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3D invariants
and their application to object recognition

Gilles BUREL & Hugues HENOCQ

Thomson Broadband Systems, Centre de Rennes
Avenue de Belle Fontaine, 35510 Cesson-Sévigné, France

Abstract

Although recognition of objects from 2D projections (i.e. images) has been widely
studied among the image processing community, little research has been devoted to
recognition using 3D information. A general approach for deriving 3D invariants
is proposed in this paper. These invariants can be used as input to a statistical
classi…er, such as a k-nearest-neighbours algorithm or a neural network. The
approach consists of decomposing the object onto an orthonormal basis composed
of the eigenvectors of the angular momentum operator from quantum mechanics.
Then, using Clebsch-Gordan coe¢cients, contravariant tensors of order 1 are
constructed, and 3D invariants are obtained by tensor contraction. The approach
o¤ers an alternative to structural methods for 3D object description and recognition.
Experimental results are provided to illustrate the method.
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Résumé

La reconnaissance d’objets par l’intermédiaire de projections 2D (c’est-à-dire
d’images) du monde tridimensionnel a fait l’objet de nombreuses études au sein
de la communauté scienti…que. Par contre, peu de travaux ont été consacrés à la
reconnaissance de formes à partir d’une information 3D. Ceci est dû à la complexité
nettement accrue des transformations que peut subir un objet en trois dimensions.
Dans cet article, une approche générale pour l’obtention d’invariants 3D est proposée.
L’approche consiste à décomposer la forme 3D sur une base orthonormée formée
des vecteurs propres de l’opérateur moment cinétique de la mécanique quantique.
Ensuite, grâce aux coe¢cients de Clebsch-Gordan, des tenseurs contravariants
d’ordre 1 sont construits, ce qui permet, par contraction tensorielle, d’obtenir des in-
variants. Des résultats expérimentaux sont fournis pour valider et illustrer la méthode.

Keywords

Pattern Recognition, Rotation Invariance, 3D Invariance, Tensor Theory, Spherical
Harmonics, Angular Momentum.
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1 Introduction

Object recognition is a key topic in computer vision and automatic scene analysis.
A great deal of work has been dedicated to 2D pattern recognition, either using
structural or statistical approaches. By “2D pattern recognition”, we refer to
methods that use 2D information (i.e. an image) of an object. The object itself may
be 2D or 3D.

In the structural approach, features such as holes and corners are detected on
the 2D image of the object and linked to provide a structural description of it [1].
The structural description is generally a graph whose nodes represent the features
and whose arcs represent the spatial organization of these features (and more
generally the relationships between them). Recognition is then achieved by graph
matching techniques using a database of models.

In the statistical approach, a feature vector of …xed length is computed from
the 2D image of the object. The components of the feature vector may be, for
instance, the moments of Hu [8], or Fourier descriptors [6] [7]. Recognition is then
performed by a classi…er, such as a k-nearest-neighbours algorithm, or a neural
network [11].

Few studies have been devoted to 3D pattern recognition by using full 3D in-
formation. However, nowadays it is becoming easier and easier to obtain 3D object
information, thanks to the development of techniques such as computed tomography,
cineangiography [15], nuclear magnetic resonance imaging, and active laser range
…nders.

Recent work has been devoted to the development of 3D moment invariants
[9] [12]. These moments, which are invariant with respect to 3D translation and
rotation of the object, can be used as the components of a feature vector for a
statistical approach. However, they are di¢cult to derive, and only a small number
of them is explicitly derived. Thus, the moment-based approach does not provide
long feature vectors, which may be useful for discriminating close shapes.

We propose an approach based on the results of quantum mechanics for deriv-
ing 3D invariants. These invariants are derived in a simple and systematic way,
and it is shown that moment invariants can be obtained as a degenerate case of
our approach. Furthermore, hundreds of invariants can be derived, allowing the
obtention of long feature vectors. The approach may be used for automatic object
recognition in domains where 3D information is available. For example, in the
medical …eld, it could be used for the automatic classi…cation of bones (…gure 7)
or for detection of pathological heart deformations. In robotics, a robot equipped
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with a camera could use computer tomographic reconstruction to construct a 3D
representation of an object, and then use 3D invariants to recognize it. The proposed
approach could also be used for associative access to a database of 3D objects:
it would search for the shapes which are the closest to a shape selected by an operator.

2 Principle of the approach

A 3D object can be described by a function ª(x; y; z), where x; y; z are the coor-
dinates in the 3D world. This function may be either binary (1 inside the object
and 0 outside), real valued (for instance it may represent the local density if such
information is available), or complex valued (for instance it may represent radar
backscatter coe¢cients).

A good feature vector should be invariant when the object is translated or ro-
tated. Translational invariance is easy to obtain, for instance by placing the origin
of the 3D coordinates at the center of gravity of the object. If required, volume
normalization can also be performed, for instance by choosing as unit of length
the distance between the origin and the farthest point of the object. Hence, as for
moments, we have to focus on rotational invariance. Of course, for some objects,
the rotation may be …xed by diagonalizing the inertia matrix. However, many
real objects have similar inertia values on at least two principal axes (for example,
this is the case for the vertebrae shown in …gure 11). Hence, the determination of
orientation using this method does not provide results accurate enough to discrim-
inate between similar shapes (average estimation error of 6 degrees for the vertebrae).

In this paper, we will use the following notation:

² i = p¡1
² R: the set of real numbers
² C: the set of complex numbers
² F : the space of di¤erentiable functions from R3 to C, with …nite energy (i.e.R R R jª(x; y; z)j2 dx dy dz <1)
² FS : the space of di¤erentiable functions from [0; ¼]x[0; 2¼] to C, with …nite energy
(i.e.

