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The paper 1 describes an approach to include vision control and neural networks in the assembly process of Surface Mounted Devices (SMD). The need of vision feedback is due to the decreasing size of SMD. The proposed approach includes image processing, estimation of positioning error by a neural network, and geometrical computations. The hardware implementation to achieve real time constraints is also described.

I. Introduction

Surface Mounted Devices or SMDs are electronic components designed for mounting on a printed circuit board surface. As no component leads have to be inserted through holes in the printed circuit board (PCB) during assembly, SMDs are well suited for high speed, reliable placement and for miniaturisation, while manufacturing costs are reduced.

As the use of SMD components increases, more component types become available as SMD, leading to a large component variety. Miniaturisation puts high demands on SMD placement accuracy. As a rule, the placement accuracy must be 1/6 lead pitch to prevent soldering problems. With lead pitches reduced to 600 microns for the newest SMDs, placement accuracy must be better than 50 microns.

The SMD assembly process can be divided in three steps [START_REF] Van | \User requirements of the Galatea vision workpackage dedicated to SMD placement[END_REF]: Picking (the component is picked with a pipette), Alignment (of the component relative to the board), and Placement. Here, we will deal with the problem of alignment of the component with respect to the board. More precisely, our objective is to measure the relative positioning error between pins and footprints, through the use of vision and neural networks, in order to provide a correction signal to the mechanical system. The images are taken when the component is above the PCB, just before it touches it. SMD components show smaller and smaller pins and narrower spaces between pins, so that even a very precise mechanical placement is not accurate enough. Furthermore, the Printed Circuit Board (PCB) can be slightly dilated by small changes of external temperature. So, only the relative position of pins and footprints is relevant, and, hence, use of vision feedback is required.

In this paper, we describe a look-while-place approach which takes pro¯t of learning capabilities of neural networks. This work has been done inside the Galatea project (Esprit project n o 5293), which aims at promoting the application of neural networks by European industries. The vision workpackage is in charge of developing neural solutions to industrial vision problems.

The paper is organized as follows: in section 2, we present the context (placement machines, SMD, and requirements). In section 3, we describe the proposed algorithm to control by vision the alignment of the component relative to the board. Finally, the hardware implementation is detailed in section 4.

II. Need of vision feedback in placement machines

The placement cycle of a current SMD mounter, as made by Philips IE/EMT (¯gure 1) is as follows:

² The printed circuit board is fed in the machine ² Due to mechanical tolerances, the location of the solder pads with respect to the machine is only approximately known. The exact position of the PCB solder pads is determined by a vision system on the machine that measures the position of alignment markers (¯ducials) on the PCB.

² A component is picked up by a gripper from one of the machine feeders.

² A vision system is used to measure the position of the component with respect to the gripper.

² The movement the gripper has to make to place the component leads on the PCB solder pads is calculated, using the PCB CAD data that gives the position of the PCB solder pads with respect to the ¯ducials, the measured position of the ¯ducials w.r.t. the machine, and the measured position of the component w.r.t. the gripper.

² The gripper is moved to this position, and the component is placed. This scheme makes the vision tasks easy: both ¯ducial and component can be measured under ideal circum-stances. This is needed to obtain the required reliability (50 part-per-million misplacements) in practical situations with component and PCB variations. To get the required accuracy however, interpolation on the PCB, including stretch/shrink e®ects is needed; the gripper has to move with high accuracy; and the vision systems must be carefully calibrated w.r.t. the machine.

A more straightforward approach would be a look-whileplace approach. During component placement, the component lead to PCB solder pad distances are measured, and driven to zero. PCB stretch and machine inaccuracies are then automatically compensated, while the vision system calibration is not critical.

A problem with the look-while-place approach is the dif-¯culty of the vision task of measuring reliably lead to pad distance in one image. As the correction movement has to wait for the vision measurement to complete, the time for the vision task has to be short because it adds to the placement cycle time. This has prevented from using the look-while-place approach in existing SMD placers.

