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Image Compression using Topological Maps and MLP

Gilles BUREL & Jean-Yves CATROS
Thomson CSF, Laboratoires Electroniques de Rennes
Avenue de Belle Fontaine, 35510 Cesson-S¶evign¶e, France

Abstract| Image compression is an essential
task for image storage and transmission. We pro-
pose a compression technique in which an MLP
predictor takes advantage of the topological prop-
erties of the Kohonen algorithm. The Kohonen
algorithm creates a code-book which is used for
Vector Quantization of the source image. Then,
an MLP is trained to predict references to code-
book, allowing further compression. Even with
di±cult images, the result is a reduction of 15% to
20% of the bit rate compared with classical Vec-
tor Quantization techniques, for the same quality
of decoded images.

I. Introduction

Image compression is an essential task for image stor-
age and transmission. As these domains have become
increasingly important, the theory and practice of im-
age compression have received increased attention. Since
the bandwidth of many communication systems, or mass
memory storage capacities are relatively inextensible,
some kind of data compression is required to face the grow-
ing amount of information that people want to transmit
or store.
Existing compression techniques dedicated to static im-
ages can be grouped in 3 great families, on the basis of
their speci¯c nature :

1. Predictive techniques take pro¯t of image redun-
dancy to predict the luminance of a pixel according
to its neighbourhood.

2. Vector Quantization takes advantage of image re-
dundancy to de¯ne a code-book for image blocks.

3. Transform Coding performs compression of im-
age blocks by energy preserving transformations
that pack maximum information on a minimum
number of samples.

A good review of image compression techniques can be
found in [5] [7]. Predictive techniques are the easiest to im-
plement, but they show some lack of robustness and do not

achieve high compression rates (generally, they only take
pro¯t of redundancies between adjacent pixels). Trans-
form Coding or Vector Quantization techniques are pref-
erently used when higher compression rates are required.
Their better performances are mainly due to the fact that
they take into account large image blocks, taking pro¯t
this way of a larger amount of redundancies. A compara-
tive study is provided in [4]. It shows the interest of Vector
Quantization techniques when high compression rates are
required (bit rate under 1 bit per pixel). For smaller com-
pression rates (bit rate above 2 bits per pixel), transform
coding performs better.

In the neural network ¯eld, Cotrell, Munro, and Zipser
[3] have proposed a method for image compression that
lies in the Transform Coding family. It is based on a 3-
layers perceptron, that performs identity mapping of im-
age blocks via a small hidden layer. Its performances are
the same as those of the classical Discrete Cosinus Trans-
form technique. Hence, it should be used preferently for
small compression rates. For high compression rates, tech-
niques of the VQ family should be prefered.

The method we propose [2] lies in the Vector Quantization
family. We use Kohonen's topological maps [8] for block
compression of digital images by Vector Quantization, and
an MLP trained by backpropagation [10] to perform fur-
ther compression by prediction of references to code-book.
The paper is organized as follows. In section 2, we shortly
describe the principle of VQ techniques, and compare the
performances of neural and non-neural VQ algorithms. In
section 3, we explain the proposed approach, that takes
advantage of topological properties of Kohonen algorithm
to design an MLP predictor for further compression. We
also describe the structures of corresponding coder and
decoder, and we discuss experimental results.
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II. Principle of Vector Quantization
techniques

Vector Quantization is a compression technique that has
been widely used ([1], [6] for instance). The method con-
sists in dividing the image in small blocks, and replacing
each block by an index. The index is a reference to a
code-book of standard blocks: it indicates which block of
the code-book is the closest to the image block. The code-
book is generally built using the LBG algorithm [9].

