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Abstract

We describe a new precoder based on optimization of the minimum Euclidean distance dmin be-

tween signal points at the receiver side and for use in multiple-input multiple-output (MIMO) spatial

multiplexing systems. Assuming that channel state information (CSI) can be made available at the

transmitter, the three steps noise whitening, channel diagonalization and dimension reduction, currently

used in investigations on MIMO systems, are performed. Thanks to this representation, an optimal dmin

precoder is derived in the case of two different transmitted data streams. For QPSK modulation, a

numerical approach shows that the precoder design depends on the channel characteristics. Comparisons

with maximum SNR strategy and other precoders based on criteria such as water-filling (WF), minimum

mean square error (MMSE) and maximization of the minimum singular value of the global channel matrix

are performed to illustrate the significant bit-error-rate (BER) improvement of the proposed precoder.

Index Terms

MIMO, CSI, eigen-diagonal representation, minimum Euclidean distance, optimal linear precoder.

I. INTRODUCTION

The demand for high speed wireless links has been increasing at an amazing rate. Since a few

years, multiple-input multiple output (MIMO) systems have been shown to have the potential of greatly

improving the spectral efficiencies [1]. However, to fully exploit the presence of multiple antennas and

achieve the promised capacity [2], appropriate precoding and/or mapping are needed.

Two main strategies in defining practical systems exist; they depend on the possibility to have channel

state information (CSI) at the transmitter side. Without CSI, input symbol streams are mapped across space

and time for transmit diversity and coding gain at a given data rate, which allows robust transmission

even in the presence of fading [3], [4]. For duplexing schemes some information about the channel

can be fedback to the transmitter. Linear precoders and decoders can then be designed through channel

eigen-decomposition.

Several criteria can be used for MIMO system optimization and lead to different solutions characterized

by the power allocation strategy of the transmitter. The most popular criterion is the well-known water-

filling (WF) solution, which aims at maximizing the output capacity [5]. Other designs using the weighted

MMSE criterion and the maximization of the minimum singular value (SV) of the channel matrix (noted

max(λmin)) have been recently proposed in [6] and [7]. These optimized schemes transform the MIMO

channel into parallel and independent data streams, which leads to an eigen-diagonal representation. The
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solutions only differ by the power allocation strategy in this representation. The optimal power allocation

strategy in the sense of the minimum bit-error-rate (BER) criterion was derived in [8]. The maximum-

SNR solution [9], which consists in transmitting the whole information on the most favored subchannel,

provides also very good results in term of BER (this solution is also referred to as eigenbeamforming

solution in the literature).

Another interesting criterion to enhance MIMO systems performances is the minimum Euclidean

distance dmin between signal points at the receiver side, especially when a maximum likelihood (ML)

receiver is used [10]. This criterion was applied directly to design coding and modulation schemes in

[11], [12]. In recent studies, it was also used to choose between transmit diversity and spatial multiplexing

systems [13] or to perform a relevant antenna selection [14].

Here, we propose a precoding scheme noted max(dmin) by maximizing the criterion on the minimum

Euclidean distance dmin between symbol points at the receiver side; at least for uncoded transmission,

dmin is, indeed, directly related to symbol error rate. Coding and modulation designs are not considered

here; instead, focus is only on the design of the linear precoder which is optimized for a fixed and known

channel. We previously proposed in [15] a suboptimal solution of the dmin criterion by restricting the

solution to real-valued precoders. In the present article, the results are extended to the complex case.

The derivation of the dmin maximization design is not trivial and hence our search is restricted only to

systems using two independent subchannels. This allows the use of the cos- and sin-functions system

representation to obtain a closed form of the precoder. A numerical approach applied to BPSK and QPSK

modulations shows that the precoder expressions always remain very simple. Even if one could see some

similarity with rotated and/or scaled signal constellations [11], [16], the approach proposed in the paper

is radically different because the optimized dmin scheme depends on the channel characteristics (i.e., the

channel angle defined further in section III-B). Furthermore, contrary to other precoder designs available

in the literature [7] the max(dmin) solution is not based only on the eigen-mode power allocation. In

order to evaluate the performance improvement, comparisons under an average power constraint across

all transmit antennas are performed. As one may also wonder about its robustness, different scenarios

are investigated, with perfect or imperfect CSI, and ML or ordered successive interference cancellation

(OSIC) receivers.

The paper is organized as follows. In section II we describe the system model along with the underlying

hypothesis. Section III introduces the minimum Euclidean distance criterion and the design of the optimal

precoder. Section IV develops the principle of its application to spatial multiplexing systems using a

BPSK modulation, whereas section V is devoted to QPSK-modulated systems. Simulation results and
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comparisons with other criteria are both presented in section VI, and section VII contains our concluding

remarks.

