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Abstract
Assuming that Channel State Information (CSI) can be available at the transmitter, we provide a simplified

representation of Multi-Input Multi-Output (MIMO) systems and derive a new precoder which maximizes the
smallest distance between the received symbols. When the number of transmit antennas nT is greater than the
number of transmit data streams b, Heath and Paulraj have proposed in [2] a ”hard” antenna selection (or switch
precoder) which consists in choosing the best b (among nT ) antennas of the transmitter according to the criterion
based on the minimum distance. Using the same criterion, we propose in this paper a ”soft” (or linear) precoder
that performs power allocation among the transmit antennas. Comparisons in term of Bit Error Rate (BER)
between switch and linear precoders are performed considering b = 2 independent data streams , a QPSK modu-
lation and the Maximum Likelihood (ML) receiver.

1 Introduction
Since a few years, it is well known that one way

to get high rates on a scattering-rich wireless channel
is to use multiple transmit and receive antennas [1].
Such systems are known as Multiple-Input Multiple-
Output (MIMO) wireless. In some wireless applica-
tions feedback does exist and can be used to provide
Channel State Information (CSI) to the transmitter.
Performance can then be improved by the power al-
location among eigenmodes thanks to the design of
precoders which are based on an optimized diagonal
representation of MIMO systems such as, for example,
water filling (WF) [5], minimum mean square error
(MMSE) [4], and minimum bit error rate (MBER) [3]
solutions.

On the other hand, Heath and Paulraj have pro-
posed in [2] a switch antenna selection based on
the maximization of the smallest Euclidian distance
max(dmin) between the noise-free received symbols.
We propose in this paper a linear precoder using this
criterion, which is particularly well adapted for the
optimum ML receiver. The max(dmin) solution is pos-
sible thanks to the proposed simplified representation
of MIMO systems and the precoder is derived in the
case of two independent data streams. The result-

ing precoder gives a non-diagonal optimized MIMO
system by opposition to power allocation strategies
among eigen-modes (WF...).

The rest of the paper is organized as follows. The
simplified representation of the MIMO system is pre-
sented in section 2. In section 3, both max(dmin) lin-
ear precoder and antenna selection are derived in the
case of two virtual subchannels. Simulation results in
term of BER are presented in section 4 and section 5
contains concluding remarks.

2 MIMO channel simplified represen-
tation

Consider a MIMO system with nR receive and nT

transmit antennas over which we want to achieve b in-
dependent data streams. For a MIMO channel with-
out delay spread and including a precoder matrix F
and a decoder matrix G, the basic system model is:

y = GHFs + Gn (1)

where H is the nR × nT channel matrix, F is the
nT × b precoder matrix, G is the b× nR decoder ma-
trix, s is the b × 1 transmitted vector and n is the
nR × 1 noise vector.
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step i method Fi Gi Hvi

noise
whitening

1 EVD:
R = Q1Λ1Q∗

1

F1 = InT G1 = Λ
1
2

1 Q∗
1 Hv1 = G1HF1

channel
diagonalization

2 SVD:
Hv1 = A2Σ2B∗

2

F2 = B2 G2 = A∗
2 Hv2 = Σ2

dimensionality
reduction

3 Σ2 =
(

Σr 0
0 0

)
F3 =

(
Ib

0

)
G3 = Ib 0

) Hv = G3Hv2F3 = Σb

= diag{√ρ1, . . . ,
√
ρb}

Table 1: Steps to obtain the diagonal MIMO system in case of CSI at the transmitter.

We assume that b ≤ r = rank(H) ≤ min(nT , nR)
and E {ss∗} = Ib, E {nn∗} = R and1 E {sn∗} =
0. Furthermore, if the available transmission power
is noted p0, the constraint below must be fulfilled:
trace {FF∗} = p0.

Before the optimization, the first objective is to ob-
tain a diagonal channel and a whitened noise in order
to facilitate both the system analysis and the deter-
mination of the optimal precoder. Our approach is
based on the decomposition of the precoder and de-
coder matrices F = FvFL and G = GLGv.

The model (1) then becomes:

y = GLHvFLs + GLnv (2)

where Hv = GvHFv is the virtual channel and
nv = Gvn is the virtual noise with correlation ma-
trix Rv = GvRG∗

v. We will only use virtual pre-
coder matrices Fv with orthonormal columns, and
then F∗

vFv = I. As a consequence, the power con-
straint becomes trace {FLF∗

L} = p0. Furthermore, as
an ML receiver is used we can consider GL = Ib.