Let us note K the number of pixels in a block, and M the
size of the code-book. Assuming the availability of the
code-book on the decoder side, the compression achieved
is (log2M)=K bits per pixel. To maintain a small dis-
tortion on a lot of images, a huge code-book is required.
Furthermore, it is necessary to use large blocks sizes in
order to take pro¯t of a large number of redundancies.
That's why we prefer an approach in which the code-book
is adapted to each image (or to each group of images).
Such a point of view has already been suggested in [6].
It allows to use small code-books, and quite small block
sizes. For the experiment described below, we use a code-
book of 256 blocks of 3x3 pixels.

The counterpart is the need to transmit or store the code-
book with each image, or each group of similar images.
But we will show below that it isn't very costly. There is
also the need to adapt the code-book for each image, or
group of images. This may be a drawback for TV appli-
cations, due to real time constraints. Hence, our method
is more dedicated to image storage, and transmission of
satellite images or aerial images (more generally transmis-
sion of individual images rather than video sequences).
Furthermore, whithin the context of compression of TV
images, it is better to use techniques based on movement
estimation.

We describe in the next section experiments done with
a data-base of 4 di±cult images, often used to evaluate
compression algorithms: \foot", \Kiel", \calendar", and
\boat" (¯gure 1).

To compare the performances of VQ algorithms, we have
built a data-base of 15716 blocks of 3x3 pixels, randomly
extracted from images \foot", \Kiel", and \calendar".

Figure 2 shows the mean square error of each algorithm
versus the number of iterations. KH stands for the Ko-
honen algorithm [8]. It is clear that all these algorithms
reach approximately the same performances in terms of
mean-square error. The exception is the k-means algo-
rithm, which is likely to be trapped in a local minimum.

Hence, we want to emphasis the idea that the advantage
of Kohonen algorithm over LBG is not its performances as
a Vector Quantizer, but its hability to preserve topology.
The objective of the next section is to show how an MLP
can take pro¯t of these topological properties to increase
the compression rate without degradation of the decoded
image.

III. Taking profit of topological properties

A. Basic ideas

Figures 3 shows the images of indexes obtained using code-
books built by Kohonen algorithm (KH), and LBG. The
topological properties of the Kohonen algorithm clearly
appear: The image obtained with KH is very coherent,
while the image obtained with LBG looks like noise.

To take pro¯t of preservation of topology, we propose to
compress the image of indexes itself. The idea is to use a
predictor to provide an estimation of an index knowing its
causal neighbourhood. An MLP [10] trained by backprop-
agation seems to be a good candidate to achieve that task.
If we obtain a good prediction, it will be possible to com-
press the image of indexes itself by transmitting only the
prediction error. We will perform reversible compression
of the image of indexes, because we don't want to degrade
it. So, the reconstructed original image will be exactly the
same whether we use the predictor or not. This will allow
to measure the gain provided by use of prediction simply
by comparing the resulting bit rates.

The MLP receives on input the causal neighbourhood
N = fC1; C2; C3; C4g of the index C to predict, and pro-
vides on output an estimation bC of C.

C1 C2 C3
C4 C?

We have evaluated the performances of various MLP
architectures. 2-layers MLP o®er generally quite poor
performances. A good compromise between perfor-
mances and complexity is obtained with a 4-layers MLP
(4+12+8+1 neurons). The neuron model is a linear sum-
mator (with bias) followed by a non-linear function (hy-
perbolic tangent), exept for the output neuron which is
linear, and the input neurons which do nothing.

The interest of topology preservation can be easily jus-
ti¯ed on a mathematical point of view. The best pos-
sible predictor according to a quadratic criteria is the
predictor which minimizes the mean square prediction er-
ror Ef( bC ¡ C)2g, where E designs the mathematical ex-
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pectancy.

Ef( bC ¡ C)2g = ENECjNf( bC ¡ C)2jNg
but

ECjNf( bC ¡ C)2jNg = ( bC ¡ ¹C)2 + varCjN fCjNg
Where ¹C designs ECjNfCjNg. So the best predictor is:bC(N ) = ECjN fCjNg
and its mean square error is:

Ef( bC ¡ C)2g = EN ©varCjNfCjNgª
Hence, it is obvious that no good prediction can be ob-
tained if topology isn't preserved, because varCjNfCjNg
would always be high. And, of course, since we have shown
that EN

©
varCjNfCjNg

ª
is the theoretical lower bound

of mean square prediction error, neither the MLP nor any
other predictor can provide a better prediction than that.

