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Introduction

Since a few years, it is well known that one way to get high rates on a scattering-rich wireless channel is to use multiple transmit and receive antennas [START_REF] Foschini | On limits of wireless communications in a fading environment when using multiple antennas[END_REF]. Such systems are known as Multiple-Input Multiple-Output (MIMO) wireless. In some wireless applications feedback does exist and can be used to provide Channel State Information (CSI) to the transmitter. Performance can then be improved by the power allocation among eigenmodes thanks to the design of precoders which are based on an optimized diagonal representation of MIMO systems such as, for example, water filling (WF) [START_REF] Telatar | Capacity of multi-antenna Gaussian channels[END_REF], minimum mean square error (MMSE) [START_REF] Sampath | Generalized linear precoder and decoder design for MIMO channels using the weighted MMSE criterion[END_REF], and minimum bit error rate (MBER) [START_REF] Rostaing | Minimum BER diagonal precoder for MIMO digital transmissions[END_REF] solutions.

On the other hand, Heath and Paulraj have proposed in [START_REF] Heath | Antenna selection for spatial multiplexing systems based on minimum error rate[END_REF] a switch antenna selection based on the maximization of the smallest Euclidian distance max(d min ) between the noise-free received symbols. We propose in this paper a linear precoder using this criterion, which is particularly well adapted for the optimum ML receiver. The max(d min ) solution is possible thanks to the proposed simplified representation of MIMO systems and the precoder is derived in the case of two independent data streams. The result-ing precoder gives a non-diagonal optimized MIMO system by opposition to power allocation strategies among eigen-modes (WF...).

The rest of the paper is organized as follows. The simplified representation of the MIMO system is presented in section 2. In section 3, both max(d min ) linear precoder and antenna selection are derived in the case of two virtual subchannels. Simulation results in term of BER are presented in section 4 and section 5 contains concluding remarks.

MIMO channel simplified representation

Consider a MIMO system with n R receive and n T transmit antennas over which we want to achieve b independent data streams. For a MIMO channel without delay spread and including a precoder matrix F and a decoder matrix G, the basic system model is:

y = GHFs + Gn ( 1 
)
where

H is the n R × n T channel matrix, F is the n T × b precoder matrix, G is the b × n R decoder ma- trix, s is the b × 1 transmitted vector and n is the n R × 1 noise vector. step i method F i G i H vi noise whitening 1 EVD: R = Q 1 Λ 1 Q * 1 F 1 = I nT G 1 = Λ 1 2 1 Q * 1 H v1 = G 1 HF 1 channel diagonalization
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SVD:

H v1 = A 2 Σ 2 B * 2 F 2 = B 2 G 2 = A * 2 H v2 = Σ 2 dimensionality reduction 3 Σ 2 = Σ r 0 0 0 F 3 = I b 0 G 3 = I b 0 H v = G 3 H v2 F 3 = Σ b = diag{ √ ρ 1 , . . . , √ ρ b } Table 1:
Steps to obtain the diagonal MIMO system in case of CSI at the transmitter.

We assume that b ≤ r = rank(H) ≤ min(n T , n R ) and E {ss * } = I b , E {nn * } = R and1 E {sn * } = 0. Furthermore, if the available transmission power is noted p 0 , the constraint below must be fulfilled:

trace {FF * } = p 0 .
Before the optimization, the first objective is to obtain a diagonal channel and a whitened noise in order to facilitate both the system analysis and the determination of the optimal precoder. Our approach is based on the decomposition of the precoder and decoder matrices

F = F v F L and G = G L G v .
The model (1) then becomes:

y = G L H v F L s + G L n v (2) 
where

H v = G v HF v is the virtual channel and n v = G v n is the virtual noise with correlation ma- trix R v = G v RG * v .
We will only use virtual precoder matrices F v with orthonormal columns, and then F * v F v = I. As a consequence, the power constraint becomes trace {F L F * L } = p 0 . Furthermore, as an ML receiver is used we can consider G L = I b .