R
dÁ
R
sinµ dµjª(µ; Á)j2 <1)

² AH : the Hermitian transpose of matrix A

4
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² OV : the space of linear operators from V to V
² Lx; Ly; Lz: angular momentum operator along X;Y; and Z axes

² L2: “square of angular momentum” operator
² hujvi: the scalar product of vectors u and v

Figure 1 shows the conventions for spherical coordinates.

x

y

M(x,y,z)

z
r

X

Y

Z

Figure 1: Conventions for spherical coordinates

Then we have:

x = r sinµ cosÁ

y = r sinµ sinÁ

z = r cosµ

with:

r ¸ 0
0 · µ · ¼
0 · Á < 2¼

5
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Any 3D object can be considered a vector jªi of F (using Dirac notation for vectors).
F can also be considered a space of wave functions, as they are de…ned in quantum
mechanics. A rotation in R3 is a linear operator R3, transforming (x; y; z) into
(x0; y0; z0). This operator is unitary (RH3 = R¡13 ). To each operator R3 of OR3, we
can associate a linear operator R of OF . R transforms jªi in jª0i = Rjªi such that
8(x; y; z);ª0(x0; y0; z0) = ª(x; y; z). It can be proved that R is unitary [14] [16].

There exists a strong link between the rotational operator and the angular
momentum operator used in quantum mechanics [4] [14]:

R = e¡i®(uxLx+uyLy+uzLz) (1)

where ® is the angle of rotation, and [ux uy uz]T is the axis of rotation (unitary vector).

Due to its major role in quantum mechanics, the angular momentum has been widely
studied. Hence, equation 1 suggests that it could be interesting to use some results
of quantum mechanics to deal with rotations of 3D objects.

Figure 2 provides an overview of the proposed approach. The object jªi is
decomposed on the orthonormal basis of F composed of the eigenvectors of the
angular momentum (section 3). In this basis, the rotational operator becomes
irreducible, and it is possible to construct contravariant tensors of order 1 using the
components of jªi. Then, using tensor contraction, we obtain invariants (section 4).
Some properties of the invariants are given in section 5.

We …rst study the objects represented by a vector of FS . For example, ª(µ; Á)
may be the distance between the origin and the farthest point of the object in the
direction (µ; Á). Of course, for some objects of complex shape (objects with holes,
for instance), there is a certain loss of shape information in this kind of description.
Afterwards, we extend our method to objects described by a vector of F (section 6),
and we show that moment invariants can be derived as a particular case of the ap-
proach. Finally, in section 7, we provide experimental results to illustrate the method.

3 Decomposition on eigenvectors of angular mo-
mentum

In quantum mechanics, observations concerning angular momentum are de…ned by
the action of two operators [4] [14]: L2 (square of angular momentum) and LZ
(projection of angular momentum along the Z axis). These operators are de…ned
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on this basis

Decomposition on a basis

Reduced invariants

Recognized shape

Classifier

Invariants

reduction
Invariants

contraction
Tensor

of order 1
Contravariant tensors

of order 1
contravariant tensors

computation of

Components of the object
of angular momentum
composed of eigenvectors

3D representation
Normalized

normalisation
Scale

normalization
Translation

of an object
3D representation

3D reconstruction

Acquisition and

Scene

Figure 2: Overview of the approach

below:

L2 = ¡
Ã
@2

@µ2
+
1

tgµ

@

@µ
+

1

sin2µ

@2

@Á2

!
(2)

LZ =
1

i

@

@Á
(3)

where the Planck constant has been omitted (since it is only a multiplicative factor,
it is not useful for our purpose).
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L2 and LZ are commuting Hermitian operators. Hence, there exists an or-
thonormal basis composed of their common eigenvectors. These eigenvectors are
known as the “spherical harmonics”: jYlmi. They can be computed using recurrent
equations (see appendix 1), and are de…ned for l = 0; 1; 2; :::;1 andm = ¡l; :::; l¡1; l.

The decomposition of the shape jªi onto the basis fjYlmig is obtained by the
scalar products of the shape with the vectors of the basis:

cml = hYlmjªi =
Z 2¼

0
dÁ
Z ¼

0
sinµ dµ Y ¤lm(µ; Á) ª(µ; Á) (4)

We compute these coordinates for l = 0; 1; 2; :::; L and m = ¡l; :::; l ¡ 1; l, where L
is a constant. Increasing the value of L provides a more precise description of the
shape, but also increases computation time. Our experiments (section 7) have shown
that a small value of L is su¢cient in practice. Since, the object is represented by
a discrete array, the components corresponding to high values of l represent mainly
sampling noise.

Clearly, it is possible to reconstruct the shape if we know cml :

jªi =X
l;m

cml jYlmi (5)

We will now show that the matrix representation of the rotational operator is very
simple in the basis of spherical harmonics. Let us denote:

² L+ = Lx + iLy
² L¡ = Lx ¡ iLy
² u+ = ux+iuy

2

² u¡ = ux¡iuy
2

Using equation (1) and Taylor expansion, the action of a rotational operator on a
spherical harmonic is:

RjYlmi = e¡i®(u¡L++u+L¡+uzLz)jYlmi
= jYlmi

¡i®(u¡L+ + u+L¡ + uzLz)jYlmi
¡®

2

2!
(u¡L+ + u+L¡ + uzLz)2jYlmi

¡::: (6)

8
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But we have [4] [14]:

² L2jYlmi = l(l + 1)jYlmi
² LzjYlmi = mjYlmi
² L+jYlmi =

q
l(l + 1)¡m(m+ 1)jYl;m+1i

² L¡jYlmi =
q
l(l + 1)¡m(m¡ 1)jYl;m¡1i

RjYlmi is therefore a linear combination of fjYl;¡li; jYl;¡l+1i; :::; jYllig. Hence, FS can
be decomposed as a direct sum of orthogonal subspaces, each of which is globally
invariant to rotation:

² E0, a basis of which is fjY00ig
² E1, a basis of which is fjY1;¡1i; jY10i; jY11ig
² E2, a basis of which is fjY2;¡2i; jY2;¡1i; jY20i; jY21i; jY22ig
² etc