II. MIMO CHANNEL SIMPLIFIED REPRESENTATION

Let us consider a MIMO system with nR receive and nT transmit antennas over which we want to

achieve b independent data streams. For a MIMO channel without delay spread and including a precoder

matrix F and a decoder matrix G, the basic system model is

y = GHF s + Gν, (1)

where H is the nR × nT channel matrix, F is the nT × b precoder matrix, G is the b × nR decoder

matrix, s is the b × 1 transmitted vector symbol and ν is the nR × 1 noise vector. We assume that

b ≤ r = rank(H) ≤ min(nT , nR) and 1

E {ss∗} = Ib, E {νν∗} = R and E {sν∗} = 0. (2)

The main objective in this section is to get a whitened noise vector and a diagonal channel matrix

in order to facilitate both the system analysis and the determination of the optimal dmin precoder. The

approach is based on the decomposition of the precoder and decoder matrices F = F vF D and G =

GDGv. The size of F D andGD is b×b, whereas F v andGv are nT ×b and b×nR matrices, respectively.

F D and GD will be used to optimize dmin. F v and Gv are needed to obtain a full-rank diagonalized

system via successive linear transformations described in Table I.

The first step is a simple noise whitening thanks to the eigen value decomposition of the noise correla-

tion matrix R. In the second step, the channel is diagonalized thanks to a singular value decomposition.

In order to obtain a virtual channel matrix Hv whose size is the number of independent data streams b,

the third step performs a dimensionality reduction. Finally the virtual precoder and decoder matrices are

given by F v = F 1F 2F 3 and Gv = G3G2G1, respectively.

The model (1) then becomes

y = GDHvF Ds + GDνv, (3)

where Hv = GvHF v is the b×b virtual channel matrix and νv = Gvν is the b×1 virtual noise matrix.

Let us note p0 the available transmission average power. We will only use virtual precoder matrices F v

with orthonormal columns, and then F ∗
vF v = I . As a consequence, the power constraint to be fulfilled

1 �
b denotes the b × b identity matrix and the superscript ∗ stands for conjugate transpose.
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can be expressed

trace {F F ∗} = trace {F DF ∗
D} = p0. (4)

The simplified model (3) is true whatever the number of antennas and modulation. Note that the

diagonal entries
√

ρ
k
for k = 1, . . . b of Hv are sorted in decreasing order, and ρk is closely dependent

on the SNR of the kth virtual subchannel.

In the following sections, only an ML detection will be considered, and then the decoder matrix GD

will have no effect on the results. We can, therefore, assume that GD = Ib, and then only the precoder

F D will appear in the system expressions as illustrated in Fig.1. The precoding matrix F D remains to

be determined according to the dmin criterion.

III. MINIMUM EUCLIDEAN DISTANCE PRECODER

A. Principle of the approach

Let us note S the set of all possible transmitted vectors s. Thereafter, we call received constellation

the set of all noise-free vectors HvF D s for s ∈ S on the virtual receivers.
The precoder matrix F D that maximizes the minimum Euclidean distance dmin of the received con-

stellation under the power constraint trace(F DF ∗
D) = p0 needs now to be determined. The squared dmin

is defined by

d2
min = min

sk,sl∈S, sk �=sl

�HvF D(sk − sl)�2. (5)

Let us define x̆ a difference vector as x̆ = sk −sl with k �= l. As many equal and collinear difference

vectors exist, we introduce the reduced set X̆ of x̆ without all redundant difference vectors. Its use

facilitates the numerical optimization of the dmin precoder as explained further in sections IV and IV.

The d2
min criterion can be expressed as

d2
min = min

x̆∈X̆
�HvF Dx̆�2. (6)

This criterion is particularly well adapted for the ML decision rule because the symbol error probability

depends on the Euclidean distance between different received vectors [17], [18]. Indeed, as an error event

comes mainly from nearest neighbors, maximization of (6) reduces directly the probability of error.

In [7] Scaglione et al. provided a lower bound for the minimum distance

d2
min = min

x̆∈X̆
�HvF Dx̆�2 ≥ λmin(SNR(F D)) min

x̆∈X̆
�x̆�2, (7)

where λmin(SNR(F )) denotes the minimum eigen-value of the SNR-like matrix SNR(F D) given

by SNR(F D) = HvF DF ∗
DHv. They proposed a precoder F D that maximized λmin(SNR(F D))
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to possibly force dmin to higher values. This design is denoted here as the max(λmin) solution. By

definition it is equivalent to the criterion that maximizes the smallest singular value of the global channel

HvF D and to the equal-error design that ensures equal errors across subchannels for a fixed-rate system

presented in [6]. It would be interesting to know whether maximization of the lower bound (7) results

in performance, in term of BER, close to the max(dmin) criterion. Section VI will demonstrate that the

proposed max(dmin) design actually enhances BER performance.