The simplified system will be obtained via suc-
cessive transformations, so the virtual precoder and
decoder matrices will be defined as Gv = G3G2G1

and Fv = F1F2F3. The different steps to obtain a
diagonal MIMO channel are summarized in Tab. 1.
This simplified model is true whatever the number
of antennas and the constellation are. Note that the
diagonal entries

√
ρ

i
for i = 1, . . . b of Hv are sorted

in a decreasing order and ρi corresponds to the SNR
of the ith virtual subchannel. Otherwise, the noise
statistic after each step is circular complex Gaussian
with correlation matrices: Rv1 = E[nv1n∗

v1] = InR ,
Rv2 = E[nv2n∗

v2] = InR and Rv = E[nvn∗
v] = Ib.

3 Minimum Euclidian distance pre-
coder

3.1 Switch precoder
The principle of MIMO transmission using a

switch precoder [2] for antenna selection is illustrated
in Fig. 1.

receiver
feedback from

precoder
switch receiver

ML+
+

nv1

Hv1
ŝ

nR b
s
b nT

nT × b

Fsc
y

Figure 1: MIMO equivalent transmission system with
a switch precoder

On the receiver side only a noise whitening opera-
tion is performed (see step 1 in Tab. 1), which leads to
a whitened noise vector nv1 and an equivalent chan-
nel matrix Hv1 (non-diagonal). On the transmitter
side a switch matrix Fsc allows to select b anten-
nas among nT according to a criterion when feed-
back from the receiver exists. For example if we con-
sider a system with nT = 4 and b = 2, the following
matrix Fsc selects the second and the third antenna:

Fsc =
√
p0/2




0 0
1 0
0 1
0 0


.

The system equation is:

y = Hv1Fsc s + nv1 (3)

The minimum Euclidian distance denoted dmin is
given by:

d2
min = min

si,sj∈S, si �=sj

‖Hv1Fsc(si sj)‖2. (4)

1the superscript ∗ denotes the conjugate transposition
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where S is the set of all possible transmitted vector s.
The largest dmin is determined by choosing b antennas
among nT :

dsc = max
Fsc

(dmin). (5)

3.2 Linear precoder

The principle of MIMO transmission using a linear
precoder is illustrated in Fig. 2.

receiver
feedback from

precoder

diagonal
ML

receiverchannel
matrix

linear
+

+
ŝ
b

s
b

FL

b × b
Hv

b b

nv

y

Figure 2: MIMO equivalent transmission system with
a linear precoder.

From the results established in section 2 and Tab. 1
on the MIMO simplified representation, a linear pre-
coder matrix FL remains to be determined according
to the max(dmin) criterion. The system equation is:

y = HvFL s + nv (6)

Note that the dimensional reduction (third step in
Tab. 1) is already performed but physically the nT ≥ b
transmit antennas are used by opposition to the switch
antenna selection presented in subsection 3.1. How-
ever these two systems (switch and linear precoders)
have the same spectral efficiency and can be compared
in order to determine the BER improvement.

In the following, the results to derive the linear
max(dmin) precoder are obtained only for b = 2. The
generalization for b > 2 is not straightforward. A
QPSK modulation is considered in the paper. Other
modulations can be considered by following the pro-
posed approach but the minimum distances presented
further must be re-evaluated in this case.

Let us denote FL =
(

x y
w z

)
. In order

to make the search easier, we consider the el-
ements of FL as real. Complex values imply
rotations on the received constellation defined as
{HvFL s | s = [s1 s2]T ∈ S}. So the proposed so-
lution is not strictly optimal in term of dmin due to
this real-valued restriction.

receiver 1 receiver 2

ds1r1

ds1r2

ds2r2

��
ds2r1

|w|√ρ
2

|z|√ρ
2

|y|√ρ
1

|x|√ρ
1

�
�

Figure 3: Upper part of the noise-free received con-
stellation for QPSK (with |x| > 2|y| and |z| > 2|w|)

From Fig. 3, the minimum distance ds1 and ds2 for
the symbol s1 and s2 are respectively given by:

d2
s1

= d2
s1r1 + d2

s1r2 = 2ρ1(|x| |y|)2 + 2ρ2|w|2 (7)

d2
s2

= d2
s2r1 + d2

s2r2 = 2ρ1|y|2 + 2ρ2(|z| |w|)2 (8)

with |x| > |y| and |z| > |w|. The optimized mini-
mum distance is obtained for dmin = ds1 = ds2 . The
search domain for |x|/|y| ∈]1/2, 2[ is discarded due
to a loss of power. In fact, as we can always find
for |x|/|y| /∈]1/2, 2[ the same minimum distances on
the first receiver but with less power, we can then
restrict the search domain to |x| > 2|y| which im-
plies |z| > 2|w| (thanks to the optimized condition
ds1 = ds2 ). This condition does not induce any loss of
generality because the alternative condition |y| > 2|x|
and |w| > 2|z| corresponds to a permutation of the
columns of FL and gives the same dmin.

