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Abstract – Direct sequence spread spectrum transmissions (DS-
SS) are now widely used for secure communications, as well as
for multiple access. Since the transmission uses a large
bandwidth, the power spectral density of a DS-SS signal can be
below the noise level. Hence, such a signal is difficult to detect.
In this paper, we propose a method which is able to detect a
spread spectrum signal hidden in the noise. The method does not
require a priori knowledge about the spreading sequence used by
the transmitter. It is based on two parallel computations: the
“theoretical path”, in which we compute the theoretical behavior
of the fluctuations of second order moments estimators in the
case noise alone is present, and the “experimental path”, in
which we compute the actual fluctuations. When a DS-SS signal
is hidden in the noise, the results provided by both paths diverge,
hence the presence of the signal is detected. Experimental results
show that the method can detect a signal far below the noise
level.

I. INTRODUCTION

Spread spectrum signals have been used for secure
communications for several decades [7]. Nowadays, they are
also widely used outside the military domain, especially in
Code Division Multiple Access (CDMA) systems [2][3]. Due
to their low probability of interception, these signals increase
the difficulty of spectrum surveillance.

In direct-sequence spread spectrum (DS-SS), the
information signal is modulated by a periodic pseudo-random
sequence [6] prior to transmission, resulting in a wideband
signal with low probability of interception [1][4]. Indeed, the
DS-SS signal can be transmitted below the noise level,
because the receiver knows the pseudo-random sequence and
therefore can use a correlator [5] to increase the signal-to-
noise ratio (SNR). For instance, with a pseudo-random
sequence length equal to 127, the correlation gain is 21dB.
Hence, even if the DS-SS signal is received with

dBSNR 10 , at the correlator output the SNR is +11dB.

In the context of spectrum surveillance, the pseudo-random
sequence used by the transmitter is unknown (as well as other
transmitter parameters such as duration of the sequence,
symbol frequency, etc.). Hence, in that context, the presence
of a DS-SS transmission is very difficult to detect. In this
paper, we propose a method to detect DS-SS transmission far
below the noise level. It is based on analysis of the

fluctuations of second order statistics estimators. The method
considers two parallel paths:
 The “theoretical path”, in which we compute what these

fluctuations should be if noise only were present. This
path provides theoretical bounds: they are computed in
order to ensure that, when noise only is present, the
probability to get fluctuations outside these bounds is
very low.

 The “experimental path”, in which we compute the actual
fluctuations. This is done by temporally dividing the
received signal into analysis windows, applying
estimators of second order statistics on each window, and
then using the results to compute the fluctuations.

We prove that, when a DS-SS signal is hidden in the noise,
the actual fluctuations go outside the noise-only bounds
provided by the theoretical path.

Not only the method provides a detection of a DS-SS
signal hidden in a noise, but it also provides a precise
estimation of the duration of the pseudo-random sequence
used by the transmitter.

The performance of the method increases with the number
of windows (which itself increases with the duration of the
signal used for computing statistics), and also with the length
of the pseudo-random sequence used by the transmitter. For
example, for pseudo-random sequences of length 127, and
400 analysis windows, the detection limit is, approximately,
–12dB, and the computation time is only a few seconds on a
PC.

The paper is organized as follows. In Section 2, we give
the notations and hypotheses. Then, in Sections 3 and 4, the
experimental and theoretical paths are described. The
principle of the detection is explained in Section 5. Finally,
experimental results are provided to illustrate the approach
(Section 6) and a conclusion is drawn (Section 7).

II. NOTATIONS AND HYPOTHESES

In a DS-SS transmission, the symbols ak are multiplied by
a pseudo-random sequence which spreads the bandwidth. The
pseudo-random sequence, as well as the carrier and symbol
frequencies, are known by the receiver. The receiver
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correlates the received signal with the pseudo-random
sequence, in order to retrieve the symbols. A receiver which
does not know these parameters cannot even detect the
presence of a DS-SS signal, because it is usually under the
noise level.