The simplified system will be obtained via successive transformations, so the virtual precoder and decoder matrices will be defined as

G v = G 3 G 2 G 1 and F v = F 1 F 2 F 3 .
The different steps to obtain a diagonal MIMO channel are summarized in Tab. 1. This simplified model is true whatever the number of antennas and the constellation are. Note that the diagonal entries √ ρ i for i = 1, . . . b of H v are sorted in a decreasing order and ρ i corresponds to the SNR of the i th virtual subchannel. Otherwise, the noise statistic after each step is circular complex Gaussian with correlation matrices:

R v1 = E[n v1 n * v1 ] = I nR , R v2 = E[n v2 n * v2 ] = I nR and R v = E[n v n * v ] = I b .
3 Minimum Euclidian distance precoder

Switch precoder

The principle of MIMO transmission using a switch precoder [START_REF] Heath | Antenna selection for spatial multiplexing systems based on minimum error rate[END_REF] for antenna selection is illustrated in Fig. 1. On the receiver side only a noise whitening operation is performed (see step 1 in Tab. 1), which leads to a whitened noise vector n v1 and an equivalent channel matrix H v1 (non-diagonal). On the transmitter side a switch matrix F sc allows to select b antennas among n T according to a criterion when feedback from the receiver exists. For example if we consider a system with n T = 4 and b = 2, the following matrix F sc selects the second and the third antenna:

F sc = p 0 /2     0 0 1 0 0 1 0 0     .
The system equation is:

y = H v1 F sc s + n v1 (3) 
The minimum Euclidian distance denoted d min is given by:

d 2 min = min si,sj ∈S, si =sj H v1 F sc (s i s j ) 2 . ( 4 
)
where S is the set of all possible transmitted vector s.

The largest d min is determined by choosing b antennas among n T :

d sc = max Fsc (d min ).
(5)

Linear precoder

The principle of MIMO transmission using a linear precoder is illustrated in Fig. 2. From the results established in section 2 and Tab. 1 on the MIMO simplified representation, a linear precoder matrix F L remains to be determined according to the max(d min ) criterion. The system equation is:

y = H v F L s + n v (6)
Note that the dimensional reduction (third step in Tab. 1) is already performed but physically the n T ≥ b transmit antennas are used by opposition to the switch antenna selection presented in subsection 3.1. However these two systems (switch and linear precoders) have the same spectral efficiency and can be compared in order to determine the BER improvement.

In the following, the results to derive the linear max(d min ) precoder are obtained only for b = 2. The generalization for b > 2 is not straightforward. A QPSK modulation is considered in the paper. Other modulations can be considered by following the proposed approach but the minimum distances presented further must be re-evaluated in this case.

Let us denote F L =

x y w z . In order to make the search easier, we consider the elements of F L as real.

Complex values imply rotations on the received constellation defined as

{H v F L s | s = [s 1 s 2 ] T ∈ S}.
So the proposed solution is not strictly optimal in term of d min due to this real-valued restriction. From Fig. 3, the minimum distance d s1 and d s2 for the symbol s 1 and s 2 are respectively given by: In order to obtain by a simple way the precoder F L , we perform an Singular Value Decomposition (SVD):

d 2 s1 = d 2 s1r1 + d 2 s1r2 = 2ρ 1 (|x| |y|) 2 + 2ρ 2 |w| 2 (7) d 2 s2 = d 2 s2r1 + d 2 s2r2 = 2ρ 1 |y| 2 + 2ρ 2 (|z| |w|) 2 ( 
F L = AΣB * (9)
where A and B are unitary matrices and Σ is a diagonal matrix with positive and decreasing ordered elements.

The optimization of F L can be performed in two steps:

• AΣ allows to choose the Singular Values (SV) of H v F L because B * has no impact on the SV. So our interest is to choose the largest ones. We prove in appendix A that the best choice for A is the identity matrix because it gives the largest SV of H v F L for a given matrix Σ.