The determination of the precoding matrix F D that maximizes dmin is difficult for two reasons: the

solution depends on the symbol alphabet and the space of solutions is large. For simplification purpose

the proposed technique will be derived for only b = 2 virtual channels by using cos- and sin- functions2

(one should note that nT and nR can still be larger than 2). Thanks to this representation, the power

constraint is included in the precoder and a parameterized form of F D can be derived, which facilitates

the numerical search for the optimal dmin precoder.

B. Parameterized form of the precoder

As only a two-dimensional virtual system is considered, the virtual channel matrix can be parameterized

as follows

Hv =




√
ρ1 0

0
√

ρ2


 =

�
2ρ


 cos γ 0

0 sin γ


 , (8)

with the channel angle γ such that 0 < γ ≤ π/4 (because Hv elements are in decreasing order) and

ρ = (ρ1 + ρ2)/2.

We can perform a singular value decomposition (SVD) of the precoding matrix

F D = AΣB∗, (9)

where A and B are b × b unitary matrices and Σ a b × b diagonal matrix with real positive values in

decreasing order.

The matrix Σ must fulfill the power constraint across all transmit antennas (i.e., �Σ�2
F = p0) 3. Hence,

Σ can be expressed as follows:

Σ =
√

p0


 cos ψ 0

0 sin ψ


 , (10)

with 0 ≤ ψ ≤ π/4.

2These functions are, indeed, only valid for two-dimensional systems.

3The squared Frobenius norm of a matrix � is given by � � �2
F = trace( ��� ∗).
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The singular values (SV) of HvF D can be chosen from HvAΣ, because the matrix B∗ has no effect

on them. In Appendix I we demonstrate that the best choice for A is the identity matrix (A = I 2)

because it gives the largest SV of HvF D for a given angle ψ. Then, let us look for the matrices B

and Σ that optimize dmin. Without loss of generality, the unitary matrix B∗ can be simplified as (see

Appendix II)

B∗ =


 cos θ (sin θ) eiϕ

− sin θ (cos θ) eiϕ


 =


 cos θ sin θ

− sin θ cos θ





 1 0

0 eiϕ


 = BθBϕ, (11)

with 0 ≤ θ ≤ π/2 and 0 ≤ ϕ < 2π.

The parameterized form of the precoder using cos- and sin- functions is then

F D =
√

p0


 cos ψ 0

0 sin ψ





 cos θ sin θ

− sin θ cos θ





 1 0

0 eiϕ


 . (12)

Considering all the symmetries in usual constellations, it is shown in Appendix III that the influence

of the angles on the Euclidean distance must be studied only for 0 ≤ ϕ ≤ π/2 and 0 ≤ θ ≤ π/4.

Eq. (12) allows one to describe the effects exerted by the different angles ψ, θ and ϕ. ψ allocates

power on each virtual receiver like the eigen-mode power allocation strategies in [6], [7]. The main

difference between these schemes and (12) is the presence of the angles θ and ϕ that correspond to the

received constellation scaling and rotation, respectively. When both are null, the matrix F D is diagonal

and equivalent to the power allocation in the eigen-mode described in [6], [7]. For instance, the max(λmin)

solution can then be found by imposing equal singular values of H vF D, which leads to the relation

cos γ cos ψ = sin γ sinψ that must be verified by ψ.

Thanks to (12) we are now able to find the angles that give the optimal precoder according to the dmin

criterion. A numerical approach is developed in the two following sections, devoted to the application to

systems using BPSK and QPSK modulations.

