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Abstract
A self recovering receiver for encoded and scrambled

binary data streams is proposed in this paper. The gen-
erating polynomial of the scrambling sequence is known,
as well as the encoder structure and coefcients, but the
scrambler time offset is unknown. Taking prot of redun-
dancy introduced by the encoder, we propose a method
which is able to estimate the scrambling sequence offset
from the observed scrambled stream. The method is based
on projection of the observed data on the encoder orthogo-
nal subspace. Once the offset has been estimated, classical
data descrambling and decoding can be used to recover
the information stream.

1 Introduction
In many digital transmission systems, the encoded data

is scrambled with a long pseudo-noise sequence in order
to ensure a reasonable degree of privacy, as well as to pro-
vide a random binary stream with good spectral properties.
As shown on gure 1, the binary data is rst encoded for
error protection (using, for instance, a block code or a con-
volutional code). Then the binary stream is scrambled by
performing an Exclusive Or (XOR) with a long pseudo-
random binary sequence. The scrambled binary data is
nally fed to a digital transmitter which performs carrier
modulation, ltering and amplication [2].
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Figure 1: Principle of scrambling

On the receiver side, the received signal is demodulated
to recover the scrambled binary data. Then, the data is

descrambled and decoded. The classical receiver can per-
form data descrambling because it knows the scrambling
sequence and its time offset. In this paper, we propose
a receiver which is able to recover the information data
stream without knowing the time offset of the scrambling
sequence. Typical applications are multistandard adap-
tive receivers and spectrum surveillance [4]. The litera-
ture about self-recovering receivers is not very rich. In [4]
a polyphase-based method to estimate an unknown short
spreading sequence in spread spectrum transmission con-
text has been proposed.

Let us come back to the scrambler. The scrambling se-
quence is a binary pseudo-random sequence generated by
an m-stage shift register with linear feedback [3]. If the
feedback coefcients are well chosen, the sequence length
is 2m 1. For instance, in the North American wire-
less communications standard IS-95 [1], the scrambling
sequence is generated by a 42-stage shift register, which
leads to a sequence length 242 1 (this corresponds to a
period of about 40 days).

The feedback coefcients are in the public domain, in
order to ensure that any receiver can compute the sequence.
However, for a given communication, a time offset which
depends on the mobile series number is applied to the se-
quence. Trying to descramble the data by “brute force”
would require to test the 2m 1 possible offsets, which
is practically infeasible. In this paper, we show that, using
linear algebra and a subspace-based method, the time offset
can be determined without requiring a high computational
power.

The paper is organized as follows. In Section 2, the
proposed method is described. Then, in Section 3, experi-
mental results using standard encoders and scramblers are
provided to illustrate the approach. Finally, a conclusion is
drawn in Section 4.

In the sequel, for illustration purpose, we provide exam-
ples related to IS-95 forward link. However, the method is
not limited to this particular protocol.
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2 Proposed method
In order to allow the reader to choose the degree of de-

tails he wants, the proposed method is presented as follows.
Subsection 2.1 describes the basic idea, from an intuitive
point of view, without any equation. Then, Subsection 2.2
provides a global mathematical description of the method.
Finally, Subsections 2.3 and 2.4 provide more details on
the way to compute matrices which are used in the method
2.1 Basic idea

The basic idea of the method is to take prot of redun-
dancy of the encoded data stream. Indeed, the principle of
any error-correcting code is to add redundancy in order to
provide error protection. When the code is linear, the effect
of this redundancy is to conne the encoded data stream to
a subspace. For instance, if we consider an N -dimensional
vector containing N successive encoded bits, and a 1 r
convolutional encoder, the vector is conned to an N r-
dimensional subspace1. The principle of our approach is
to project the observed data on the orthogonal subspace. In
the orthogonal subspace, contribution of the encoded data
stream is null. Hence, only contribution of the scrambling
sequence remains. Finally, by solving a system of linear
equations, we determine the scrambling sequence offset.
2.2 Mathematical description of the method

Let us note m the number of registers in the scrambling
sequence generator, N the number of observed binary sym-
bols (typically, N 4m), 1 r the encoder rate and K the
encoder constraint length. Consider the binary vectors be-
low:

h: the vector containing N samples of the scrambled
data stream;

g: the corresponding outputs of the convolutional en-
coder (dimension N );

f : the corresponding outputs of the scrambling se-
quence generator (dimension N );

g0: the corresponding unknown information data (di-
mension N r K 1);

f0: the binary representation of the scrambling se-
quence offset (dimension m).

