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Abstract|
The paper1 describes an approach to include vi-
sion control and neural networks in the assembly
process of Surface Mounted Devices (SMD). The
need of vision feedback is due to the decreasing
size of SMD. The proposed approach includes im-
age processing, estimation of positioning error by
a neural network, and geometrical computations.
The hardware implementation to achieve real time
constraints is also described.

Keywords| Industrial Vision, SMD Placement,
Control by Vision, Neural networks.

I. Introduction

Surface Mounted Devices or SMDs are electronic compo-
nents designed for mounting on a printed circuit board
surface. As no component leads have to be inserted
through holes in the printed circuit board (PCB) during
assembly, SMDs are well suited for high speed, reliable
placement and for miniaturisation, while manufacturing
costs are reduced.

As the use of SMD components increases, more compo-
nent types become available as SMD, leading to a large
component variety. Miniaturisation puts high demands on
SMD placement accuracy. As a rule, the placement accu-
racy must be 1/6 lead pitch to prevent soldering problems.
With lead pitches reduced to 600 microns for the newest
SMDs, placement accuracy must be better than 50 mi-
crons.

The SMD assembly process can be divided in three steps
[5]: Picking (the component is picked with a pipette),
Alignment (of the component relative to the board), and
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Placement. Here, we will deal with the problem of align-
ment of the component with respect to the board. More
precisely, our objective is to measure the relative posi-
tioning error between pins and footprints, through the use
of vision and neural networks, in order to provide a cor-
rection signal to the mechanical system. The images are
taken when the component is above the PCB, just before
it touches it.

SMD components show smaller and smaller pins and nar-
rower spaces between pins, so that even a very precise me-
chanical placement is not accurate enough. Furthermore,
the Printed Circuit Board (PCB) can be slightly dilated
by small changes of external temperature. So, only the
relative position of pins and footprints is relevant, and,
hence, use of vision feedback is required.

In this paper, we describe a look-while-place approach
which takes pro¯t of learning capabilities of neural net-
works. This work has been done inside the Galatea project
(Esprit project no 5293), which aims at promoting the ap-
plication of neural networks by European industries. The
vision workpackage is in charge of developing neural solu-
tions to industrial vision problems.

The paper is organized as follows: in section 2, we
present the context (placement machines, SMD, and re-
quirements). In section 3, we describe the proposed algo-
rithm to control by vision the alignment of the component
relative to the board. Finally, the hardware implementa-
tion is detailed in section 4.

II. Need of vision feedback in placement
machines

The placement cycle of a current SMD mounter, as made
by Philips IE/EMT (¯gure 1) is as follows:

² The printed circuit board is fed in the machine

IEEE Int. Conf. on Robotics and Automation, Vol. 2, pp. 1491-1496, May 21-27th, 1995, Nagoya, Japan

Gilles
Texte tapé à la machine
©1995 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this materialfor advertising or promotional purposes or for creating new collective works for resale or redistribution toservers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.



² Due to mechanical tolerances, the location of the
solder pads with respect to the machine is only ap-
proximately known. The exact position of the PCB
solder pads is determined by a vision system on the
machine that measures the position of alignment
markers (¯ducials) on the PCB.

² A component is picked up by a gripper from one of
the machine feeders.

² A vision system is used to measure the position of
the component with respect to the gripper.

² The movement the gripper has to make to place
the component leads on the PCB solder pads is cal-
culated, using the PCB CAD data that gives the
position of the PCB solder pads with respect to
the ¯ducials, the measured position of the ¯ducials
w.r.t. the machine, and the measured position of
the component w.r.t. the gripper.

² The gripper is moved to this position, and the com-
ponent is placed.

Figure 1: Philips IE/EMT SMD component placer

This scheme makes the vision tasks easy: both ¯du-
cial and component can be measured under ideal circum-

stances. This is needed to obtain the required reliability
(50 part-per-million misplacements) in practical situations
with component and PCB variations. To get the required
accuracy however, interpolation on the PCB, including
stretch/shrink e®ects is needed; the gripper has to move
with high accuracy; and the vision systems must be care-
fully calibrated w.r.t. the machine.

A more straightforward approach would be a look-while-
place approach. During component placement, the com-
ponent lead to PCB solder pad distances are measured,
and driven to zero. PCB stretch and machine inaccura-
cies are then automatically compensated, while the vision
system calibration is not critical.

A problem with the look-while-place approach is the dif-
¯culty of the vision task of measuring reliably lead to pad
distance in one image. As the correction movement has
to wait for the vision measurement to complete, the time
for the vision task has to be short because it adds to the
placement cycle time. This has prevented from using the
look-while-place approach in existing SMD placers.

Due to their learning capabilities, neural networks could
allow the development of a look-while-place approach be-
cause the vision task could be learned from examples in-
stead of being explicitely developed. They may also facil-
itate the adaptation to new component types and, there-
fore, simplify the task of the end user. Furthermore, it is
hoped that a neural network approach will provide more
robustness against image noise due to changes in the light-
ing conditions, and to imperfections of component surface.