IV. SIMPLE EXAMPLE: OPTIMAL dmin PRECODER FOR A BPSK MODULATION

To illustrate the method let us, first, consider the simplest case: BPSK modulation. For a BPSK

modulation, with b = 2 data streams, the symbols belong to the set {1,−1} and the difference vectors
given by the differences between the possible transmitted vectors, i.e. x̆ = sk − sl and sk �= sl, are:��0

2

�
,
� 0
−2

�
,
�2
0

�
,
�2
2

�
,
� 2
−2

�
,
�−2

0

�
,
�−2

2

�
,
�−2
−2

��
. As some vectors are collinear, the set to be studied is reduced

to: X̆BPSK =
��

0
2

�
,
�
2
0

�
,
�
2
2

�
,
�

2
−2

��
.
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A numerical search over ψ, θ and ϕ which maximizes the smallest distance for difference vectors

in X̆BPSK shows that, whatever the channel, i.e. whatever the channel angle γ, the precoder which

maximizes dmin is obtained for ψ = 0o, θ = 45o and ϕ = 90o, which leads to the very simple expression

F D = F BPSK =
�

p0

2


 1 i

0 0


 . (13)

One should note that the second row of the precoder is null. In fact, the precoder transforms the BPSK

modulation on 2 subchannels into a QPSK modulation on the most favored virtual subchannel (the first

here because elements of Hv are in the decreasing order). The signal is, then, entirely transmitted on

this virtual subchannel, but physically both the transmitter and the receiver do use all antennas.

The max(dmin) solution for the BPSK case can be seen as the max(SNR) design, which pours power

only on the strongest eigenmode of the channel [19]. One should note that this max(SNR) design, also

referred to as eigenbeamforming solution, is a special case of weighted MMSE design [6], obtained by

choosing the weighting matrix W =


 1 0

0 0


. A QPSK modulation used with the max(SNR) design

(i.e., b = 1 and F D =
√

p0 in (3)) and the proposed BPSK-max(dmin) solution are equivalent in term

of dmin and probability of error4. These two schemes have an equal and constant bit-rate.

The optimized dmin value is provided by the difference vectors
�
2
0

�
or

�
0
2

�
and its expression is

dBPSK = �HvF BPSK

�
2
0

�
� = 2

√
ρp0 cos γ. (14)

The distance (14) normalized by
√

2ρp0 and the corresponding BER performances are plotted in Fig. 2

and in Fig. 7, respectively.

V. OPTIMAL dmin PRECODER FOR A QPSK MODULATION

In order to respect the assumption E {ss∗} = Ib, the symbols belong to the following set:�
1√
2
(1 + i), 1√

2
(1 − i), 1√

2
(−1 + i), 1√

2
(−1 − i)

�
. As in the BPSK case, the set of received difference

vectors x̆ can be reduced 5 to a set denoted X̆QPSK of only 14 elements {ă, b̆, . . . , n̆}.
A numerical search over ψ, θ and ϕ which maximize dmin for each channel angle γ shows that the

precoder can have two different expressions. If γ stays under a threshold γ0, then the precoder uses only

the most favored subchannel as in the BPSK case and it will be noted F r1. On the other hand, if γ ≥ γ0,

the precoder leads to an octagonal received constellation on both receivers, and it will be noted F octa.

4The received virtual constellations of these two schemes are strictly identical.

5For a QPSK modulation with b = 2 data streams, the set of all possible difference vectors has 16 × 15 = 240 elements.
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The exact value of the threshold is computed on considering that both expressions provide the same dmin

for γ0.

A. Precoder F r1

For any channel parameter γ ≤ γ0, the numerical maximization of dmin gives the angles ψ = 0,

ϕ = 15o and θ � 27.37o. The exact values of ϕ and θ are analytically given in Appendix IV and are

used in (12) to express our precoder

F r1 =
√

p0




�
3+

√
3

6

�
3−

√
3

6 ei π

12

0 0


 . (15)

Fig. 3 illustrates the received constellation obtained with F r1. Only the first virtual receiver is con-

sidered because the second subchannel is not used by F r1. The received constellation looks like a 15o

rotated 16-QAM constellation. This solution is close to the max(SNR) design used with a 16-QAM

modulation, but provides a slightly larger dmin.

The optimized dmin is always obtained from the difference vector
� 0
−
√

2

�
. As a consequence, we

immediately get the optimal dmin for the precoder F r1

dr1 = �HvF r1

�
0

−
√

2

�
� =

�
2ρp0

�√
3 − 1√

3
cos γ. (16)

The distance (16) normalized by
√

2ρp0 is plotted in Fig. 6 and the performance of this precoder is

discussed in section VI.