If a vector belongs to El, its image resulting from any rotation will also belong to El.
Then, in the basis of spherical harmonics, the rotational operator takes the special
form below:0BBBBBBBBBBBBBBBBBBBBBBB@

~c00
~c¡11
~c01
~c11
~c¡22
~c¡12
~c02
~c12
~c22
:
:
:

1CCCCCCCCCCCCCCCCCCCCCCCA

=

0BBBBBBBBBBBBBBBBBBBBBBB@

D0 0B@ D1

1CA
0BBBBBB@ D2

1CCCCCCA
:
:
:

1CCCCCCCCCCCCCCCCCCCCCCCA

0BBBBBBBBBBBBBBBBBBBBBBB@

c00
c¡11
c01
c11
c¡22
c¡12
c02
c12
c22
:
:
:

1CCCCCCCCCCCCCCCCCCCCCCCA

(7)

Since they form a basis of FS , the spherical harmonics are able to represent any
closed 3D shape. Moreover, the size of the set of coe¢cients can be chosen so that

9
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the spherical harmonics characterize the desired details of the shape.

It is worth noting that spherical harmonics have been used in a recent paper
by Wen Chen and Huang [15] to model the time-varying deformations of the left
ventricle of the heart. The 3D coordinates of coronary artery bifurcation points
are obtained by cineangiography. Then, the coe¢cients of the spherical harmonic
interpolation are computed by an optimization algorithm. According to [15], an
order of approximation L = 3 was enough to provide satisfactory modelling of
the heart deformations. The method we propose here could be used for automatic
recognition of pathological heart deformations.

4 Computation of invariants

4.1 Tensor theory

Some tensor de…nitions and properties are presented here. A more complete intro-
duction to tensor theory may be found in [13] or [10]. A short introduction to tensor
theory, and an example of application to planar object orientation determination
may also be found in [3].

Let us consider a vector space V and a basis feig. Any vector x of V may be
represented as

x =
X
i

xiei = x
iei (8)

where, in the rightmost expression, the Einstein summation convention has been
assumed (implicit summation over any repeated index which is simultaneously in an
upper and a lower position).

A new basis f~eig is related to the original basis by:

~ei = ®
j
iej or ei = ¯

j
i ~ej (9)

where ®ji denotes a linear transformation, and ¯
j
i its inverse. Any form A

m1:::mq

l1:::lp
is

said to be a tensor of covariant rank p and contravariant rank q if it transforms itself
according to the equation:

~A
n1:::nq
k1:::kp

= ®l1k1:::®
lp
kp¯

n1
m1
:::¯nqmq

A
m1:::mq

l1:::lp
(10)

10

Signal Processing, vol 45, no 1, pp. 1-22, July 1995



G. Burel & H. Hénocq 3D invariants

The outer product of two tensors is de…ned as the product of elements:

Aijklm = ´ijl ¹km (11)

The inner product (or tensor contraction) is de…ned as the operation of pairing
covariant and contravariant indices from two tensors, and summing individually over
each such pair. For example, the operations

Aijm = ´ijn ¹nm (12)

and
Ai = ´ijn ¹nj (13)

preserve tensor properties.

A vector is a tensor of order 1. It can be represented either by its covariant
or its contravariant components:

ai = hajeii (14)

a = aiei (15)

Hence,

ai = hajejjeii
= (aj)¤hejjeii (16)

If the basis is orthonormal, then:

ai = (a
i)¤ (17)

4.2 Construction of tensors

Let us consider a vector cl of El. We have cl = cml Ylm. Therefore, according to
equation (15), cml is a contravariant tensor of order 1. It must be pointed out that
only m is a tensorial index, while l is just a parameter indexing the subspace El in
which the tensor is de…ned. Since fYlm;¡l · m · lg is an orthonormal basis of El,
the covariant components of cl are clm = (cml )

¤.

The theorem below allows constructing new tensors:

11
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Theorem [4][5]:
If Tml is a tensor of El, then:

¦(l1; l2)
m
l =

X
m1;m2

hl1 m1 l2 m2jl miTm1
l1
Tm2
l2

(18)

is also a tensor of El.

The coe¢cients hl1 m1 l2 m2jl mi are Clebsch-Gordan coe¢cients. They are
coupling coe¢cients between the angular momenta of two particles. Clebsch-Gordan
coe¢cients can be computed using the recurrent equations given in appendix 2.
Thanks to this result, we can construct new tensors. In what follows, we will use:

¦(l1; l2)
m
l =

l1X
m1=¡l1

l2X
m2=¡l2

hl1 m1 l2 m2jl micm1
l1
cm2
l2

(19)

=
l1X

m1=¡l1
hl1; m1; l2; m¡m1jl; micm1

l1
cm¡m1
l2

(20)

Some properties of Clebsch-Gordan coe¢cients are given in appendix 2. To transform
(19) in (20), we used property (C1).

4.3 Using tensor contraction to derive invariants

By multiplying a contravariant tensor of order 1 with a covariant tensor of order
1 and equating the indices, we obtain a tensor of order 0 (an invariant). Since we
have shown (17) that the variance of a tensor can be modi…ed by conjugation of
its components (because fjYlmig is orthonormal), we can construct the following
invariants:

N(l) = cml clm =
lX

m=¡l
cml [c

m
l ]
¤ (21)

P (l; l1; l2) = ¦(l1; l2)
m
l clm =

lX
m=¡l

¦(l1; l2)
m
l [c

m
l ]
¤ (22)

Q(l; l1; l2; l3; l4) = ¦(l1; l2)
m
l ¦(l3; l4)lm =

lX
m=¡l

¦(l1; l2)
m
l [¦(l3; l4)

m
l ]
¤ (23)

The invariants N(l) are computed for l = 0; 1; :::; L. Many symmetry relations
between the other invariants allow to restrict the computation to a few index values,

12
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as demonstrated in the next section.