III. A neural approach for component
alignment

A. Principles of neural networks

Neural networks have gained popularity among the scien-
ti¯c community during the last decade because of their
success as non-linear adaptive systems [3]. Many neural
network models can be described as a non-linear paramet-
ric function s = Gw(e), where e is the input vector, s the
output vector, and Gw a function parameterized by a vec-
tor w. The entries of w are the weights of the network.

Let us consider for instance the well known multilayer
perceptron (MLP). The output vector of the 3-layer per-
ceptron depicted on ¯gure 2 is given by:

s = f [W2f (W1e+ b1) + b2]

where f is a non-linear function (usually the hyperbolic
tangent), W1 and W2 are matrices, and b1 and b2 are bias
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Figure 2: A 3-layer perceptron

vectors. The learning algorithm, known as \backpropa-
gation" [4], updates the components of the matrices and
of the bias vectors according to the gradient of the mean-
square error eMS = Efjjs¡ sdesiredjj2g.

B. Alignment control

B.1. Principle of the approach

Figure 3 shows an overview of the approach developed by
Thomson CSF/LER [1]. There are two cameras which
take images of two opposite corners of the component.
The images are coded at 8 bits per pixel, and their size
is 512x512 pixels. Figure 4 shows an example of image.
On this image, we can see the component body, the pins
(bright areas connected to the component body), and the
footprints (bright areas on the PCB, under the pins).
Here, there is clearly a positioning error due to insu±-
cient accuracy of the mechanical system.

The images are obtained by two CCD cameras: it is not
possible to obtain a single image of the whole component,
because the pipette which moves the component prevents
from having a camera just above the center of the compo-
nent. On each image, two windows are extracted around
the corner (¯gure 5). Each window contains a partial view
of a side of the component, as shown on the ¯gure. The
window which contains a horizontal side of the component
is called WH and the window which contains a vertical
side is called WV. The size of a window is LVxLH, where
LV=96 and LH=128 (the windows are not square in order
to take into account the fact that the pixel is not square).

On each window, projections are computed, a horizontal
projection ProjH(y) and a vertical projection ProjV (x):

ProjH(y) =
X
x

I(x; y)

ProjV (x) =
X
y

I(x; y)

vertical
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Figure 3: Overview of the approach

where I(x,y) is the brightness of a pixel.

Hence, we obtain four projections: ProjH WV,
ProjV WV, ProjH WH, ProjV WH, the length of which
is respectively LH, LV, LH, LV.

Then, the projections are normalized in amplitude, in or-
der to obtain values between zero and one. Finally, they
are resampled (using a linear interpolation): a projec-
tion orthogonal to the side of the component (ProjV WH,
ProjH WV) is represented on 64 samples, while a projec-
tion parallel to the side of the component (ProjH WH,
ProjV WV) is represented on 32 samples.

The normalized and resampled projections are then con-
catenated to provide the input vector of the neural net-
work. The order is ProjH WV, ProjV WV, ProjH WH,
ProjV WH. The size of the input vector is 192.

The neural network is a 3-layer MLP. The sizes of the lay-
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Figure 4: An example of a source image: QFP160 on
PCB
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Figure 5: Windows extracted around the top-right corner

ers are 192, 48, and 10. The output layer can be divided
into 2 groups of 5 neurons. The ¯rst group codes for the
X-translation(horizontal), and the second group for the Y-
translation (vertical). Inside a group, the neurons code for
translation amplitudes ¡Lp=2, ¡Lp=4, 0, +Lp=4, +Lp=2,
where Lp is the pitch, and interpolation is used for inter-
mediate amplitudes. The network is previously trained on
a database showing various examples of positioning error.
These examples are collected using a precisely calibrated
mock-up. In order to increase the precision in the recall
phase, a linear interpolation between the two highest ac-
tivations inside each group of neurons is performed.

A good estimation of the local translation can be obtained.
Then, a postprocessing module combines the local transla-
tion estimations provided by both MLPs in order to com-
pute the global rotation and translation. This process is
explained in the section below. This information is given
to the placement machine for correction of the mechanical
placement.

B.2. Computation of global translation and rotation from
local translations

x

y

C2

C1

G

Figure 6: Local and Global Estimations

Let us consider ¯gure 6, and let us note:

² ~TC1 and ~TC2 the translations estimated around the
corners C1 and C2
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² ~TG the global translation of the component
² µ the global rotation of the component

~TC1 =

µ
TX1
TY 1

¶
~TC2 =

µ
TX2
TY 2

¶
~TG =

µ
TGx
TGy

¶
C1C2 =

µ
a
b

¶
Using the basic rules of geometry, we can show that the
global parameters are given by:8>>>><>>>>:

µ =
1

a2 + b2
fa(TY 2 ¡ TY 1)¡ b(TX2 ¡ TX1)g

~TGx = 1
2 (
~TX2 + ~TX1)

~TGy = 1
2(
~TY 2 + ~TY 1)

(1)

C. Results

Figure 7 shows the precision of the local estimation of the
horizontal translation error. The maximum estimation er-
ror is 0:07(Lp=2), where Lp is the pitch. Since the required
precision is Lp=6, these results are very satisfactory.

