R Gautier
email: roland.gautier@univ-brest.fr

G Burel

J Letessier

O Berder

Blind Estimation of Scrambler Offset Using Encoder Redundancy

A self recovering receiver for encoded and scrambled binary data streams is proposed in this paper. The generating polynomial of the scrambling sequence is known, as well as the encoder structure and coefcients, but the scrambler time offset is unknown. Taking prot of redundancy introduced by the encoder, we propose a method which is able to estimate the scrambling sequence offset from the observed scrambled stream. The method is based on projection of the observed data on the encoder orthogonal subspace. Once the offset has been estimated, classical data descrambling and decoding can be used to recover the information stream.

Introduction

In many digital transmission systems, the encoded data is scrambled with a long pseudo-noise sequence in order to ensure a reasonable degree of privacy, as well as to provide a random binary stream with good spectral properties. As shown on gure 1, the binary data is rst encoded for error protection (using, for instance, a block code or a convolutional code). Then the binary stream is scrambled by performing an Exclusive Or (XOR) with a long pseudorandom binary sequence. The scrambled binary data is nally fed to a digital transmitter which performs carrier modulation, ltering and amplication [START_REF] Proakis | Digital Communications, Third Edition[END_REF]. On the receiver side, the received signal is demodulated to recover the scrambled binary data. Then, the data is descrambled and decoded. The classical receiver can perform data descrambling because it knows the scrambling sequence and its time offset. In this paper, we propose a receiver which is able to recover the information data stream without knowing the time offset of the scrambling sequence. Typical applications are multistandard adaptive receivers and spectrum surveillance [START_REF] Michael | Blind Estimation of Direct Sequence Spread Spectrum Signals in Multipath[END_REF]. The literature about self-recovering receivers is not very rich. In [START_REF] Michael | Blind Estimation of Direct Sequence Spread Spectrum Signals in Multipath[END_REF] a polyphase-based method to estimate an unknown short spreading sequence in spread spectrum transmission context has been proposed.

Let us come back to the scrambler. The scrambling sequence is a binary pseudo-random sequence generated by an m-stage shift register with linear feedback [START_REF] Dilip | Crosscorrelation Properties of Pseudorandom and Related Sequences[END_REF]. If the feedback coefcients are well chosen, the sequence length is 2 m 1. For instance, in the North American wireless communications standard IS-95 [START_REF] Sam Lee | CDMA Systems Engineering Handbook[END_REF], the scrambling sequence is generated by a 42-stage shift register, which leads to a sequence length 2 42 1 (this corresponds to a period of about 40 days).

The feedback coefcients are in the public domain, in order to ensure that any receiver can compute the sequence. However, for a given communication, a time offset which depends on the mobile series number is applied to the sequence. Trying to descramble the data by "brute force" would require to test the 2 m 1 possible offsets, which is practically infeasible. In this paper, we show that, using linear algebra and a subspace-based method, the time offset can be determined without requiring a high computational power.

The paper is organized as follows. In Section 2, the proposed method is described. Then, in Section 3, experimental results using standard encoders and scramblers are provided to illustrate the approach. Finally, a conclusion is drawn in Section 4.

In the sequel, for illustration purpose, we provide examples related to IS-95 forward link. However, the method is not limited to this particular protocol.

In order to allow the reader to choose the degree of details he wants, the proposed method is presented as follows. Subsection 2.1 describes the basic idea, from an intuitive point of view, without any equation. Then, Subsection 2.2 provides a global mathematical description of the method. Finally, Subsections 2.3 and 2.4 provide more details on the way to compute matrices which are used in the method

Basic idea

The basic idea of the method is to take prot of redundancy of the encoded data stream. Indeed, the principle of any error-correcting code is to add redundancy in order to provide error protection. When the code is linear, the effect of this redundancy is to conne the encoded data stream to a subspace. For instance, if we consider an N -dimensional vector containing N successive encoded bits, and a 1 r convolutional encoder, the vector is conned to an N rdimensional subspace 1 . The principle of our approach is to project the observed data on the orthogonal subspace. In the orthogonal subspace, contribution of the encoded data stream is null. Hence, only contribution of the scrambling sequence remains. Finally, by solving a system of linear equations, we determine the scrambling sequence offset.