B. Octagonal precoder F octa

For any γ ≥ γ0, the angles ϕ and θ are fixed, as for precoders F BPSK and F r1. On the other hand

ψ depends on γ, which allows power allocation on the two virtual subchannels. The precoder turns each

quarter (e.g., points A,E,M and I in Fig. 5) of the received constellation by ϕ = 45o and mixes the

two components (θ = 45o). This clever solution found by the precoder is illustrated for both virtual

subchannels in Fig. 5, where the vectors on the received constellation are labeled from A to P. One

should note that whenever two received vectors are close on one virtual subchannel, e.g. G and L on the

first virtual subchannel, they are distant on the second one. As the received constellation looks like two

concentric octagons, the precoder is denoted F octa and expressed as a function of ψ

F octa =
√

p0


 cos ψ 0

0 sin ψ


 1

2




√
2 1 + i

−
√

2 1 + i


 . (17)
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The global channel expression is then

HvF octa =
�

2ρp0


 cos γ cos ψ 0

0 sin γ sin ψ


 1

2




√
2 1 + i

−
√

2 1 + i


 . (18)

Fig. 4 plots the norm of the 14 received difference vectors with respect to ψ for a given channel (here

γ = 30o). The value of ψ that maximizes the minimum Euclidean distance of the precoder is at the

intersection of the curves relative to ă =
�√2

0

�
and b̆ =

� √
2

−
√

2

�
. These results can be observed for any γ

in ]0,π/4].

If we denote dă and db̆ the distances related to difference vectors ă and b̆ respectively, the optimal

precoder is obtained when dă = db̆. The use of the global channel expression (18) leads to

dă = �HvF octaă� =
√

2ρp0

�
cos2 γ cos2 ψ + sin2 γ sin2 ψ

db̆ = �HvF octab̆� =
√

2ρp0

�
(2 −

√
2) cos2 γ cos2 ψ + (2 +

√
2) sin2 γ sin2 ψ.

(19)

By considering dă = db̆, we get ψ with respect to γ:

tan ψ =
√

2 − 1
tan γ

. (20)

One should note that for γ = π/6, the value ψ = 35.6o given by (20) can be found on Fig. 4.

The precoder F octa is then computed by substituting (20) in (17), which finally gives the optimal dmin

ruled only by the channel angle γ

docta =
�

2ρp0 cos γ cos ψ

�
4 − 2

√
2 =

�
2ρp0

�
(4 − 2

√
2) cos2 γ sin2 γ

1 + (2 − 2
√

2) cos2 γ
. (21)

This normalized distance (i.e., docta/
√

2ρp0) is plotted in Fig. 6 and the performance of this precoder

is discussed in section VI.

C. Channel optimal threshold γ0

The optimal distances previously obtained are only governed by the channel parameter γ. To choose

between F r1 and F octa and get the corresponding threshold, we have to look for the value γ0 such that

dr1 = docta (cf Fig. 6). From (16) and (21) we get

cos ψ =

� √
3 − 1√

3(4 − 2
√

2)
, (22)

and (20) leads to

tan2 γ0 =
3
√

3 − 2
√

6 + 2
√

2 − 3
3
√

3 − 2
√

6 + 1
� 0.0968 and γ0 � 17.28o. (23)
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One should note that tan2 γ corresponds to a ratio between the virtual subchannels SNRs. In fact

from (8) we get 1
tan2 γ = cos2 γ

sin2 γ
= ρ1

ρ2
. This SNRs ratio determines the optimal dmin precoder: F octa for

ρ1

ρ2 ≤ 1
tan2 γ0

� 10.33 and F r1 for
ρ1

ρ2
≥ 10.33.

In the QPSK case, the max(dmin) solution can be seen as power and bit loading at constant power

and constant bit-rate, since F r1 and F octa precoders are selected according to the channel angle γ0.

When the F r1 precoder is chosen, 4-bit information is transmitted over the strongest eigenmode like

the max(SNR) design and when the F octa precoder is chosen, 2-bit information is transmitted on each

virtual subchannel. Furthermore, the max(dmin) solution brings the possibility to scale and rotate the

received constellation.

VI. SIMULATION RESULTS

Through Monte-Carlo simulations this section illustrates how the max(dmin) precoder improves BER

performances of MIMO systems. We consider a MIMO channel with nT = 3 transmit antennas and

nR = 2 receive antennas over which we send b = 2 independent data streams. Entries of the channel

matrix H are considered to be i.i.d. complex Gaussian random variables with mean zero and variance

equal to one, and are chosen every block of 100 transmitted symbol vectors. The noise vector elements

are zero-mean i.i.d. complex Gaussian with variance σ2. As the received power depends on the precoder

coefficients, the SNR is defined as the ratio of the total transmitted power to the total received noise power

and is given by SNR = p0/(nRσ2). For each SNR, 20 000 random H are generated; the precoders are

optimized for each of them, given perfect or imperfect CSI at both the transmitter and the receiver. An

ML receiver is assumed, and five precoders are compared for BPSK and QPSK modulations6: max(dmin),

max(SNR), MMSE [6], WF [5] and max(λmin).