On the contrary, if topology is preserved, varCjNfCjNg
will generally be small, hence there is no theoretical ob-
stacle to good prediction.

B. The structure of the coder and the decoder

Figures 4 and 5 show the structure of the coder and de-
coder, and the messages format. To compress a source
image (SI), the coder computes a topological code-book
using Kohonen algorithm (to achieve very fast conver-
gence, the Kohonen network is initialized with a code-
book computed on a large set of images). Then, it com-
putes the image of indexes (II). It computes the weights
of the MLP predictor (again, to achieve very fast conver-
gence, the MLP is initialized with weights computed on a
large set of images of indexes). It computes the prediction
errors (PE), then the corresponding optimum Hu®man
code, and computes the message. The message contains
a header: bit P indicates if the predictor is used or not,
bits UC, UM, UH indicate respectively if the code-book,
the MLP, and/or the Hu®man follow (for update). Then,
if P=1, the prediction errors follow, else the image of in-
dexes follows.

The decoder reads the header, updates the code-book, the
predictor, and/or the Hu®man codes if UC, UM, and/or
UH is/are set. Then, if P=1, it reconstructs the image of
indexes using the predictor and the prediction errors, else
it reads directly the image of indexes. The image (RI) is
then reconstructed from the image of indexes thanks to
the code-book.

C. Experimental results

The table below shows some results obtained on the previ-
ously mentioned images. These images, often used to test
compression algorithms, are di±cult images. So, these re-
sults provide a lower bound of expected results on more
classical images.

image foot Kiel calendar boat
header 3071 3063 3053 3080
data 32567 38440 33247 21547

message 35668 41503 36300 24667
source 358425 414720 358425 254016

bpp (P=0) 0.94 0.93 0.94 0.96
bpp(P=1) 0.79 0.80 0.81 0.77
gain 16% 14% 14% 20%

Lines 2 to 4 indicate respectively the size (in bytes) of
the header, the data ¯eld, and the message (header+data),
when the predictor is used. The size of the header corre-
spond to the worst possible case (UC=UM=UH=1, which
means that everything is updated), in order to indicate
the lower bounds of possible performances. Line 5 re-
minds the size in bytes of the source image. Lines 6 and
7 indicate respectively the bit rate in bits per pixel when
VQ is used alone, and when both VQ and prediction are
used. The last line shows the gain in bit rate provided by
use of the MLP predictor (we remind that it corresponds
to the worst possible case because we have assumed that
UC=UM=UH=1).
Photographies of the reconstructed images are not pro-
vided here, because di®erences with source images can be
visually detected only on high quality video screens.

IV. Conclusion

We have proposed an approach for image compression that
takes pro¯t of both Vector Quantization properties and
topological properties of Kohonen algorithm. An MLP
predictor is used to compress the image of indexes pro-
vided by Vector Quantization, and that is possible only
because topology has been preserved. Even in the worst
possible con¯gurations (di±cult images plus need to up-
date all the internal parameters), the bene¯t of that ap-
proach over classical Vector Quantization is a reduction
of 15% to 20% of the bit rate.

Further work could include de¯nition of a variant of the
MLP model to achieve better prediction (this model will
use non-linear synapses), extensive tests on large bases of
images, and sudy of potential for image perception as well
as compression/communication.
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Figure 1: From left to right and top to bottom: images
\boat", \foot", \Kiel", and \calendar"
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Figure 2: Comparison of algorithms KH, LBG and k-
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Figure 3: images of indexes of \foot" obtained by LBG
(top) and KH (bottom)
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Figure 4: Structure of the coder and the decoder
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