Mathematical description of the method

Let us note m the number of registers in the scrambling sequence generator, N the number of observed binary symbols (typically, N 4m), 1 r the encoder rate and K the encoder constraint length. Consider the binary vectors below:

h: the vector containing N samples of the scrambled data stream;

g: the corresponding outputs of the convolutional encoder (dimension N); f : the corresponding outputs of the scrambling sequence generator (dimension N); g 0 : the corresponding unknown information data (dimension N r K 1); f 0 : the binary representation of the scrambling sequence offset (dimension m).

According to gure 2, which summarizes the mathematical model, we have h f g where stands for XOR. From the principle of linear encoders and random sequences generation, it can be shown that there exist matrices F and G such that f F f 0 and g Gg 0 . Hence, we have:

h F f 0 Gg 0 (1)
Matrices F and G can be computed as described in subsections 2.3 and 2.4, and vector h is observed. Vectors f 0

where 0 stands for the N r K 1 N r K 1 null matrix. The rows of G span the subspace orthogonal to the encoded data subspace. Computation of G can be performed using singular value decomposition. For actual implantation under matrix-oriented software such as Matlab or Octave, we can note that the equation above is equivalent to G T G T 0, hence, the columns of G T span the null subspace of G T . Computation of the null subspace can be performed using singular value decomposition and is embedded in function null of Matlab and Octave. However, a difculty appears due to the fact that, here, computations have to be done on GF [START_REF] Proakis | Digital Communications, Third Edition[END_REF]. A solution is to force a rational representation of matrix G (thanks to option 'r'), and then use a modulo 2 reduction: Gtilde = null(G','r')'; Gtilde = mod(Gtilde,2); Then, we can compute:

h Gh G F f 0 GGg 0 G F f 0 (3
)
The interest is that the encoded data has no impact on h. Let us note H G F. Finally, f 0 is obtained by solving the linear system below:

h H f 0 (4
)
IEEE-ACSSC'2002, Vol 1, pp. 626-630 ©2002 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

!""!

If the inverse of H T H exists, we have:

f 0 H T H 1 H T h (5)
If its inverse does not exist, an alternative method for solving linear systems in GF(2) can be used. If H is not full rank, many equivalent solutions exist.

To implement this method, please do not forget that all computations must be performed in the Galois eld GF(2), not in the set of real numbers. Otherwise, all results would obviously be false. For those who are not familiar with computations in Galois elds, extracts of sample Matlab programs will be posted on our web site after the conference.

Computation of matrix F using the model of the random sequence generator

For illustration purpose, we consider, here, a random sequence generator based on an SSRG (Simple Shift Register Generator) structure. The method can be easily adapted to any other linear random sequence generator.

When an SSRG is used, the sequence generator is de-ned by a polynomial c x ([1] p. 562):

c x 1 c 1 x c 2 x 2 c m 1 x m 1 x m (6)
where m stands for the number of registers and the binary coefcients c i are the feedback coefcients. This polynomial denes a recurrence equation which provides the sequence. For instance, the scrambling sequence used in IS-95 is generated by the polynomial below ([1] p. 352): f S x 1 x 7 x 9 x 11 x 15 x 16 x 17 x 20

x 21 x 23 x 24 x 25 x 26 x 32 x 35

x 36 x 37 x 39 x 40 x 41 x 42 (7)

If we dene a vector x t which contains the state of the registers at time t, we can write:

x t 1 T x t where x t x m t x m 1 t x 1 t (8)
and matrix T is:

T 0 1 0 0 0 0 0 0 0 0 0 1 1 c m 1 c 2 c 1 (9)
Hence, we can write:

x t m T m x t (10)

Since the output is taken on register m ([1] p. 562, g 6.2), the PN sequence is f t x m t . Finally, if we consider a vector f containing N p 1 m successive samples, where p is an integer, we can write:

f F f 0 where F I m T m T pm (11)
We have:

f x 0 x m x pm and f 0 x 0 (12)
Note that f 0 is the m-dimensional vector containing the initial registers states (in our application, it is the vector to determine). Matrix F is known because it depends only on the coefcients of the generating polynomial.

Computation of matrix G using the model of the linear encoder

As an illustration, we will consider a convolutional encoder, but the method can be easily extended to any linear code, such as block codes (Hamming, BCH, etc.). A convolutional encoder is dened by its generating polynomials. For instance, the IS-95 forward link uses a rate 1 2 convolutional code, with constraint length K 9 and the generating polynomials coefcients below ([START_REF] Sam Lee | CDMA Systems Engineering Handbook[END_REF] where y stands for the uncoded data stream.