Due to their learning capabilities, neural networks could allow the development of a look-while-place approach because the vision task could be learned from examples instead of being explicitely developed. They may also facilitate the adaptation to new component types and, therefore, simplify the task of the end user. Furthermore, it is hoped that a neural network approach will provide more robustness against image noise due to changes in the lighting conditions, and to imperfections of component surface.

III. A neural approach for component alignment

A. Principles of neural networks

Neural networks have gained popularity among the scien-ti¯c community during the last decade because of their success as non-linear adaptive systems [3]. Many neural network models can be described as a non-linear parametric function s = G w (e), where e is the input vector, s the output vector, and G w a function parameterized by a vector w. The entries of w are the weights of the network.

Let us consider for instance the well known multilayer perceptron (MLP). The output vector of the 3-layer perceptron depicted on ¯gure 2 is given by:

s = f [W 2 f (W 1 e + b 1 ) + b 2 ]
where f is a non-linear function (usually the hyperbolic tangent), W Figure 3 shows an overview of the approach developed by Thomson CSF/LER [START_REF] Burel | Feedback during SMD Placement[END_REF]. There are two cameras which take images of two opposite corners of the component. The images are coded at 8 bits per pixel, and their size is 512x512 pixels. Figure 4 shows an example of image.

On this image, we can see the component body, the pins (bright areas connected to the component body), and the footprints (bright areas on the PCB, under the pins).

Here, there is clearly a positioning error due to insu±cient accuracy of the mechanical system.

The images are obtained by two CCD cameras: it is not possible to obtain a single image of the whole component, because the pipette which moves the component prevents from having a camera just above the center of the component. On each image, two windows are extracted around the corner (¯gure 5). Each window contains a partial view of a side of the component, as shown on the ¯gure. The window which contains a horizontal side of the component is called WH and the window which contains a vertical side is called WV. The size of a window is LVxLH, where LV=96 and LH=128 (the windows are not square in order to take into account the fact that the pixel is not square).

On each window, projections are computed, a horizontal projection P rojH(y) and a vertical projection P rojV (x):

P rojH(y) = X 

Hence, we obtain four projections:

ProjH WV, ProjV WV, ProjH WH, ProjV WH, the length of which is respectively LH, LV, LH, LV.

Then, the projections are normalized in amplitude, in order to obtain values between zero and one. Finally, they are resampled (using a linear interpolation): a projection orthogonal to the side of the component (ProjV WH, ProjH WV) is represented on 64 samples, while a projection parallel to the side of the component (ProjH WH, ProjV WV) is represented on 32 samples.

The normalized and resampled projections are then concatenated to provide the input vector of the neural network. The order is ProjH WV, ProjV WV, ProjH WH, ProjV WH. The size of the input vector is 192.

The neural network is a 3-layer MLP. The sizes of the lay- ers are 192, 48, and 10. The output layer can be divided into 2 groups of 5 neurons. The ¯rst group codes for the X-translation(horizontal), and the second group for the Ytranslation (vertical). Inside a group, the neurons code for translation amplitudes ¡L p =2, ¡L p =4, 0, +L p =4, +L p =2, where L p is the pitch, and interpolation is used for intermediate amplitudes. The network is previously trained on a database showing various examples of positioning error. These examples are collected using a precisely calibrated mock-up. In order to increase the precision in the recall phase, a linear interpolation between the two highest activations inside each group of neurons is performed.

A good estimation of the local translation can be obtained. Then, a postprocessing module combines the local translation estimations provided by both MLPs in order to compute the global rotation and translation. This process is explained in the section below. This information is given to the placement machine for correction of the mechanical placement. 

TC1 = µ T X1 T Y 1 ¶ TC2 = µ T X2 T Y 2 ¶ TG = µ T Gx T Gy ¶ C 1 C 2 = µ a b ¶
Using the basic rules of geometry, we can show that the global parameters are given by:

8 > > > > < > > > > : µ = 1 a 2 + b 2 fa(T Y 2 ¡ T Y 1 ) ¡ b(T X2 ¡ T X1 )g TGx = 1 2 ( TX2 + TX1 ) TGy = 1 2 ( TY 2 + TY 1 ) (1) 

C. Results

Figure 7 shows the precision of the local estimation of the horizontal translation error. The maximum estimation error is 0:07(L p =2), where L p is the pitch. Since the required precision is L p =6, these results are very satisfactory.