According to gure 2, which summarizes the mathe-
matical model, we have h f g where stands for
XOR. From the principle of linear encoders and random
sequences generation, it can be shown that there exist ma-
trices F and G such that f F f0 and g Gg0. Hence,
we have:

h F f0 Gg0 (1)

Matrices F and G can be computed as described in sub-
sections 2.3 and 2.4, and vector h is observed. Vectors f0

1If border effects are neglected. See next subsection for more precise
values.
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Figure 2: Mathematical model

et g0 are unknown. To estimate the scrambling sequence
offset, we have to determine f0. Globally, we have N equa-
tions (the dimension of h) and m N r K 1 unknowns.
Hence, we can expect to determine f0, despite the fact that
the equations are not classical linear equations, but equa-
tions on the Galois eld GF(2).

Let us compute an N r K 1 N full-rank matrix
G such that:

GG 0 (2)

where 0 stands for the N r K 1 N r K 1
null matrix. The rows of G span the subspace orthogonal to
the encoded data subspace. Computation of G can be per-
formed using singular value decomposition. For actual im-
plantation under matrix-oriented software such as Matlab
or Octave, we can note that the equation above is equiva-
lent to GT GT 0, hence, the columns of GT span the null
subspace of GT . Computation of the null subspace can be
performed using singular value decomposition and is em-
bedded in function null of Matlab and Octave. However, a
difculty appears due to the fact that, here, computations
have to be done on GF(2). A solution is to force a rational
representation of matrix G (thanks to option ’r’), and then
use a modulo 2 reduction:

Gtilde = null(G’,’r’)’;
Gtilde = mod(Gtilde,2);

Then, we can compute:

h Gh GF f0 GGg0 G F f0 (3)

The interest is that the encoded data has no impact on
h. Let us note H GF . Finally, f0 is obtained by solving
the linear system below:

h H f0 (4)
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If the inverse of H T H exists, we have:

f0 H T H
1

H T h (5)

If its inverse does not exist, an alternative method for
solving linear systems in GF(2) can be used. If H is not
full rank, many equivalent solutions exist.

To implement this method, please do not forget that
all computations must be performed in the Galois eld
GF(2), not in the set of real numbers. Otherwise, all results
would obviously be false. For those who are not famil-
iar with computations in Galois elds, extracts of sample
Matlab programs will be posted on our web site after the
conference.
2.3 Computation of matrix F using the model of

the random sequence generator
For illustration purpose, we consider, here, a random se-

quence generator based on an SSRG (Simple Shift Register
Generator) structure. The method can be easily adapted to
any other linear random sequence generator.

When an SSRG is used, the sequence generator is de-
ned by a polynomial c x ([1] p. 562):

c x 1 c1x c2x2 cm 1xm 1 xm (6)

where m stands for the number of registers and the bi-
nary coefcients ci are the feedback coefcients. This
polynomial denes a recurrence equation which provides
the sequence. For instance, the scrambling sequence used
in IS-95 is generated by the polynomial below ([1] p. 352):

fS x 1 x7 x9 x11 x15 x16 x17 x20

x21 x23 x24 x25 x26 x32 x35

x36 x37 x39 x40 x41 x42 (7)

If we dene a vector x t which contains the state of the
registers at time t , we can write:

x t 1 T x t where x t

xm t
xm 1 t

x1 t

(8)

and matrix T is:

T

0 1 0 0

0 0 0 0

0 0 0 1
1 cm 1 c2 c1

(9)

Hence, we can write:

x t m T m x t (10)

Since the output is taken on register m ([1] p. 562, g
6.2), the PN sequence is f t xm t . Finally, if we con-
sider a vector f containing N p 1 m successive sam-
ples, where p is an integer, we can write:

f F f0 where F

Im
T m

T pm

(11)

We have:

f

x 0
x m

x pm

and f0 x 0 (12)

Note that f0 is the m-dimensional vector containing the
initial registers states (in our application, it is the vector to
determine). Matrix F is known because it depends only on
the coefcients of the generating polynomial.

2.4 Computation of matrix G using the model of
the linear encoder

As an illustration, we will consider a convolutional en-
coder, but the method can be easily extended to any lin-
ear code, such as block codes (Hamming, BCH, etc.). A
convolutional encoder is dened by its generating poly-
nomials. For instance, the IS-95 forward link uses a rate
1 2 convolutional code, with constraint length K 9 and
the generating polynomials coefcients below ([1] p. 906-
907):

poly1 111101011
poly2 101110001 (13)

The coded stream z is then ([1] g. 8.48 p. 908):

z2n yn yn 1 yn 3 yn 5 yn 6 yn 7 yn 8

z2n 1 yn yn 4 yn 5 yn 6 yn 8 (14)

where y stands for the uncoded data stream.
Let us note g an N -dimensional vector containing N

successive samples of the coded stream and g0 a vector
containing the information sequence which generated g
(dimension N r K 1). We can write:

g Gg0 (15)
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where

G

1 1 0 1 0 1 1 1 1
1 0 0 0 1 1 1 0 1

1 1 0 1 0 1 1 1 1
1 0 0 0 1 1 1 0 1

1 1 0 1 0 1 1 1 1
1 0 0 0 1 1 1 0 1

(16)