We will use the notations below:
g(t), )(G : the receiver filter impulse response and its

Fourier transform.
h(t): the convolution of the pseudo-random sequence with

the transmitter filter (and with the channel echoes if they
exist).

r(t): the convolution of h(t) with the receiver filter.
)(x : the power spectral density of a signal x(t).

Ts: the symbol period.
L: the length (number of bits) of the pseudo-random

sequence.
Tc: the chip period (Tc = Ts / L)
T: the duration of the analysis window
sc(t) and s(t): the noise-free signal at the input and at the

output of the receiver filter.
nc(t) and n(t): the noise at the input and at the output of the

receiver filter.
2
n : the noise variance, at the output of the receiver filter.
2
s : the variance of the noise-free signal, at the output of

the receiver filter.

The signal at the output of the receiver filter is then:
)()( tnty

when no signal is hidden in the noise, and
)()()( tntsty

when a DS-SS signal is hidden in the noise.

The DS-SS signal is:

)()( s
k

k kTthats                     (1)

The following hypotheses are assumed:
 The symbols are centered and uncorrelated.
 The received noise nc(t) is white, gaussian, centered, and

uncorrelated with the signal. Its power spectral density is
N0 / 2

 The signal to noise ratio (in dB) at the output of the
receiver filter is negative (the signal is hidden in the
noise).

III. THE EXPERIMENTAL PATH

The received signal is divided into non-overlapping
windows of duration T (the exact value of T does not matter;
ideally, the window should contain a few symbols, but the

methods works over a large range of values). With each
window, we compute an estimation of the correlation:

dttyty
T

R
Tm

yy )()(1)(ˆ *

0

)(            (2)

where m is the index of the window.
Using M windows, we can estimate the second order

moment of the estimated autocorrelations:
M

m

m
yyR

M 1

2)( )(ˆ1)(                  (3)

This is a measure of the fluctuations of the autocorrelation
estimator.

IV. THE THEORETICAL PATH

In the theoretical path, we assume that noise only is
present, and we compute the theoretical average value and
standard deviation of )( .

The theoretical average value of the fluctuations is (it does
not depend on ):

2)( )(ˆ)( nn
n REEm

This is the average power of the estimated autocorrelation
signal. Hence, we can write:

dm R
n )(ˆ

)(

If T is not too small, we have:
2

ˆ )(1)( nR T
Hence:

d
T

m n
n 2)( )(1

                  (4)

We can note that the power spectral density of the noise, at
the output of the receiver filter is:

2
)()( 02 NGn                      (5)

    The standard deviation of the fluctuations is:
)(var)()(n

Since the windows are independent, using equation 3 we
obtain:

2)( )(ˆvar1)( nn
n R

M
where:

2)(42 )()(var n
nnnn mRER

The statistical behavior of )(ˆ
nnR is almost gaussian,
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because it is the average of a large number of independent
random variables (see eq. 2). Furthermore, its average value
is zero (except for low value of , for which the short term
coherence created by the receiver filter results in non-zero
autocorrelation). Hence:

2)(4 3)( n
nn mRE

The result does not depend on . Then, we obtain:

)()( 2 nn m
M

                      (6)

The theoretical path performs the computations below:
1. Compute the power spectral density )(n of the

signal at the output of the receiver filter.
2. Compute the theoretical average value )(nm of the

fluctuations (eq. 4)
3. Compute the theoretical standard deviation )(n of

the fluctuations (eq. 6)
4. Then, compute the theoretical upper bound of the

fluctuations: )()( 4 nnm . Strictly speaking, this is
not an upper bound, but we know that the fluctuations
will remain below this bound with a high probability.

V. DETECTION

The results provided by both paths are displayed to a human
operator. The display shows the curve )(  computed by
the “experimental path”, and the upper bound computed by
the “theoretical path”. If no signal is present, the curve
remains under the upper bound with a high probability. If a
signal is hidden in the noise, the curve goes above the
theoretical upper bound for every value of that is multiple
of the symbol period.