In Figs. 2 and 6 are plotted the normalized distance (i.e., dmin/
√

2ρp0) for each precoder, in the case of

BPSK and QPSK modulations, respectively. One should note that in the MMSE and WF cases,
√

2ρp0 is

chosen large enough such that the precoders always allocate power to the two eigenmodes. As discussed

in section IV the optimized dmin for the BPSK is equivalent to the max(SNR) design with a QPSK

modulation, so the latter is not plotted in Fig.2. The max(λmin) solution is better than the MMSE and

WF solution in term of dmin, but is really outperformed by the new dmin precoder. We can expect then

a large performance improvement in term of BER in comparison to the diagonal precoders because the

6In the case of the max(SNR) design, the constellation size is squared since it uses only b = 1 data stream in order to

perform comparisons at constant bit rate.
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minimum distance is improved significantly. In Fig. 6, we observe that the difference between Fr1 and

max(SNR) remains constant for every channel angle γ. The gain for Fr1 comes from the rotation of

15o of a 16-QAM which slightly improves the dmin.

Figs. 7 and 8 plot BER with respect to the SNR for BPSK and QPSK modulations. These results

clearly demonstrate that the max(dmin) criterion is particularly suited for BER minimization when a ML

receiver is used since it outperforms the diagonal precoders. Furthermore, we observe in Fig. 8 at high

SNR a performance improvement of about 1 dB in comparison to the max(SNR).

In the QPSK modulation case, the BER improvement depends on the channel characteristics. To

differentiate the performance of F r1 and F octa, we extract from Fig. 8 the cases when ρ1

ρ2
≤ 10.33

(F octa) and
ρ1

ρ2
≥ 10.33 (F r1). Figs. 9 and 10 plot the corresponding BER curves. As expected when

looking at the normalized dmin in (6), the improvement is more significant when using the F r1 precoder

in comparison with diagonal precoders. One should remain that F r1 is automatically selected when there

is a large dispersion of the subchannels SNRs ρ1 and ρ2 (this case represents about 17.4% of our channel

realizations). However, we observe a light superiority of max(SNR) (Fig. 10) in spite of its inferiority

in term of dmin. This can be explained by two reasons: i) for the max(dmin) precoder, the bit coding

on the received constellation is not optimized ii) the number of neighbors is statistically more important

due to the maximization of dmin, e.g. the point ’J’ in Fig. 3 has 5 neighbors. As a consequence, the

performance improvement of the max(dmin) in comparison to the max(SNR) comes from Focta, as

illustrated on Fig. 9.

Whenever an ML receiver is used with max(λmin), MMSE or WF precoding, this receiver can be

considered as linear since the virtual subchannels appear parallel and independent. In this case, the ML

receiver simply inverse the virtual subchannels. Contrary to these schemes, the dmin-based precoder is

not diagonal and is not subject to a diversity loss, which results in the slopes difference visible on Fig. 8.

One may wonder about the max(dmin) precoder performances with another receiver algorithm. Part of

response is given by Fig. 11 which plots the BER when an OSIC receiver described in [20] is used. Even

if there is a loss of about 2 dB in comparison to the optimal ML receiver, these BER curves confirm the

assets of the max(dmin) precoder.

In Fig.12 we investigate the impact of imperfect channel knowledge at both transmitter and receiver on

the BER performance. In general, the estimated channel matrix H est is modeled as Hest = H + Herr

whereHerr represents the channel estimation error. A more complete description ofH est can be found in

[21] for two different methods of channel estimation. It is assumed here that entries of H err, independent

of H , are complex Gaussian i.i.d random variables with mean zero and variance σ2
err. Higher the SNR
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is, smaller σ2
err is; in our simulations we set σ

2
err = βσ2 with β = 0.25. The performance of all schemes

decreases (of about 1 dB at high SNR), but the gap between the max(dmin) and the max(SNR) remains

unchanged.

VII. CONCLUSION

We introduced a new two-dimensional precoder for MIMO transmission, which is based on the

maximization of the minimum Euclidean distance on the received constellation for a given transmit

average power constraint. Given perfect CSI at the transmitter, we obtained in a first step a fast and

simple diagonal representation apart from channel matrices successive decompositions. Thanks to this

representation, the max(dmin) precoder was derived in the case of two-dimensional subchannels. One

should underline that the number of antennas at the transmitter and receiver is not restricted to 2 and can

by chosen such that 2 ≤ min(nT , nR). With BPSK modulation the optimal dmin precoder uses only the

most favored virtual subchannel. It is worth noting that even if the worst virtual channel is dropped both

the transmitter and receiver use physically the whole set of antennas. The BPSK-max(dmin) design is

equivalent in term of dmin and BER to the max(SNR) design with a QPSK modulation. In the QPSK

modulation case, we showed that the precoder design is governed by the channel angle, which leads to

two distinct cases separated by a precise threshold channel angle. With a large dispersion between the

subchannels SNRs, the design is the same as the one in the BPSK case (only one virtual subchannel

in use); otherwise the precoder produces an octagonal received constellation on each virtual subchannel.