From equation ( 1), it appears that the accuracy of the global translation estimation is the same as the local estimation accuracy. The accuracy of the global rotation estimation can be easily derived from the local translation estimation accuracy. From equation (1) we obtain (when a = b, which is the usual case): ¢µ = 2 a ¢T For example, for a QFP160, we have a = 28x10 3 ¹m, L p = 650¹m, and ¢T = 0:07(L p =2) = 23¹m. Hence ¢µ = 3:3x10 ¡3 rad = 0:2deg.

Experiments with changing lighting conditions have shown that the estimation error stays inside the tolerance area for a lighting power comprised in the interval [ P N 8 ; 4P N ], where P N is the nominal lighting. This means that it is very robust with respect to lighting conditions.

IV. Hardware implementation

A. Running neural nets on multiple DSPs

Within the framework of the Galatea Esprit project (funded at 50% by the EEC), a full environment including software and hardware tools dedicated to neural networks based algorithms has been developed. At the high- est level, a user friendly graphic interface set up by Mimetics (France) allows the user to design his own neural network by means of a set of prede¯ned tools on a hierarchical object-oriented way. He can also add his own objects by describing them as C++ classes. Once the learning method has been chosen among a large library, the corresponding code (for both learning and recall stages) is automatically generated and cross compiled into Virtual Machine Language (VML). This language dedicated to address parallel hardwares is at the level of the C language. The standardization of VML is in progress.

Then the on-line implementation is addressed by LEP who has developed a VML cross-compiler towards a set of 6 Texas Instruments DSP TMS320C40 chips embedded on two VME bus based boards. This set of boards with the corresponding software is referred as the LEP's GPNC (General Purpose Neuro Computer). All the cross compilation stages down to the DSPs remain hidden to the user who monitors all the preprocessing on a Sun Sparc 2. An accurate design of the VML cross-compilation towards C40's assembler allows to reach more than 95% of the theoretical peak performance. In the recall stage, up to 75 times faster execution compared with a Sun Sparc 2 workstation can be obtained. A master-slave implementation has been chosen where the master DSP controls the program °ow, the I/O with the Sun, the slave data management, and the scalar operations. From 0 up to 5 slaves are supported depending upon the requirements of the user in terms of CPU. Peripherals dedicated to the C40 based platform such as a color frame grabber, a VME bus shared memory and semaphores, and PC communication via a RS232 link are supported at the VML level (¯gure 8). All of that enables the LEP system to cope with the three major stages of a neural network application, i.e.: the data base acquisition, the learning stage, and the online execution of the recall stage. 

C. Further work

Several other applications have been successfully addressed by LEP on its multiple DSP platform such as an OCR, an orange video grading machine (together with CRAM-Italy). LEP is now working on a more cost-e®ective solution for embedded hardwares. This will be achieved by the new LNeuro2.3 SIMD processor [START_REF] Friedel | ¶ eseaux de Neurones, Traitement des donn ¶ ees, et Extraction de connaissance[END_REF]. An entire software and hardware compatibility with Galatea's environment is scheduled for the end of 1994.

V. Conclusion

We have proposed an approach to include vision control and neural networks in the SMD assembly process. We have de¯ned an approach that combines classical image processing (projections), Neural Networks (MLP), and geometrical computations. The ¯rst experimentations have shown a good accuracy. The method has the advantage to be very easy to use (even for the creation of the learning set, very little human e®ort is required), and to be fast (on the DSP board, the processing of an image requires less than two milliseconds). Furthermore, the experimentations we have performed show the robustness of the method: it still works very well in presence of noisy and low contrast images. Since it is a look-while-place method, the main interest with respect to current SMD mounters vision algorithms is the fact that PCB stretch and machine inaccuracies are automatically compensated, while the vision system calibration is not critical.
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