• for the largest SV (i.e. A = I), we look for the matrices B and Σ which optimize d min . As F L is a real-valued matrix, B * is necessarily a real-valued unitary matrix (i.e., matrix of rotation) and the new expression of the linear precoder can be then expressed as: The optimization of d min is obtained for d s1 = d s2 . By substituting trigonometric notations in ( 7) and (8) the equality of the distances gives two solutions i) cos θ = 2 sin θ and ii)

F L = ΣB *
tan 2 ψ = k with k = ρ 1 /ρ 2 > 1. i) the minimum square distance d 2
s1 is equal to 2p 0 ρ 2 ((k 1) cos 2 ψ +1)/5. The value of ψ which maximizes d 2 s1 is obviously ψ = 0. The optimum precoder F Q and its minimum square distance are then:

F Q = p 0 5 2 1 0 0 and d 2 Q = 2p 0 ρ 1 /5 (10)
One should note that the second row of F Q is null, which means that the worst virtual subchannel is dropped but physically both the transmitter and the receiver do use all antennas. In fact, the precoder transforms both subchannel QPSK constellations into a received 16-QAM constellation on the most favored subchannel (the first here because elements of H v are in the decreasing order).

ii) the minimum square distance d 2 s1 can be expressed as:

d 2 s1 = 2p 0 ρ 1 ρ 2 /(ρ 1 + ρ 2 )(1 2 cos θ sin θ + sin 2 θ). d 2
s1 is a decreasing function for θ ∈ [0, θ max ], so the largest value is obtained for θ = 0. The optimum precoder F D and the corresponding minimum square distance are then in this case:

F D = p 0 1 + k 1 0 0 √ k and d 2 D = 2p 0 ρ 1 ρ 2 ρ 1 + ρ 2 (11)
This precoder is diagonal, so it keeps the diagonal structure of the MIMO representation (cf section 2). We obtain on each receiver a QPSK constellation. This solution decouples the MIMO channel into 2 parallel and independent subchannels, which allows to apply the ML receiver separately on each subchannel. This solution is equivalent to the eigen-power allocation of the equal-error solution in [START_REF] Sampath | Generalized linear precoder and decoder design for MIMO channels using the weighted MMSE criterion[END_REF] because (11) can be expressed in an equivalent form as:

F D = d D √ 2 1/ √ ρ 1 0 0 1 / √ ρ 2 (12) 
and the output subchannel SNRs are given by:

SN R = SN R 1 = SN R 2 = d 2 D /2 = p 0 ρ 1 ρ 2 /(ρ 1 + ρ 2 ).
Finally, the optimal d min precoder F L for a QPSK modulation has two different simple expressions which depend on the ratio of virtual subchannels SNRs (i.e., k = ρ 1 /ρ 2 ). Fig. 4 plots d D and d Q versus k in order to choose the best precoder. For k ≤ 4, the precoder is the diagonal one (i.e. F L = F D ) and for k ≥ 4, the precoder is 

F L = F Q . The threshold value of k = 4 is obtained by evaluating d Q = d D .

Simulation results

The configuration is n T = 3 transmitters, n R = 2 receivers, and we transmit b = 2 independent data streams over the system. A QPSK constellation is used. For each SNR, 20 000 packets (a packet is 100 vectors of 2 symbols) are transmitted during the Monte-Carlo simulations. For each packet, a new H and a new R are randomly chosen, in order to obtain results that do not depend on a particular channel, nor on particular noise statistics. Entries of H are i.i.d. zero-mean unit-variance complex Gaussian random variables. Matrices R are obtained by R = TT * (where entries of T are i.i.d. zero-mean unit-variance complex Gaussian random variables) and then scaled according to the desired SNR. The SNR is defined as the ratio of the total transmitted power (i.e., p 0 ) to the total received noise power (i.e., trace(R)). Performance improvement in term of BER of the proposed max(d min ) linear precoder F L against the switch max(d min ) precoder F sc is illustrated in Fig. 5. Note that performance of the max(d min ) linear precoder can be improved by substituting the MBER diagonal precoder [START_REF] Rostaing | Minimum BER diagonal precoder for MIMO digital transmissions[END_REF] instead of the precoder F D when the virtual subchannels SNR ratio is smaller than the threshold k = 4. 

