taylor series expansion (t.s.e.), Section IV provides
the diversity order. Performances of the max-SNR MIMO
systems are also analyzed and discussed in Section V before
concluding.

II. PROBABILITY DENSITY FUNCTION OF THE LARGEST
EIGENVALUE OF THE WISHART MATRIX

The first part of this paper is about the determination of
the p.d.f. of the largest eigenvalue to the Wishart matrix in
a closed form for a given arbitrary (nT , nR) system.

According to [5], in the central and i.i.d. cases, the cumu-
lative distribution function (c.d.f.) of the largest eigenvalue
λmax of the Wishart matrix W is expressed as follows:

Fλmax(u) = P (λmax < u) = α |Ψc(u)| (3)
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Table 1
Coefficients cn,i of φn(x)

(nT , nR) n x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

(2, 2) 1 2 -2 1
2 -2

(2, 3) 1 3 -2 1/2
2 -3 -1

(3, 3) 1 3 -6 6 -2 1/4
2 -6 6 -3 -1 -1/2
3 3

(4, 4) 1 4 -12 18 -34/3 7/2 -1/2 1/36
2 -12 24 -24 8/3 -4/3 4/3 -4/9 1/18 -1/72
3 12 -12 6 14/3 23/6 4/6 1/12
4 -4

(4, 5) 1 10 -20 35/2 -22/3 19/12 -1/6 1/144
2 -30 30 -15/2 -11/2 11/6 -5/6 13/36 -1/12 1/96 -1/864
3 30 0 -15/2 3 19/12 1 43/144 1/24 1/288
4 -10 -10 -5/2 -1/6

(5, 5) 1 5 -20 40 -110/3 215/12 -29/6 13/18 -1/18 1/576
2 -20 60 -90 40 -45/4 33/4 -139/24 17/8 -59/96 115/864 -11/576 1/576 -1/10368
3 30 -60 60 10 55/4 -7 2/3 1/6 9/64 35/864 11/864 1/864 1/6912
4 -20 20 -10 -40/3 -185/12 -77/12 -103/72 -11/72 -1/144
5 5

where [Ψc(u)]i,j = Γu(nS + i + j − 1) with nS =
max(nT , nR) − m, m = min(nT , nR), | · | denotes the
determinant and Γu(p) the incomplete Gamma function

Γu(p) =
1

Γ(p)

∫ u

0

tp−1e−tdt = 1− e−u
p−1∑

k=0

uk/k! (4)

with Γ(p) the complete Gamma function (Γ(p) = (p − 1)!
for p a positive integer) and the normalization coefficient is
given by α = 1

|Ψc(∞)| = 1/
∏m
k=1 Γ(nS +m−k+1)Γ(m−

k + 1).
The use of the classical formula about the derivative, i.e.

d
du |A(u)| = |A(u)| trace

(
A−1(u) ddtA(u)

)
, gives the p.d.f.

of λmax as shown in [5]

pλmax(u) = α |Ψc(u)| trace(Ψ−1
c (u)Φc(u)) (5)

where [Φc(u)]i,j = unS+i+j−2e−u with i, j = 1, . . . ,m.
This form allows us to compute efficiently the p.d.f. of the
maximal eigenvalue by using a symbolic programming lan-
guage (e.g. Maple) for an arbitrary given (nT , nR) system.

An alternative closed form of the p.d.f. pλmax(u) is
proposed in the following. By using the definition of the
determinant and the Hankel matrix structure of Ψc(u),
relation (3) can be re-expressed as follows [7] (Burel has
expressed the c.d.f. of the smallest eigenvalue):

Fλmax(u) = α
∑

k∈Pm

ε(k)

m∏

i=1

Γ̂u (nS + ki + i) (6)

where Γ̂u(p) = Γu(p)Γ(p) and Pm is the set of all the
permutations of [0, 1, . . . ,m−1], k = [k1, k2, . . . , km] is an
element of Pm, and ε(k) the permutation signature.

Calculation of P (λmax < u) derivative over u gives the
p.d.f. of λmax in a new closed form, and then leads to the

following expression:

pλmax(u) = α e−u
∑

k∈Pm

ε(k)
m∑

j=1

unS+kj+j−1

×
m∏

i=1,i6=j
Γ̂u(nS + ki + i).

(7)

Eq. (7) gives a general closed expression of the p.d.f. of
λmax. By using (4), we hereabove proved that the p.d.f. (7)
can be written in the form of:

pλmax(u) =

m∑

n=1

φn(u)e−nu (8)

where φn(u) =
∑Dn
i=0 cn,iu

i is a polynomial with cn,i the
ith coefficient of the nth polynomial and Dn is the maximal
degree of the nth polynomial. Eq. (8) has already been ob-
served by [8] and [4]. One should note that the polynomials
φn(u) have not a literal expression (intractable problem:
the evaluation of (7), for a given (nT , nR), exhibits many
cancellation of terms); however, it is not necessary because
the polynomials in (8) are directly extracted from (7).