Obviously, the process we have followed to construct these invariants could be
continued as far as desired. For instance, we could de…ne another tensor:

T (l1; l2; l3; l4; l5; l6)
m
l =

X
m1;m2

hl1m1l2m2jlmi¦(l3; l4)m1
l1
¦(l5; l6)

m2
l2

(24)

and use T to construct other invariants. However, we already have a large number
of invariants, so here we will restrict the study of properties to invariants N;P; and Q.

5 Symmetry relations between invariants

Many properties of the invariants are established. The proofs which are most di¢cult
to derive are given in appendix 3. Some properties are valid for objects described by
real valued functions only and are identi…ed by the (R) symbol.

Results concerning the tensors

P1: if ª(µ; Á) is a real function, then cml = (¡1)m(c¡ml )¤

P2: Permutation
¦(l2; l1)

m
l = (¡1)l1+l2+l¦(l1; l2)ml

P3 (R): Conjugation
[¦(l1; l2)

m
l ]
¤ = (¡1)l1+l2+l(¡1)m¦(l1; l2)¡ml

Results concerning invariants N

P4: All N(l) are real and positive

13
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Results concerning invariants P

P5: Permutation
a) P (l; l2; l1) = (¡1)l1+l2+lP (l; l1; l2)
b) (R) P (l2; l; l1) = (¡1)l+l1

q
2l+1
2l1+1

P (l; l1; l2)

Consequence: if fl0; l01; l02g is a permutation of fl; l1; l2g, then P (l0; l01; l02) is fully
de…ned by the knowledge of P (l; l1; l2). Hence, the computations can be reduced to
l2 · l1 · l.

P6 (R): Conjugation
P (l; l1; l2)

¤ = (¡1)l1+l2+lP (l; l1; l2)

P7 (R):
a) If l1 + l2 + l is odd, then P (l1; l2; l) is pure imaginary
b) If l1 + l2 + l is even, then P (l1; l2; l) is real

P8: Special cases
a) (R) P (l; l1; l1) is real
b) If l is odd, then P (l; l1; l1) = 0

Results concerning invariants Q

P9: Permutation
a) Q(l; l2; l1; l3; l4) = (¡1)l1+l2+lQ(l; l1; l2; l3; l4)
b) Q(l; l1; l2; l4; l3) = (¡1)l3+l4+lQ(l; l1; l2; l3; l4)
c) (R) Q(l; l3; l4; l1; l2) = (¡1)l1+l2+l3+l4Q(l; l1; l2; l3; l4)

P10 (R): Conjugation
Q(l; l1; l2; l3; l4)

¤ = (¡1)l1+l2+l3+l4Q(l; l1; l2; l3; l4)

P11 (R):

14
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a) If l1 + l2 + l3 + l4 is odd, then Q(l; l1; l2; l3; l4) is pure imaginary
b) If l1 + l2 + l3 + l4 is even, then Q(l; l1; l2; l3; l4) is real

P12: Special cases

a)If l is odd, then:

² Q(l; l1; l1; l3; l4) = 0
² Q(l; l1; l2; l3; l3) = 0

b) (R) Q(0; l1; l1; l3; l3) = (¡1)l1+l3q
(2l1 + 1)(2l3 + 1)

N(l1)N(l3)

c) Q(l; l1; l2; 0; l) = c00P (l; l1; l2)
(Hence, we can impose l; l1; l2; l3; l4 ¸ 1)

Reduced invariants

Due to the properties above, the computation of the invariants can be restricted to
some values of the indexes.

The N(l) are computed for l = 0; 1; :::; L.

The P (l; l1; l2) are computed for the indexes that verify simultaneously the
conditions below:

1 · l2 · l1 · l · L
l1 ¡ l2 · l · l1 + l2
l2 6= l1 or l even
l1 6= l or l2 even

The Q(l; l1; l2; l3; l4) are computed for indexes that verify simultaneously the condi-
tions below:

15
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0 · l2 · l1 · L
0 · l4 · l3 · l1
1 · l · L
l1 ¡ l2 · l · l1 + l2
l3 ¡ l4 · l · l3 + l4
l2 6= l1 or l even
l4 6= l3 or l even

Then we de…ne a set of invariants, which we call “reduced invariants”:

n(l) = [<fN(l)g] 12

p(l; l1; l2) = H3(<fP (l; l1; l2)g) if l + l1 + l2 is even
= H3(=fP (l; l1; l2)g) if l + l1 + l2 is odd

q(l; l1; l2; l3; l4) = H4(<fQ(l; l1; l2; l3; l4)g) if l1 + l2 + l3 + l4 is even
= H4(=fQ(l; l1; l2; l3; l4)g) if l1 + l2 + l3 + l4 is odd

where Hn(a) = sign(a):jaj 1n , and < and = stand for the real part and the imaginary
part, respectively.

For classi…cation, the n; p; q coe¢cients are provided to the input of a classi-
…er. The classi…er could well be a k-nearest-neighbours, a Bayesian classi…er, or a
neural network.

6 Extension to full 3D description

6.1 Principle

Until now, the object has been described by a function ª(µ; Á). However, for objects
of complex shapes, this description may be ambiguous (i.e. two di¤erent objects may
have the same description). The objective of this section is to extend the method
to objects described by a function ª(x; y; z) (or equivalently ª(r; µ; Á) in spherical
coordinates).

16
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To follow the same approach as before, we …rst have to …nd an orthonormal
basis of F in which the rotational operator has an irreducible form. As before, we
will try to …nd a basis of eigenvectors common to L2 and LZ . The eigen-equations are:

L2j­klmi = l(l + 1)j­klmi (25)

LZ j­klmi = mj­klmi (26)

where k is an index we have added to take into account possible degeneracy. Since
L2 and LZ do not depend on r, k can be considered a parameter. Hence, the general
form of the solution is:

­klm(r; µ; Á) = Rkl(r)Ylm(µ; Á) (27)

where Ylm(µ; Á) is a spherical harmonic, and Rkl(r) is the integration constant (it
can be proved [4][14] that Rkl(r) does not depend on m).