Conclusion

We derived the linear precoder which maximizes the minimum Euclidian distance on the received constellations when b = 2 virtual independent subchannels are used. The max(d min ) solution for a QPSK modulation is particularly simple: the choice of the precoder F D or F Q depends on the ratio of the virtual subchannel SNRs. This kind of solution is new in comparison to the linear diagonal precoders that exist in the literature [START_REF] Sampath | Generalized linear precoder and decoder design for MIMO channels using the weighted MMSE criterion[END_REF][START_REF] Rostaing | Minimum BER diagonal precoder for MIMO digital transmissions[END_REF], and its non-diagonality provides very good results in term of BER. Furthermore, the weighted antenna selection allows our max(d min ) soft precoder to outperform hard antenna selection proposed in [START_REF] Heath | Antenna selection for spatial multiplexing systems based on minimum error rate[END_REF].

A Proof matrix A is the identity

The general form of a unitary matrix A in dimension 2 is: A = cos φ e jφ1 sin φ e jφ3 sin φ e jφ2 cos φ e jφ4 (13) under the constraint (φ

1 + φ 3 ) (φ 2 + φ 4 ) = kπ with φ ∈ [0, π/2] and φ i ∈ [0, 2π[ for i = 1, . . . 4.
The product λ 1 λ 2 of the SV of H v F L is equal to det(H v AΣ), then λ 1 λ 2 = det(H v Σ)det(A) = det(H v Σ) which is independent of A.

The sum λ2 1 + λ 2 2 of the square SV is equal to trace(H v AΣ 2 A * H v ) = H v AΣ 2 . Entries of H v AΣ = [(H v AΣ) ij ] are equal 2 to √ ρ i σ j a ij , then phases φ i of A have no impact on λ 2 1 + λ 2 2 . Finally, from the two results above we can conclude that phases φ i of A have no impact on λ 1 and λ 2 . So, we can restrict to real-valued matrix:

A = cos φ sin φ sin φ cos φ with φ ∈ [0, π/2] (14) 
In order to study the impact of φ on the SVD, Fig. 6 plots λ 1 vs. λ 2 . The upper curve corresponds to φ = 0 (i.e. A = I) for ψ between 0 and arctan( ρ 1 /ρ 2 ) < π/4. The transversal curves are obtained for a fixed ψ and φ ∈ [0, π/2]. Note that, as explained before, the product λ 1 λ 2 is equal to c = √ ρ 1 ρ 2 cos ψ sin ψ and is independent of φ. So when φ varies from 0 to π/2, the SV start from the upper curve and follow a hyperbolic curve λ 1 = c/λ 2 . In conclusion, our interest is to choose the largest SV for a fixed angle ψ by considering A = I. 
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 1 Figure 1: MIMO equivalent transmission system with a switch precoder
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 2 Figure 2: MIMO equivalent transmission system with a linear precoder.
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 113 Figure 3: Upper part of the noise-free received constellation for QPSK (with |x| > 2|y| and |z| > 2|w|)

  8) with |x| > |y| and |z| > |w|. The optimized minimum distance is obtained for d min = d s1 = d s2 . The search domain for |x|/|y| ∈]1/2, 2[ is discarded due to a loss of power. In fact, as we can always find for |x|/|y| / ∈]1/2, 2[ the same minimum distances on the first receiver but with less power, we can then restrict the search domain to |x| > 2|y| which implies |z| > 2|w| (thanks to the optimized condition d s1 = d s2 ). This condition does not induce any loss of generality because the alternative condition |y| > 2|x| and |w| > 2|z| corresponds to a permutation of the columns of F L and gives the same d min .

  θ cos θ . The search of ψ and θ can be restricted to ψ ∈ [0, π/4[ (to satisfy the decreasing order of the SV) and θ ∈ [0, θ max ] with tan θ max = 1/2. This last condition corresponds to the search domain |x| ≥ 2|y| and |z| ≥ 2|w|.
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 4 Figure 4: Optimized d min for the precoders F Q and F D .
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 5 Figure 5: linear and switch max(d min ) precoders
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 6 Figure 6: λ 1 versus λ 2 (with the virtual subchannel SNRs fixed to √ ρ 1 = 0.866 and √ ρ 2 = 0.5)
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