These coefficients of φn(u) are given in Table 1 for some
(nT , nR) couples. From (7), let us find the possible highest
polynomial degree given by Q = 2

∑m−1
i=0 ki + mnS =

m(m − 1 + nS). However, the summation over k allows
numerous simplifications, and then the effective maximum
degree Dn is less than Q as shown in Table 1. One can
verify that Dn is given by (nT + nR)n+ (n+ 1)n and the
smallest degree is nS [4].

Note that, whenever the numbers of antennas, x and y,
are fixed, the two systems (x, y) and (y, x) are equivalent
because the statistical distribution of λmax depends only on
m = min(x, y) and nS = max(x, y)−min(x, y).
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III. SEP IN A RAYLEIGH FADING CHANNEL

The average SEP of coherent BPSK, M -ary QAM and
M -PSK in a Rayleigh fading channel is given by

P̄e =

∫ ∞

0

αM erfc

(√
βM

uP0

σ2

)
pλmax(u)du (9)

where αM = 1/2, βM = 1 for BPSK and αM =

2
(

1− 1√
M

)
, βM = 3

2(M−1) for M -ary squared QAM and

αM = 1, βM = sin2(π/M) for M -PSK. Except for the
BPSK case, note that (9) is an approximation of the exact
average SEP. But, the exact average SEP must be evaluated
by using Craig’s formula [4]. However (9) is a commonly
used approximation which gives a very tightly upper bound
at high SNR [9, Sec. 8.1.1]. Furthermore, (9) will allow to
express in a unified framework the average SEP for an M -ary
modulation, which is useful for performance comparisons.

Section II showed that pλmax(u) is expressed as sums of
polynomials multiplied by exponential. Thus, the average
SEP can be derived by using (8) and (9) to get

P̄e =

m∑

n=1

Dn∑

i=0

Pen,i (10)

with Pen,i = bn,i

∫ ∞

0

αM erfc

(√
βM

uP0

σ2

)

×n
i+1

i!
uie−nudu

(11)

and bn,i =
cn,i i!

ni+1
. (12)

According to currently admitted results about the perfor-
mance of the MRC [10, chap.7], relation (11) becomes:

Pen,i = αM bn,i


1−

√√√√
βMP0

σ2

βMP0

σ2 + n

×


1 +

i∑

k=1

(2k−1)!!
(2k)!!(

1 + βMP0/σ2

n

)k







(13)

with (2k − 1)!! = 1 × 3 × . . . × (2k − 1) = (2k)!/(k! 2k)
and (2k)!! = 2× 4× . . .× (2k) = k! 2k.

By using the normalization condition, i.e.
∫
pλmax(u)du =

1, (8) gives the following condition
∑m

n=1

∑Dn
i=0 bn,i = 1.

The average SEP expressed with the analytical expression
issued from (10) and (13) is

P̄e = αM


1−

m∑

n=1

√√√√
βMP0

σ2

βMP0

σ2 + n
ϕn

(
βMP0

σ2

)
 (14)

where ϕn(x) is a rational polynomial given by

ϕn(x) =

Dn∑

i=0

bn,i


1 +

i∑

k=1

(2k−1)!!
(2k)!!(

1 + x
n

)k


 . (15)

Eq. (14) for αM = 1/2 and βM = 1 is equivalent to the
BPSK closed-form presented in [8], [4]. The analytical form
of the polynomial ϕn(x) was not provided in [8]; only the
rational polynomial was given for some (nT , nR). On the
other hand, our study demonstrates that the generalization
to M -ary modulations is straightforward by using a unified
framework. P̄e directly depends on the input SNR P0/σ

2,
then (14) allows one to define a modulation gain GM
in dB for different M -ary modulations schemes (M -PSK,
M -QAM) as follows:

GM = 10 log10

(
βM1

βM2

)
(16)

where βM1 and βM2 are the βM factor of the modulations
1 and 2, respectively. At high SNR, this gain shifts the P̄e
curves for a fixed SEP as verified in section V. This result
is useful to easily predict the relative performance of the
max-SNR design further to change in modulation and/or
constellation size.

IV. DIVERSITY ADVANTAGE

The diversity order of an (nT , nR) max-SNR system over
i.i.d. Rayleigh channel is expected to be equal to nT × nR.
Traditionally, this result is based on the fact that the lower
bound of the maximum output SNR γ0 is given by ‖H‖2F ×
P0/(σ

2nT ) and that, for an i.i.d Rayleigh channel ‖H‖2F is a
χ2-distributed RV with 2×nT×nR degrees of freedom [11].