Below, we show why, when a signal is present, high
fluctuations are obtained for every multiple of the symbol
period Ts. For simplicity, the proof is restricted to sT ,
and only the most important intermediate results are given.
Using equations 1 and 2, we can show that:

dtkTtraa
T

TR
T

sk
k

ksss
0

2*
1 )(1)(

After a few mathematical manipulations, the average value
of its square modulus reduces to:

42)( )( s
s

ss
s

T
TREm

This is the contribution of the noise-free signal. Now, let us

evaluate the contribution of the noise. For simplicity, let us
consider the case of a receiver filter with flat frequency
response in [-W/2, +W/2] and zero outside. In that case, using
equation (4), we can show that:

4)( 1
n

n

TW
m

Hence (from equation 6), the standard deviation of the
fluctuations is:

4)( 12
n

n

TWM
Then:

4

4

)(

)(

2 n

s
sn

s

WTMm

This is the ratio between the mean value of the peaks
created by the DS-SS signal (if there is one such signal
hidden in the noise), and the standard deviation of the
fluctuations due to the noise. The reader must not be
surprised to see a ratio between a mean and a standard
deviation: indeed, it is this ratio which is significant to
determine if the peaks due to the DS-SS signal may be hidden
by the fluctuations due to the noise (see the display in the next
section).

However, this formula is not easy to use as such because

s  and n  depend on W. Here, to avoid going too deep into
mathematical details, we will just give the expression
corresponding to the optimal value of the receiver filter
bandwidth. The bandwidth of the optimal receiver filter is
approximately 1/Tc. In that case, we have:

4

4

)(

)(

2 n

s
n

s

LMm
                  (7)

Let us consider the following example:

03.02

2

n

s      (input SNR = dB15 )

M=800     (number of analysis windows)
L=255     (length of the pseudo-random sequence)

In that case, the output SNR is 5.1 (that is +7 dB).

Equation (7) shows that, from a theoretical point of view,
the detector performances can be increased without limits,
just by increasing the number of windows M. However, on a
practical point of view, we must take into account the fact that
computation time is approximately proportional to M, hence
the value of M cannot be increased without limits: it depends
on the available computation power, and it depends also on
the time allocated for detection.

Equation (7) also shows that when the transmitter uses
short spreading sequences (low value of L), the DS-SS signal
is more difficult to detect. However, this is not really a
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problem, because in that case the DS-SS signal cannot be far
below the noise level (otherwise, even the receiver which
knows the sequence could not retrieve the symbols: indeed,
when L is low, the correlation gain is low).

VI. EXPERIMENTAL RESULTS

Figure 1 shows an example of detector output. The
horizontal axis represents (in s ). The curve represents

)(  (i.e. the estimated fluctuations of the autocorrelation
estimator). The horizontal lines represent the theoretical mean
fluctuation and the theoretical upper bound.

We can see that there are peaks above the theoretical upper
bound. Furthermore, these peaks are located on multiples of a
given period. This means that a DS-SS signal is hidden in the
noise.

Here, there was indeed a DS-SS signal hidden in the noise.
The parameters were: input SNR = dB10 , L = 31, and M =
255. Computation time on a PC with a 266 MHz processor: 5
seconds (with a non-optimized C program).

Furthermore, the location of the peaks provides an
estimation of the symbol period.

Fig. 1: Example of fluctuations curve.

VII. CONCLUSION

DS-SS signals are difficult to detect. Indeed, they are often
transmitted below the noise level. Furthermore, a DS-SS
signal is especially built to be similar to a noise, in order to
have a low probability of interception. The autocorrelation of
a spread spectrum signal is close to a Dirac function, as well
as the autocorrelation of a white noise (this is due to the
pseudo-random sequence).

The originality of the detector proposed in the paper is that
it is based on the fluctuations of autocorrelation estimators,
instead than on the autocorrelation itself. Although the
autocorrelation of a DS-SS signal is similar to the
autocorrelation of a noise, we have shown  that the
fluctuations of estimators are totally different.

The proposed method is interesting in any non-cooperative
context such as spectrum surveillance. Furthermore, it is also
able to estimate the symbol period of the DS-SS signal.
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