Let us note g an N -dimensional vector containing N successive samples of the coded stream and g 0 a vector containing the information sequence which generated g (dimension N r K 1). We can write:

g Gg 0 (15
)
IEEE-ACSSC'2002, Vol 1, pp. 626-630 ©2002 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

where

G 1 1 0 1 0 1 1 1 1 1 0 0 0 1 1 1 0 1 1 1 0 1 0 1 1 1 1 1 0 0 0 1 1 1 0 1 1 1 0 1 0 1 1 1 1 1 0 0 0 1 1 1 0 1 (16)
Note that G contains the submatrices G sub below (dimension r K):

G sub 1 1 0 1 0 1 1 1 1 1 0 0 0 1 1 1 0 1 (17)
Each row of G sub contains the coefcients of a generating polynomial in reverse order. In our application, matrix G is known (because it depends only on the generating polynomials), but g and g 0 are unknown. However, instead of trying to determine them, we cancel their impact by projecting the data on the null subspace of G T .

Experimental results

First of all, we illustrate the method by showing the content of various matrices for a given scrambler and encoder (subsection 3.1). Thereafter, in subsections 3.2 and 3.3 we give some simulation results in the context of IEEE802.11a WLAN and IS-95 standards.

Illustration of the method using matrices graphical representations

Let us consider a rate 1 3 convolutional encoder with constraint length K 6 with the 3 generating polynomials below ([1] p.907):

polyG 1 0 0 1 1 1 1 0 1 0 1 1 1 1 1 1 0 1 47 53 75 octal (18
)
This yields to matrix G sub shown on gure 3 (black=1, white=0). For illustration purpose, we consider a scrambler with m 15 registers and the generating polynomial below:

f S x 1 x 2 x 6 x 7 x 8 x 10 x 15 (19)
The offset of the scrambling sequence is:

f 0 110110000010011 T (20)
We will try to estimate the offset from N 2 m 30 scrambled bits. With G sub , we can construct the encoder matrix G and from f S x given in Eq. 19 we can construct the scrambler matrix F. Equation 1 is graphically represented on gure 4. First, we compute G (gure 5) as described in subsection 2.2. Then, we can compute h Gh, the projection of the observed symbols on the encoder orthogonal subspace. We also compute matrix H G F. Finally, the offset f 0 is obtained by solving the linear system (4). When the inverse of H T H exists, f 0 is directly provided by Eq. 5, which is illustrated on gure 6.

The estimated offset is exactly equal to the true offset used for the generation of the data stream, as shown on gure 7.

Example with IEEE802.11a W-LAN Standard

IEEE802.11a standard uses a rate 1 2 and constraint length K 7 convolutional encoder with the 2 generat- and the scrambler generating polynomial is:

f S x 1 x 4 x 7 (22)
The number of registers in the scrambling generator is m 7. We try to estimate the offset of the scrambling sequence from N 4 7 28 scrambled bits. We obtain a perfect estimation, as shown on gure 8.

Example with IS-95 Standard

The IS-95 Standard (forward link) uses a rate 1 2 and constraint length K 9 convolutional encoder with generating polynomials 753 and 561 (see subsection 2.4) and a scrambler with m 42 registers and generating polynomial given by Eq. 7.

We try to estimate the scrambler offset from N 5 42 210 scrambled bits. The method provides a perfect estimation, as shown on gure 9.

Conclusion

In this paper, we have considered the problem of determining the time offset of a long scrambling sequence. Since the binary data is usually encoded for error protection before scrambling, we have taken prot of redundancy introduced by the encoder to cancel the impact of the encoded data, and then to determine the scrambler timeoffset. Thanks to linear algebra and computations in Galois elds, this idea can be mathematically expressed as projecting the scrambled data on the encoder orthogonal subspace, and then determining the time offset from the projected vector. Experimental results have been provided to illustrate and validate the approach.

Figure 1 :

 1 Figure 1: Principle of scrambling

Figure 3 :

 3 Figure 3: Graphical representation of G sub

Figure 4 :

 4 Figure 4: Graphical representation of the mathematical model (Eq. 1)

Figure 5 :

 5 Figure 5: Graphical representation of G

Figure 6 :Figure 7 :

 67 Figure 6: Graphical representation of Eq. 5

Figure 8 :

 8 Figure 8: True and estimated offset for the IEEE802.11a W-LAN example

Figure 9 :

 9 Figure 9: True and estimated offset for the IS-95 example