The approach proposed here is to take the Chernoff bound
(erfc(x) = e−x

2

for x� 1) in (11). It then leads to the upper
bound of the average SEP

P̄eub = αM

m∑

n=1

Dn∑

i=0

bn,i(
1 + βMP0

nσ2

)i+1
. (17)

Let us note that the t.s.e. of (17) corresponds to the sum
of elementary t.s.e. 1

(1+ x
n )

i+1 . The t.s.e. to order d of (17)

is then:

P̄etse(x) = αM

d∑

k=1

Kk

(
1

x

)k
+O

((
1

x

)d+1
)

(18)

where:

Kk =

m∑

n=1

k−1∑

i=0

(−1)k+i+1bn,i

(
k − 1
i

)
nk. (19)

Eq. (19) allows us to compute Kk and verify that Kk = 0
for k = 1 to nTnR−1. One should note that the coefficients
bn,i are needed to compute (19); but the lack of literal form
for expressing them prevents one from formally proving Kk

cancellation. But, it highlighted that in the high SNR limit
(i.e. P0/σ

2 � 1), by using a Taylor series expansion along
the real axis around infinity of (17), the asymptotic equation
of the SEP is given by:

P̄easp = αMKnTnR

(
βMP0

σ2

)−nTnR
. (20)
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Fig. 1
Simulation and Theoretical BEP comparison for system

(4,4) with a QAM-16

It is worth noting that i) the modulation gain GM , which
depends on βM , appears clearly in (20) and that ii) the
maximum diversity advantage can be also retrieved from the
exact SEP (14), but with a corresponding factor KnTnR more
complex than (19).

V. PERFORMANCE ANALYSIS

Figure 1 shows that (14) fits perfectly the bit error rate
(BER) curves obtain by simulation (50,000 random H are
used for each 16-QAM symbol), and thus validate our
method. Note that P̄e is divided by log2(16) to obtain
bit error probability (BEP) performance. Different (nT , nR)
systems with several M -ary modulations are tested and
confirm the good agreement.

As expected, Figure 2 demonstrates that the higher the
diversity order is, the greater the asymptote slope is. On the
other hand, the asymptotes are tangent for very high SNR.
In addition, for the (5, 5) system, asymptote and curve are
close when SEP is less than 10−30. This figure highlights a
significant performance enhancement when passing from one
system to the next one only by the addition of one transmit
and one receive antennas at a time, which reveals the interest
of transmit and receive diversity.

Figure 3 compares the SEP obtained for 16-QAM and for
different numbers of antennas to illustrate the compromise
between the diversity order and the total number of antennas.
It shows that, for a given total number of antennas, the higher
the diversity order is, the better the obtained performance
is. For instance, with 8 antennas, the best configuration is
(4,4). In other respects, the possibility to coherently combine
more signals at the receiver leads to the maximum combining
gain. For a given diversity order, the best final performance
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0
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S
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(5,5) 

Fig. 2
Performance comparisons (SEP and asymptote) for (2,2) to

(5,5) systems with a 16-QAM

is obtained with the highest possible number of antennas.
With a diversity order of 16, the systems performances are
ranked as (1, 16) > (2, 8) > (4, 4) which correspond to
17 > 10 > 8 as total number of antennas. However, for a
pre-set total number of antennas, in term of SEP, a balanced
distribution of antennas between transmitter and receiver has
to be privileged.

Figure 4 plots SEP for a (8,8) system with different
modulations and constellation sizes. It shows that the gap
between the curves at moderate and high SNR is close to
the modulation gain (16). For example: i) for a modulation
between 16-QAM and 64-QAM, this figure evidences a
modulation gain of about 6.25 dB, and relation (16) gives
6.23 dB; ii) for a different modulation, the modulation gain
is 5.75 dB between 4-QAM and 8-PSK instead of 5.33 dB.
From (20), it is worth noting that, higher the SNR is, more
exact the parameter GM is. However, GM remains a valid
comparison factor even for a large system (e.g. (8,8)), which
has the exact SEP close to its asymptote at very high SNR.

VI. CONCLUSION

We investigated the max-SNR MIMO system by intro-
ducing an analytical form of the probability density func-
tion of the highest eigenvalue of the Wishart matrix for
i.i.d. Rayleigh fading MIMO channel. This representation
proved its efficiency to provide the theoretical SEP. We
showed that this SEP can be easily applied to M -PSK and
M -QAM through modulation parameters (αM and βM ). We
also defined a modulation gain to assess any enhancement
in performance between two different modulations and/or
constellation sizes with the same (nT , nR). The modulation
gain, usually used for Gaussian channel, remains a relevant
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          8           |  (4,4)  |          16
         10          |  (2,8)  |          16 
         17          | (1,16) |          16
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Fig. 3
Performance comparisons for different numbers of

antennas with a 16-QAM

parameter to evaluate and compare performances for max-
SNR MIMO systems operating in a Rayleigh fading channel.
Moreover, we highlighted directly from the theoretical SEP
expression that the diversity order of max-SNR MIMO sys-
tems is equal to nT ×nR. These results are very convenient
to predict and compare performance about system configu-
ration: number of antennas, diversity order, modulation and
constellation size.
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