In order to obtain by a simple way the precoder FL,
we perform an Singular Value Decomposition (SVD):

FL = AΣB∗ (9)

where A and B are unitary matrices and Σ is a di-
agonal matrix with positive and decreasing ordered
elements.

The optimization of FL can be performed in two
steps:

• AΣ allows to choose the Singular Values (SV)
of HvFL because B∗ has no impact on the SV.
So our interest is to choose the largest ones. We
prove in appendix A that the best choice for A
is the identity matrix because it gives the largest
SV of HvFL for a given matrix Σ.

• for the largest SV (i.e. A = I), we look for
the matrices B and Σ which optimize dmin. As
FL is a real-valued matrix, B∗ is necessarily a
real-valued unitary matrix (i.e., matrix of rota-
tion) and the new expression of the linear pre-
coder can be then expressed as: FL = ΣB∗
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with Σ =
√
p0

(
cosψ 0
0 sinψ

)
and B∗ =(

cos θ sin θ
sin θ cos θ

)
. The search of ψ and θ can

be restricted to ψ ∈ [0, π/4[ (to satisfy the de-
creasing order of the SV) and θ ∈ [0, θmax] with
tan θmax = 1/2. This last condition corresponds
to the search domain |x| ≥ 2|y| and |z| ≥ 2|w|.

The optimization of dmin is obtained for ds1 = ds2 .
By substituting trigonometric notations in (7) and
(8) the equality of the distances gives two solutions i)
cos θ = 2 sin θ and ii) tan2 ψ = k with k = ρ1/ρ2 > 1.

i) the minimum square distance d2
s1

is equal to
2p0ρ2((k 1) cos2 ψ+1)/5. The value of ψ which max-
imizes d2

s1
is obviously ψ = 0. The optimum precoder

FQ and its minimum square distance are then:

FQ =
√
p0

5

(
2 1
0 0

)
and d2

Q = 2p0ρ1/5 (10)

One should note that the second row of FQ is null,
which means that the worst virtual subchannel is
dropped but physically both the transmitter and the
receiver do use all antennas. In fact, the precoder
transforms both subchannel QPSK constellations into
a received 16-QAM constellation on the most favored
subchannel (the first here because elements of Hv are
in the decreasing order).

ii) the minimum square distance d2
s1

can be ex-
pressed as: d2

s1
= 2p0ρ1ρ2/(ρ1 + ρ2)(1 2 cos θ sin θ +

sin2 θ). d2
s1

is a decreasing function for θ ∈ [0, θmax],
so the largest value is obtained for θ = 0. The op-
timum precoder FD and the corresponding minimum
square distance are then in this case:

FD =
√

p0

1 + k

(
1 0
0

√
k

)
and d2

D =
2p0ρ1ρ2

ρ1 + ρ2
(11)

This precoder is diagonal, so it keeps the diagonal
structure of the MIMO representation (cf section 2).
We obtain on each receiver a QPSK constellation.
This solution decouples the MIMO channel into 2 par-
allel and independent subchannels, which allows to ap-
ply the ML receiver separately on each subchannel.
This solution is equivalent to the eigen-power alloca-
tion of the equal-error solution in [4] because (11) can
be expressed in an equivalent form as:

FD =
dD√

2

(
1/

√
ρ1 0

0 1/
√
ρ2

)
(12)

and the output subchannel SNRs are given by:
SNR = SNR1 = SNR2 = d2

D/2 = p0ρ1ρ2/(ρ1 + ρ2).

Finally, the optimal dmin precoder FL for a QPSK
modulation has two different simple expressions which
depend on the ratio of virtual subchannels SNRs (i.e.,
k = ρ1/ρ2). Fig. 4 plots dD and dQ versus k in order
to choose the best precoder. For k ≤ 4, the precoder
is the diagonal one (i.e. FL = FD) and for k ≥ 4, the
precoder is FL = FQ. The threshold value of k = 4 is
obtained by evaluating dQ = dD.