Note that G contains the submatrices Gsub below (di-
mension r K ):

Gsub
1 1 0 1 0 1 1 1 1
1 0 0 0 1 1 1 0 1 (17)

Each row of Gsub contains the coefcients of a gener-
ating polynomial in reverse order. In our application, ma-
trix G is known (because it depends only on the generating
polynomials), but g and g0 are unknown. However, instead
of trying to determine them, we cancel their impact by pro-
jecting the data on the null subspace of GT .

3 Experimental results
First of all, we illustrate the method by showing the con-

tent of various matrices for a given scrambler and encoder
(subsection 3.1). Thereafter, in subsections 3.2 and 3.3 we
give some simulation results in the context of IEEE802.11a
WLAN and IS-95 standards.
3.1 Illustration of the method using matrices

graphical representations
Let us consider a rate 1 3 convolutional encoder with

constraint length K 6 with the 3 generating polynomials
below ([1] p.907):

polyG
1 0 0 1 1 1
1 0 1 0 1 1
1 1 1 1 0 1

47
53
75 octal

(18)

This yields to matrix Gsub shown on gure 3 (black=1,
white=0).

Figure 3: Graphical representation of Gsub

For illustration purpose, we consider a scrambler with
m 15 registers and the generating polynomial below:

fS x 1 x2 x6 x7 x8 x10 x15 (19)

The offset of the scrambling sequence is:

f0 110110000010011 T (20)

We will try to estimate the offset from N 2 m 30
scrambled bits. With Gsub, we can construct the encoder
matrix G and from fS x given in Eq. 19 we can construct
the scrambler matrix F . Equation 1 is graphically repre-
sented on gure 4.

Figure 4: Graphical representation of the mathematical
model (Eq. 1)

First, we compute G (gure 5) as described in subsec-
tion 2.2. Then, we can compute h Gh, the projection of
the observed symbols on the encoder orthogonal subspace.
We also compute matrix H G F .

Figure 5: Graphical representation of G

Finally, the offset f0 is obtained by solving the linear
system (4). When the inverse of H T H exists, f0 is directly
provided by Eq. 5, which is illustrated on gure 6.

The estimated offset is exactly equal to the true offset
used for the generation of the data stream, as shown on
gure 7.
3.2 Example with IEEE802.11a W-LAN Stan-

dard
IEEE802.11a standard uses a rate 1 2 and constraint

length K 7 convolutional encoder with the 2 generat-
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Figure 6: Graphical representation of Eq. 5
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Figure 7: True and estimated offset for the illustration ex-
ample

ing polynomials below:

polyG 1 0 1 1 0 1 1
1 1 1 1 0 0 1

133
171 octal

(21)

and the scrambler generating polynomial is:

fS x 1 x4 x7 (22)

The number of registers in the scrambling generator is
m 7. We try to estimate the offset of the scrambling
sequence from N 4 7 28 scrambled bits. We obtain
a perfect estimation, as shown on gure 8.

1 2 3 4 5 6 7
0

1

1 2 3 4 5 6 7
0

1

True Offset

Estimated Offset

Figure 8: True and estimated offset for the IEEE802.11a
W-LAN example

3.3 Example with IS-95 Standard
The IS-95 Standard (forward link) uses a rate 1 2 and

constraint length K 9 convolutional encoder with gen-
erating polynomials 753 and 561 (see subsection 2.4) and
a scrambler with m 42 registers and generating polyno-
mial given by Eq. 7.

We try to estimate the scrambler offset from N 5
42 210 scrambled bits. The method provides a perfect
estimation, as shown on gure 9.

1 6 12 18 24 30 36 42
0

1

1 6 12 18 24 30 36 42
0

1

True Offset

Estimated Offset

Figure 9: True and estimated offset for the IS-95 example

4 Conclusion
In this paper, we have considered the problem of de-

termining the time offset of a long scrambling sequence.
Since the binary data is usually encoded for error pro-
tection before scrambling, we have taken prot of redun-
dancy introduced by the encoder to cancel the impact of the
encoded data, and then to determine the scrambler time-
offset. Thanks to linear algebra and computations in Ga-
lois elds, this idea can be mathematically expressed as
projecting the scrambled data on the encoder orthogonal
subspace, and then determining the time offset from the
projected vector. Experimental results have been provided
to illustrate and validate the approach.
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