The decomposition of a shape jªi onto the basis fj­klmig is obtained from
the scalar products of the shape with the vectors of the basis:

cmkl = h­klmjªi =
Z 1

0
r2dr

Z 2¼

0
dÁ
Z ¼

0
sinµ dµ ­¤klm(r; µ; Á) ª(r; µ; Á) (28)

It is possible to reconstruct the shape if we know the cmkl:

jªi = X
k;l;m

cmklj­klmi (29)

Once the cmkl have been computed, invariants are constructed using the tensor-based
method described in previous sections. One has only to replace each li by (ki; li) in
the equations.

There are many solutions for the functions Rkl(r). The only condition is that
fj­klmig be an orthonormal basis of F . The more natural solution would be to
add an operator to avoid the degeneracy, as may be done by a …eld in quantum
mechanics. This approach is described in appendix 4. However, we prefer to look for
a basis composed of harmonic functions, since with a harmonic basis, determining
an upper bound for k is easy (it only requires determining up to which frequency we
want to analyse the shape).

To obtain a discrete spectrum, the transformation domain must be limited in
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space (the spectrum should be discrete because, otherwise, k would be a continuous
index). Since any real object is …nite, it can always be enclosed in a sphere of radius
1 by a suitable choice of the unit of length. Let FV be the subspace of F composed
of functions from V to C, where V is the volume of the unit sphere of R3. We are
looking for an orthonormal basis of FV . Let us check that:

Rk(r) =
p
2
sin(¼kr)

r
(30)

where k ¸ 1, is a solution. We have to check that this is an orthonormal system,
and that it generates FV .

Orthonormality:

h­klmj­k0l0m0i =

Z 1

0
r2dr

Z 2¼

0
dÁ

Z ¼

0
sin µdµR¤k(r)Y

¤
lm(µ; Á)Rk0(r)Yl0m0(µ; Á)

= hYlmjYl0m0i
Z 1

0
r2drRk(r)Rk0(r)

= ±kk0±ll0±mm0 (31)

because Z 1

0
r2Rk(r)Rk0(r)dr = 2

Z 1

0
sin(¼kr) sin(¼k0r)dr

=

Z 1

0
fcos(¼(k ¡ k0)r)¡ cos(¼(k + k0)r)gdr

= ±kk0 (32)

Generation of FV :

We must check that any vector of FV can be decomposed onto this basis. We can
write:

ª(r; µ; Á) =
X
l;m

alm(r)Ylm(µ; Á) (33)

with:

alm(r) =

Z 2¼

0
dÁ

Z ¼

0
sin µdµY ¤lm(µ; Á)ª(r; µ; Á) (34)

because fjYlmig is an orthonormal basis of FS . Let us de…ne a function ~a(r):

~alm(r) = ~alm(r ¡ 2) (35)

18
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~alm(¡r) = ¡~alm(r) (36)

~alm(r) = r alm(r) for 0 · r · 1 (37)

~a(r) is an odd function of period 2. Hence, its decomposition in Fourier series is:

~alm(r) =
1X
k=1

bklm sin(¼kr) (38)

where the bklm are unique. Let cmkl =
bklmp
2
. Then:

alm(r) =
1X
k=1

cmklRk(r) (39)

where the cmkl exist and are unique. Therefore,

jªi =
1X
k=1

1X
l=0

lX
m=¡l

cmklj­klmi (40)

6.2 Determination of the decomposition level

In practice, the coe¢cients cmkl are calculated for k = 1; 2; :::;K. In this section, we
want to determine a suitable value of K. At …rst, let us consider objects described
by a binary function ª(r; µ; Á) (1 inside the object and 0 outside). Let us consider
that, in any direction (µ; Á), there are never more than P intersections with the
surface and let us denote the corresponding distances as (r1; r2; : : : ; rP ). Figure 4
shows a function aµ;Á(r) = ª(r; µ; Á) for the object of …gure 3.

x

y

z

r1
r2

r3 1

Figure 3: Example of object: P=3
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r

a(r)
1

0 1r3r2r1

Figure 4: Example of function aµ;Á(r)

Using (27) and (29) we can write:

ª(r; µ; Á) =
1X
k=1

Rk(r)ck(µ; Á) (41)

where
ck(µ; Á) =

X
l;m

cmklYlm(µ; Á) (42)

Then, using (41) and (32), we have:

ck(µ; Á) =
Z 1

0
r2drRk(r)ª(r; µ; Á) (43)

=
p
2
Z 1

0
rsin(¼kr)ª(r; µ; Á)dr (44)

Since ª(r; µ; Á) is a binary function, equation (44) can be written:

ck(µ; Á) =
PX
p=1

(¡1)p+1Fk(rp) (45)

where
1p
2
Fk(r) =

Z
rsin(¼kr)dr =

1

(¼k)2
sin(¼kr)¡ r

(¼k)
cos(¼kr) (46)

The coe¢cients cmkl are computed for k = 1; :::;K, then, using (42), ck(µ; Á) is known
for k = 1; :::;K. Hence (45) provides K equations, the unknowns of which are
(r1; r2; : : : ; rP ). Therefore, using the a priori knowledge that the object is originally
described by a binary function, the shape is determined without ambiguity when
K ¸ P . For most natural objects, except those with very complex shapes, we have
P · 3. We can conclude that K = 3 is usually enough to represent the shape without
losing information. Of course, in applications were objects have very complex shapes,
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the value of K might be increased slightly.