Comparisons to diagonal precoders, based on WF, MMSE or max(λmin) criteria were performed to

illustrate the significant improvement in term of BER. The performance improvement of the QPSK-

max(dmin) design is about 1 dB in comparison to the max(SNR) at equal and constant bit-rate. Finally,

the robustness of the max(dmin) precoder is confirmed by simulations with imperfect CSI and with an

OSIC receiver. It would be interesting to generalize these novel results to the case of b > 2, but a

new formalism would be needed. On the other hand, the method developed in this paper can be directly

extended to higher order modulations only by performing a new numerical search with adapted difference

vectors.
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APPENDIX I

PROOF OF A = I2

Let us consider the general form of the unitary matrix A defined by

A =


 (cosα) eiα1 (sin α) eiα3

− (sin α) eiα2 (cos α) eiα4


 (24)

with the constraint

(α1 + α4) = (α2 + α3) mod 2π. (25)

The angle α must be in the interval 0 ≤ α < π/2 (such that the expressions before the exponentials are

positive and correspond to the modules). It can be verified that the two columns of A are orthonormal.

Our objective in this appendix is to find the matrix A which gives the highest singular values of

HvF D for a given angle ψ defined in (10) . We first show that A can be a real matrix, then that the

highest SV are given by A = I2.

One should remind that the SV are real and positive (or null) and that the determinant of a unitary

matrix has a module equal to 1. Let us note UΛV ∗ the SVD of HvAΣ and λk the diagonal elements

of Λ (i.e., the SV of HvAΣ). The product of the SV does not depend on A. Indeed, we can write

λ1λ2 = |det (Λ)| = |det (UΛV ∗)| = |det (HvAΣ)|

= |√ρ1ρ2p0 cos ψ sin ψ det (A)| =
√

ρ1ρ2p0 cos ψ sin ψ. (26)

Furthermore, as far as the sum of the square SV is concerned, we have

λ2
1 + λ2

2 = trace
�
Λ2

�
= trace (UΛV ∗V ΛU ∗) = �UΛV ∗�2

F = �HvAΣ�2
F . (27)

Hence, the phases of the elements of A have no influence on λ2
1 + λ2

2.

Finally, we can conclude that the SV do not depend on the phases of the elements of A. Then we can

consider real matrices A only, whose general form is

A =


 cos α sinα

− sin α cosα


 (28)

with 0 ≤ α < π/2.

Let us consider the sum of the square SV of HvAΣ

λ2
1 + λ2

2 = �HvAΣ�2
F = trace (HvAΣΣA∗Hv) (29)

= p0(ρ1 sin2 ψ + ρ2 cos2 ψ + (ρ1 − ρ2) cos(2ψ) cos2 α). (30)

As ρ1 > ρ2, for every λ1 the maximum value of λ2 is obtained for α = 0, which means A = I2.
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APPENDIX II

PROOF OF (11)

The matrix B∗ is unitary and the general form of a unitary matrix in dimension 2 is given by (24).

The matrix B∗ can be expressed as

B∗ =


 ejα1 0

0 ejα2





 cos α sinα ej(α3−α1)

− sin α cosα ej(α4−α2)


 = B1B2. (31)

The difference vector distance is given by

dx̆ = �HvΣB∗x̆� (32)

= �HvΣB1B2x̆� (33)

= �B1HvΣB2x̆� = �HvΣB2x̆�. (34)

The last equality is verified thanks to the unitarity and the diagonality of B1. Hence the matrix B1 has no

influence on dx̆. Finally by using the initial unitarity constraint (25) on B∗ and by setting ϕ = (α3−α1)

we obtain (11).

APPENDIX III

SEARCH DOMAIN LIMITATION

Considering the symmetries in usual constellations (e.g., centered square constellations) the difference

vectors x̆ = [x1, x2]T have the following properties

i. (x̆)c = [x∗
1, x

∗
2]

T is a difference vector.

ii. (x̆)d = [x∗
1,−x∗

2]
T is a difference vector.

iii. (x̆)e = [x2, x1]
T is a difference vector.