1 2 3 4 5 6 7 8
0.4

0.6

0.8

1

k

Optimized d
min

  (p
0
=1 and ρ

1
=1)

d
D

: procoder F
D

d
Q

: precoder F
Q

d
min

: precoder F
L

Figure 4: Optimized dmin for the precoders FQ

and FD.

4 Simulation results

The configuration is nT = 3 transmitters, nR = 2
receivers, and we transmit b = 2 independent data
streams over the system. A QPSK constellation is
used. For each SNR, 20 000 packets (a packet is
100 vectors of 2 symbols) are transmitted during the
Monte-Carlo simulations. For each packet, a new H
and a new R are randomly chosen, in order to obtain
results that do not depend on a particular channel,
nor on particular noise statistics. Entries of H are
i.i.d. zero-mean unit-variance complex Gaussian ran-
dom variables. Matrices R are obtained by R = TT∗

(where entries of T are i.i.d. zero-mean unit-variance
complex Gaussian random variables) and then scaled
according to the desired SNR. The SNR is defined as
the ratio of the total transmitted power (i.e., p0) to
the total received noise power (i.e., trace(R)). Per-
formance improvement in term of BER of the pro-
posed max(dmin) linear precoder FL against the switch
max(dmin) precoder Fsc is illustrated in Fig. 5. Note
that performance of the max(dmin) linear precoder
can be improved by substituting the MBER diagonal
precoder[3] instead of the precoder FD when the vir-
tual subchannels SNR ratio is smaller than the thresh-
old k = 4.
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−2 0 2 4 6 8 10 12
10

−5

10
−4

10
−3

10
−2

10
−1

SNR in dB

max(d
min

)  precoders (QPSK, b=2, n
T
=3, n

R
=2, Rayleigh channel )

B
E

R

Switch Precoder
Linear Precoder

Figure 5: linear and switch max(dmin) precoders

5 Conclusion
We derived the linear precoder which maximizes the

minimum Euclidian distance on the received constella-
tions when b = 2 virtual independent subchannels are
used. The max(dmin) solution for a QPSK modulation
is particularly simple: the choice of the precoder FD

or FQ depends on the ratio of the virtual subchannel
SNRs. This kind of solution is new in comparison to
the linear diagonal precoders that exist in the litera-
ture [4, 3], and its non-diagonality provides very good
results in term of BER. Furthermore, the weighted an-
tenna selection allows our max(dmin) soft precoder to
outperform hard antenna selection proposed in [2].

A Proof matrix A is the identity
The general form of a unitary matrix A in dimen-

sion 2 is:
A =

(
cosφ ejφ1 sinφ ejφ3

sinφ ejφ2 cosφ ejφ4

)
(13)

under the constraint (φ1 + φ3) (φ2 + φ4) = kπ with
φ ∈ [0, π/2] and φi ∈ [0, 2π[ for i = 1, . . . 4.

The product λ1λ2 of the SV of HvFL is equal
to det(HvAΣ), then λ1λ2 = det(HvΣ)det(A) =
det(HvΣ) which is independent of A.

The sum λ2
1 + λ2

2 of the square SV is equal
to trace(HvAΣ2A∗Hv) = ‖HvAΣ‖2. Entries of
HvAΣ = [(HvAΣ)ij ] are equal2 to

√
ρiσjaij , then

phases φi of A have no impact on λ2
1 + λ2

2.
Finally, from the two results above we can conclude

that phases φi of A have no impact on λ1 and λ2. So,
we can restrict to real-valued matrix:

A =
(

cosφ sinφ
sinφ cosφ

)
with φ ∈ [0, π/2] (14)

In order to study the impact of φ on the SVD,
Fig. 6 plots λ1 vs. λ2. The upper curve corre-
sponds to φ = 0 (i.e. A = I) for ψ between 0
and arctan(

√
ρ1/ρ2) < π/4. The transversal curves

are obtained for a fixed ψ and φ ∈ [0, π/2]. Note
that, as explained before, the product λ1λ2 is equal
to c =

√
ρ1ρ2 cosψ sinψ and is independent of φ. So

when φ varies from 0 to π/2, the SV start from the
upper curve and follow a hyperbolic curve λ1 = c/λ2.
In conclusion, our interest is to choose the largest SV
for a fixed angle ψ by considering A = I.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Figure 6: λ1 versus λ2 (with the virtual subchannel
SNRs fixed to

√
ρ1 = 0.866 and

√
ρ2 = 0.5)
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