When the object is originally represented by a non-binary function (for exam-
ple, it may be a function which depends on the local density of water, such as in
nuclear magnetic resonance), K should be higher if we want cmkl to represent the
object without losing information. Figure 5 shows the reconstruction of aµ;Á(r) for
some values of K. However, it must be stressed that a lossless representation of the
shape is not always necessary to discriminate between shapes.

r1

K=3a(r)
1

0 r1 r2 r3 r1r3r2r10

1

K=10a(r)

r1r3r2r1

1

K=20

a(r)

0 r

K=100a(r)
1

r3 1r2r10

Figure 5: Reconstruction of aµ;Á(r) for some values of K

6.3 Link with moments

In this paragraph, we show that 3D moment invariants [9] [12] can be derived from a
degenerate case of our approach. Let us consider the normalized set of functions:

­klm(r; µ; Á) =
1p
2k + 3

rkYlm(µ; Á) (47)

where k = l + 2n and n ¸ 0. The interest of the constraint on k will appear
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later: without it, we could not obtain the moments. This set of functions is not
orthogonal, nor is it a basis. However, the subset corresponding to a given k is
orthogonal. Another interesting orthogonal subset is the subset of functions with
k = l. In quantum mechanics, these functions are known as l-pole moments, and
they are usually denoted as Qlm(r; µ; Á). The quadrupole moments Q2m are often
used to study systems of particles. The set of l-pole moments is not a basis of F :
it generates only the subspace of functions with null Laplacian. This can be easily
proved, since the Laplacian of Qlm is given by:

p
2l + 3¢Qlm(r; µ; Á) =

Ã
1

r

@2

@r2
r ¡ L

2

r2

!³
rlYlm(µ; Á)

´
=

1

r

³
l(l + 1)rl¡1Ylm(µ; Á)¡ l(l + 1)rl¡1Ylm(µ; Á)

´
= 0

In appendix 1, we show that the spherical harmonic Ylm is a linear sum of terms in
sinmµ cosaµ sinm¡bÁ cosbÁ, where a 2 fl ¡m; l ¡m¡ 2; :::g, a ¸ 0, and 0 · b · m.
Due to the relation between (x; y; z) and (r; µ; Á), given in section 2, we obtain:

sinmµ cosaµ sinm¡bÁ cosbÁ = xbym¡bza=rm+a (48)

Hence, the scalar product cmkl = h­klmjªi is a linear sum of terms in:Z Z Z
rk¡m¡axbym¡bzaª(x; y; z)dxdydz (49)

Since a = l ¡ m ¡ 2q and k = l + 2n, rk¡m¡a = r2(q+n) can be replaced by
(x2 + y2 + z2)q+n. The development of the integral (49) provides moments of order
k only (because the sum of the exponents is [2q + 2n] + b + [m-b] + [l-m-2q] =
l + 2n = k). Finally, it appears that cmkl is a linear sum of moments of order k.
Then, we can obtain moment invariants by using the tensor-based method described
in section 4 (for a given k, the functions (47) are orthonormal, and their angular
dependence is given by the spherical harmonics, hence the tensor properties used to
derive invariants still apply).

As an example, let us show that N(2; 2) is a function of two moment invariants of
Sadjadi. Using the explicit expressions of the l = 2 spherical harmonics given in
appendix 1, one can check easily that for l = 2, we have the following quadrupole
moments:

Q2;§2(x; y; z) =

s
3

2
°(x§ iy)2 (50)
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Q2;§1(x; y; z) = ¨
p
6°z(x§ iy) (51)

Q2;0(x; y; z) = °(2z
2 ¡ x2 ¡ y2) (52)

where ° =
q

5
112¼

. Then, since cmll =
R R R

Q¤lm(x; y; z)ª(x; y; z)dxdydz, we have:

c§222 =

s
3

2
°(Mx2 ¡My2 ¨ 2iMxy) (53)

c§122 = ¨
p
6°(Mxz ¨ iMyz) (54)

c022 = °(2Mz2 ¡Mx2 ¡My2) (55)

where Mx2;My2; ::: are the second order moments. Finally, the invariant N(2; 2) is:

N(2; 2) =
2X

m=¡2
jcm22j2 (56)

= 4°2(J21 ¡ 3J2) (57)

where
J1 =Mx2 +My2 +Mz2 (58)

J2 =Mx2My2 +Mx2Mz2 +My2Mz2 ¡M2
xz ¡M2

yz ¡M2
xy (59)

In fact, J1 and J2 are the moment invariants of Sadjadi ([12], p. 134). N(2; 2) is also
proportional to the moment invariant º2;2;0;0 proposed in [9]. Similarly, we can show

that N(2; 0) =
1

28¼
J21 .

Hence, the moment invariants can be derived using our approach just by choosing
a special set of functions for the decomposition of the object. Furthermore, this
approach is more simple than previous techniques proposed to derive 3D moment
invariants, in the sense that here a generic set of equations is derived, unlike previous
methods where programming a speci…c formula for each moment invariant was
required. However, when only a small number of features is needed, the approaches
proposed by Sadjadi [12] and Lo [9] are easier to implement.

It should be pointed out that, unlike our standard 3D invariants, moment in-
variants use partial shape information only, since the set (47) is not a basis of F .
Hence, it is clear that many di¤erent shapes can produce exactly the same moment
invariants (which occurs when the shapes have the same projections on the subspace
generated by the set (47)), in which cases these shapes cannot be discriminated by a
moment-based approach.
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Furthermore, there are more standard 3D invariants than moment invariants
because, for moments, the index k is restricted to be equal to l + 2n. Hence, to
provide a given number of invariants, the moment-based approach requires higher
values of k than our approach. This is a drawback of moment-based methods, since,
as k increases, the calculations become less reliable. Finally, since the functions
which are used to generate the moments are not orthogonal, moment invariants are
likely to provide more correlated information than the standard 3D invariants.