We can limit the search to 0 ≤ ϕ ≤ π, because if we replace ϕ with −ϕ, the global channel H g =

HvF D becomes (Hg)c (conjugate, non transposed matrix). We have

�(Hg)c x̆� = �Hg (x̆)c� , (35)

and using property (i), it is obvious that it is useless to test −ϕ when ϕ was already tested.

We can even limit the search to 0 ≤ ϕ ≤ π/2. If ϕ is replaced with π − ϕ, the matrix Bϕ becomes

Bπ−ϕ =


 1 0

0 −e−iϕ


 . (36)
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It can be written

(Bπ−ϕx̆)c = Bϕ (x̆)d . (37)

We have

�HvΣBθBπ−ϕx̆� = �(HvΣBθBπ−ϕx̆)c� (38)

= �HvΣBθBϕ(x̆)d� (39)

by using (37). From property (ii), it is obvious that it is useless to test π−ϕ when ϕ was already tested.

Finally, as far as θ is concerned, the search domain can be limited to 0 ≤ θ ≤ π/4. If θ is replaced

with π/2 − θ, the matrix Bθ becomes

Bπ/2−θ =


 sin θ cos θ

− cos θ sin θ


 . (40)

We have

Bπ/2−θBϕx̆ =


 (cos θ) eiϕx2 + (sin θ) x1

(sin θ) eiϕx2 − (cos θ) x1


 =


 1 0

0 −1





 cos θ sin θ

− sin θ cos θ





 eiϕx2

x1




= eiϕ


 1 0

0 −1


 Bθ


 1 0

0 e−iϕ





 x2

x1


 = eiϕ


 1 0

0 −1


 Bθ (Bϕ)c (x̆)e . (41)

eiϕ and the matrix whose diagonal is [1,−1] have no influence on the distance. Furthermore it was

proved that replacing Bϕ with (Bϕ)c (i.e., replacing ϕ with −ϕ) does not act on the distance either.

Finally, from property (iii), it is proved it is useless to test π/2 − θ when θ was already tested.

APPENDIX IV

EXACT VALUE OF F r1 ANGLES

Fig. 13 plots the received constellation on the first virtual subchannel for ψ = 0 and two arbitrary

angles θ and ϕ of the precoding matrix F D. The 16 points labeled from ’A’ to ’P’ correspond to the

received symbol z =
√

ρ1p0(cos θs1 + sin θejϕs2) for s = [s1 s2]T ∈ S . Let us note zA the affix

(complex number representative) of the point ’A’, and so on for the 16 points. The minimum distance

dmin is optimized such that the nearest neighbors have the same distance. Thanks to symmetries exhibited

in Fig. 13, the optimized solution can be obtained, for example, for7 dBE = dBJ = dEJ . The evaluation

7dXY stands for the distance between points ’X’ and ’Y’ and is given by dXY = |zX − zY |.
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of these distances is straightforward, we obtain

d2
BE = 2p0ρ1(1 − sin(2θ) cos ϕ) (42)

d2
BJ = 2p0ρ1 sin2 θ (43)

d2
EJ = 2p0ρ1(1 + sin2 θ − cos(2θ)(cos ϕ + sin ϕ)) (44)

for θ ∈ [0,π/4] and ϕ ∈ [0,π/2[. Using (42) and (43) we obtain

tan θ = 1/(2 cos ϕ), (45)

and using (42) and (44) we obtain

tan θ = 2 sin ϕ. (46)

From (45) and (46) the optimal angle ϕ can be determined with sin 2ϕ = 1/2 and we obtain ϕ = π/12.

The optimal angle θ can be then determined with tan θ = 1/(2 cos(π/12)) = (
√

3− 1)/
√

2. One should

note that the optimized solution looks like a 16-QAM constellation rotated by an angle of 15o.
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ŝ
b

s
b

F D
b × b

Hv

b b

νv

y

Fig. 1. MIMO equivalent transmission system with a linear precoder in case of CSI.
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Fig. 9. Uncoded BERs for QPSK modulation assuming the precoding scheme � octa (case
ρ1
ρ2

< 10.33).
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Fig. 10. Uncoded BERs for QPSK modulation assuming the precoding scheme � r1 (case ρ1
ρ2

> 10.33).
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Fig. 11. Uncoded BERs for the max(dmin)-QPSK design using the ML and the OSIC receivers.
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Fig. 12. Uncoded BERs for QPSK modulation in case of imperfect CSI.
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Fig. 13. Non-optimized received constellation on the first virtual subchannel for ψ = 0 (QPSK modulation).
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