From equation (1), it appears that the accuracy of the
global translation estimation is the same as the local es-
timation accuracy. The accuracy of the global rotation
estimation can be easily derived from the local transla-
tion estimation accuracy. From equation (1) we obtain
(when a = b, which is the usual case):

¢µ =
2

a
¢T

For example, for a QFP160, we have a = 28x103¹m,
Lp = 650¹m, and ¢T = 0:07(Lp=2) = 23¹m. Hence
¢µ = 3:3x10¡3rad = 0:2deg.

Experiments with changing lighting conditions have
shown that the estimation error stays inside the toler-
ance area for a lighting power comprised in the interval
[PN8 ; 4PN ], where PN is the nominal lighting. This means
that it is very robust with respect to lighting conditions.

IV. Hardware implementation

A. Running neural nets on multiple DSPs

Within the framework of the Galatea Esprit project
(funded at 50% by the EEC), a full environment includ-
ing software and hardware tools dedicated to neural net-
works based algorithms has been developed. At the high-

ideal
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Figure 7: Precision of the local estimation

est level, a user friendly graphic interface set up by Mimet-
ics (France) allows the user to design his own neural net-
work by means of a set of prede¯ned tools on a hierarchi-
cal object-oriented way. He can also add his own objects
by describing them as C++ classes. Once the learning
method has been chosen among a large library, the cor-
responding code (for both learning and recall stages) is
automatically generated and cross compiled into Virtual
Machine Language (VML). This language dedicated to ad-
dress parallel hardwares is at the level of the C language.
The standardization of VML is in progress.

Then the on-line implementation is addressed by LEP
who has developed a VML cross-compiler towards a set
of 6 Texas Instruments DSP TMS320C40 chips embedded
on two VME bus based boards. This set of boards with
the corresponding software is referred as the LEP's GPNC
(General Purpose Neuro Computer). All the cross com-
pilation stages down to the DSPs remain hidden to the
user who monitors all the preprocessing on a Sun Sparc
2. An accurate design of the VML cross-compilation to-
wards C40's assembler allows to reach more than 95% of
the theoretical peak performance. In the recall stage, up

IEEE Int. Conf. on Robotics and Automation, Vol. 2, pp. 1491-1496, May 21-27th, 1995, Nagoya, Japan



to 75 times faster execution compared with a Sun Sparc 2
workstation can be obtained. A master-slave implementa-
tion has been chosen where the master DSP controls the
program °ow, the I/O with the Sun, the slave data man-
agement, and the scalar operations. From 0 up to 5 slaves
are supported depending upon the requirements of the
user in terms of CPU. Peripherals dedicated to the C40
based platform such as a color frame grabber, a VME bus
shared memory and semaphores, and PC communication
via a RS232 link are supported at the VML level (¯gure
8). All of that enables the LEP system to cope with the
three major stages of a neural network application, i.e.:
the data base acquisition, the learning stage, and the on-
line execution of the recall stage.

Figure 8: LEP's GPNC

B. Implementation of the SMD application

In the SMD application, the database has been acquired
by means of a single CPU board, the learning done on
a 6 DSPs set and the recall stage performed on a sin-
gle DSP board. In order to estimate the global trans-
formation (2 translations + 1 rotation), 2 images have
to be recorded corresponding to each of the opposite cor-
ners. The database acquisition takes about 4 minutes, the
learning consumes about 10 minutes (twice 1750 examples
learned). Then the net weights are used to compute the
correction. Those three steps lead to an average time of 15
minutes to \learn" a new component. Estimating the mis-
alignment needs about 1.7ms per image on a single CPU
board (it corresponds to some 150 Koperations and 50
Kinstructions per image). The synchronization with the

positioning machine is achieved by a simple signal trans-
mission on the RS232 link. The on-line throughput is
about 21000 components per hour when image grabbing
is taken into account.

C. Further work

Several other applications have been successfully ad-
dressed by LEP on its multiple DSP platform such as an
OCR, an orange video grading machine (together with
CRAM-Italy). LEP is now working on a more cost-
e®ective solution for embedded hardwares. This will be
achieved by the new LNeuro2.3 SIMD processor [2]. An
entire software and hardware compatibility with Galatea's
environment is scheduled for the end of 1994.

V. Conclusion

We have proposed an approach to include vision control
and neural networks in the SMD assembly process. We
have de¯ned an approach that combines classical image
processing (projections), Neural Networks (MLP), and ge-
ometrical computations. The ¯rst experimentations have
shown a good accuracy.
The method has the advantage to be very easy to use
(even for the creation of the learning set, very little hu-
man e®ort is required), and to be fast (on the DSP board,
the processing of an image requires less than two millisec-
onds). Furthermore, the experimentations we have per-
formed show the robustness of the method: it still works
very well in presence of noisy and low contrast images.
Since it is a look-while-place method, the main interest
with respect to current SMD mounters vision algorithms
is the fact that PCB stretch and machine inaccuracies are
automatically compensated, while the vision system cali-
bration is not critical.
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