7 Experimental Results

7.1 The spherical harmonics and the decomposition of an
object

Figure 6 shows some spherical harmonics Ylm represented as a function r = jYlm(µ; Á)j.
Figure 7 shows the reconstruction of a vertebra at various resolutions (here, and in all
the experiments described below, the objects are represented by vectors of FS). The
original 3D image of the vertebra comes from scanner data. A simple thresholding
has been performed to extract the bone. The cml are computed for 0 · l · L, after
which the shape of the vertebra is reconstructed using equation (5). Increasing the
value of L provides a better representation of the shape.

7.2 Veri…cation of 3D invariance

Figure 8 shows the values of the invariants for an F14 aircraft (…g. 10). The
resolution for decomposition is L = 9. For this value of L, we have 10 invariants n,
80 invariants p, and we add 60 invariants q. These invariants are indexed from 0 to
149, and their values are represented on the diagrams. The top diagram represents
the superposition of the invariants for 3 rotations of the object. This con…rms 3D
invariance, as the curves are almost perfectly superposed. The residual di¤erence
(bottom diagram) is due to sampling.
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Figure 6: Some spherical harmonics (from left to right and top to bottom:
Y10; Y11; Y20; Y21; Y50; Y51)

7.3 In‡uence of sampling

Figure 9 shows the in‡uence of the sampling step size on the values of the in-
variants. In practice, equation (4) is evaluated by discretizing µ and Á. Angular
sampling step sizes of 2o, 5o and 20o have been tested. The top diagrams show the
values of the invariants for sampling step sizes of 2o and 5o, and 2o and 20o, and
the bottom diagrams show the di¤erences. These diagrams show that the error
on the values of the invariants becomes noticeable only for very rough sampling (20o).

7.4 Recognition results using a nearest-neighbour classi…er

Nearest-neighbour classi…cation consists of comparing the feature vector of the object
with feature vectors of models. The comparison is performed with the help of a
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Figure 7: Reconstruction of a vertebra at various resolutions (from left to right and
top to bottom: L= 2, 4, 6, 10, 20, and original)

distance measure:

d(object;model) =
sX

i

(Iobject;i ¡ Imodel;i)2 (60)

where Iobject;i stands for the ith invariant of the object and Imodel;i stands for the
ith invariant of a model. The model providing the minimal distance determines the
object class.

Let us consider the three models on the right side of …gure 10 (F14-1, X29-1,
F15-1). The aircraft to be recognized is shown on the left side of the …gure. 3D
invariants of this aircraft are computed and compared with the invariants of the
models. The distances are labelled on the arrows. The minimal distance is obtained
when the object is compared with the X29 model. Hence, nearest-neighbour
classi…cation would provide the correct result, as the object on the left side is in fact
an X29 aircraft.

The table below shows the distances between three objects to recognize and three
models. As expected, the minimal distances are always obtained on the diagonal
(i.e. when the object is compared with the model of the correct class).
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invariants rotation 2

invariants rotation 1

invariants rotation 0

F14

I(n)

0.2

n150

F14

invar. rot. 0 -- invar. rot. 2

invar. rot. 0 -- invar. rot. 1

0

-0.006

n

I0(n)-I(n)

150

0.006

Figure 8: Values of the invariants for various orientations of the F14

X29-1 F14-1 F15-1
X29-2 2 380 158
F14-2 360 3 130
F15-2 167 122 3

For these experiments, the resolution level was L=9. The invariants used were the 10
invariants n, the 80 invariants p plus the 60 …rst invariants q. The results illustrate
an interesting feature of the approach: the ability to discriminate between very
similar shapes.

Under the same conditions, the method is used to discriminate between two kinds
of vertebrae (class A and class B, whose shapes slightly di¤er: they are at di¤erent
locations in the spinal column). An example of each class is shown in …gure 11.
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0 n150

0.2

I_e2(n),I_e5(n)

F14

invariants: sampling step = 2

invariants: sampling step = 5

n1500

0.2

I_e2(n),I_20(n)

F14

invariants: sampling step = 2

invariants: sampling step = 20

150 n

F14

I_e2(n)-I_e5(n)

0

0.004

0.016

150 n

I_e2(n)-I_e20(n)

F14

0.04

0

-0.02

Figure 9: In‡uence of the sampling step size on the values of the invariants (F14)

The table below shows the average distance between examples of both classes and
two models.

model-A model-B
class-A 5 37
class-B 38 7

Figure 12 shows a vertebra of class B obtained with poor tuning of the acquisition
process. This has created a hole through the vertebra. To evaluate the robustness of
the discrimination, the table below gives the distance between this 3D image and the
models of both classes.

model-A model-B
Poor acquisition, class-B 48 23

Hence, the image would still be correctly classi…ed, but the numerical values show
that further degradation in the acquisition could hardly be tolerated. While with
today scanner equipment it is easy to obtain good data (for the experimentation
above, the tuning was intentionally degraded), such degradations could occur in
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X29-2

F14-1

X29-1

F15-1

d=380

d=2.3

d=158

Figure 10: Comparison of an unknown object with three models

Figure 11: Two classes of vertebrae

other applications (for example, when using a laser range …nder), where self-occlusion
of the object causes a severe degradation of its 3D description. A solution to this
problem could be to improve the classi…cation process by using a learning technique
to train a classi…er (a neural network with the invariants as inputs, for example) to
become robust with respect to self-occlusion. This kind of approach was proposed
and evaluated in a previous paper [2] for objects described by 2D Fourier descriptors,
and produced good results on real-world data.

Finally, let us consider a problem of discrimination of bones: …gure 13 shows
some scanner slices of various kinds of bones (radii, ulnae, humerus, hip bone,
vertebra). Ten classes were de…ned: the right (R) and left (L) radius, ulna, humerus
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Figure 12: Poorly segmented vertebra of class B

and hip bone, plus the 2 classes of vertebrae (A and B) mentioned above. The
invariants were …rst computed on one example of each class to create the model
vector of the class. Then, using a data-base containing 4 other examples of each
class, the average distance between the examples of the class and the models was
computed. The result is shown in the table below (Only one half is shown, for ease of
reading. Anyway, the table is symmetrical as far as 2 signi…cant digits are considered).

Figure 13: Scanner slices of bones: 2 radii, 2 ulnae, 1 humerus, 1 hip bone, and 1
vertebra
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model radius ulna humerus vertebra hip bone
class L R L R L R A B L R
radius L 4 14 50 130 150 140 540 490 560 480

R 3 48 130 150 140 540 490 560 480
ulna L 3 120 150 150 540 490 560 470

R 5 230 220 470 420 520 430
humerus L 4 31 590 540 600 540

R 3 590 540 600 530
vertebra A 5 37 460 500

B 7 420 450
hip bone L 4 330

R 2

This table shows that, as expected, the distance is low when the example is compared
with the correct model (diagonal). Furthermore, the method is able to discriminate
between the left and right versions of the bones (especially, the hip bones and the
ulnae produce high distances between their left and right versions). Finally, as
expected, long bones (radius, ulna, humerus) are closer to other long bones than to
more compact bones (vertebra, hip bone).

7.5 Study of redundancies using PCA

Figure 14 shows the eigenvalues obtained by Principal Component Analysis (PCA) on
the set composed of the 10 invariants N plus the 80 invariants P . The decomposition
level was L = 9 and a set of 2000 random objects was generated by random choice
of the cml values (under the constraint provided by property P1). This …gure shows
that there is no null eigenvalue, so there are no remaining implicit linear equations
between the invariants considered here.

8 Conclusion

A theoretical framework to derive 3D invariants has been proposed. The approach
consists of decomposing 3D shapes onto an orthonormal basis composed of the
eigenvectors of the angular momentum operator, deriving contravariant tensors of
order 1, and then computing invariants by tensor contraction. Numerous invariants
are obtained, and we have established many symmetry properties between the
invariants. Experimental results show that these invariants are robust with respect
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n0 89

100

n

Figure 14: Eigenvalues obtained by PCA (90 invariants)

to sampling noise, and that they can be used to classify 3D shapes.

Such invariants o¤er an alternative to structural methods for description and
recognition of 3D shapes. Unlike 3D moment invariants, they do not require the
use of high orders, as the proposed framework allows the derivation of a large
number of invariants. Another interesting feature of the approach is the ability to
discriminate between very similar shapes. Further work will include the evaluation of
the discrimination power on larger data-bases, a study of reversibility (i.e. does any
subset of invariants characterize unambiguously the shape of an object at a given
resolution?), and application of tensors to 3D object positioning. Some properties
of the invariants may also be useful for automatic detection of symmetries of 3D
objects.
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Appendix 1: Properties of spherical harmonics

The spherical harmonics can be computed using recurrent equations [4] [14]:

Ylm(µ; Á) = Zlm(µ)e
imÁ where Zlm(µ) is real

Zl+1;m(µ) =

s
(2l + 1)(2l + 3)

(l +m+ 1)(l ¡m+ 1)

(
cos µZlm(µ)¡

s
(l +m)(l ¡m)
(2l + 1)(2l ¡ 1)Zl¡1;m(µ)

)

Zll(µ) = dl(sin µ)
l with dl =

(¡1)l
2ll!

s
(2l + 1)!

4¼

Zl;¡m(µ) = (¡1)mZlm(µ)

A useful property is Yl;¡m(µ; Á) = (¡1)mY ¤lm(µ; Á)

One can also prove [14] that there exists a link between the spherical harmonics and Leg-
endre Polynomials:

Ylm(µ; Á) = (¡1)m
s
2l + 1

4¼

s
(l ¡m)!
(l +m)!

Plm(cosµ)e
imÁ

This relation is true for m ¸ 0 (for m < 0, one can use the property above).

Plm(u) =
q
(1¡ u2)m dm

dum
Pl(u)

and Pl(u) is the Legendre Polynomial of order l:

Pl(u) =
(¡1)l
2ll!

dl

dul
(1¡ u2)l

Pl is a linear sum of ul; ul¡2; ul¡4; ::: Hence, Plm(cosµ) is the product of sinmµ with a poly-
nomial of degree l¡m in cosµ (which is a linear sum of cosl¡mµ; cosl¡m¡2µ; cosl¡m¡4µ; :::).
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Therefore, since cos(mÁ) and sin(mÁ) are homogeneous polynomials of de-
gree m in (cosÁ; sinÁ), the spherical harmonic Ylm is a linear sum of terms in
sinmµ cosaµ sinm¡bÁ cosbÁ, where 0 · a · l ¡ m and 0 · b · m. This property
will be used to derive the relation between our invariants and moments.

The explicit formulas for the …rst spherical harmonics are given below:

Y00(µ; Á) =
1p
4¼

Y1;§1(µ; Á) = ¨
r
3

8¼
sinµe§iÁ

Y1;0(µ; Á) =

r
3

4¼
cosµ

Y2;§2(µ; Á) =
r
15

32¼
sin2µe§2iÁ

Y2;§1(µ; Á) = ¨
r
15

8¼
sinµcosµe§iÁ

Y2;0(µ; Á) =

r
5

16¼
(3cos2µ ¡ 1)

Appendix 2: Properties of Clebsch-Gordan coe¢-
cients

Clebsch-Gordan coe¢cients are coupling coe¢cients between angular momenta of two
particles. They are real numbers, and some properties are given below [4] [14]:

C1: Condition of existence
hl1m1l2m2jlmi = 0 if the conditions below are not simultaneously veri…ed:

a) m = m1 +m2
b) jl1 ¡ l2j · l · l1 + l2
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c) ¡l1 · m1 · l1
d) ¡l2 · m2 · l2
e) ¡l · m · l

C2: OrthogonalityP
m1;m2

hl1m1l2m2jlmihl1m1l2m2jl0m0i = ±ll0±mm0P
l;mhl1m1l2m2jlmihl1m01l2m02jlmi = ±m1m1

0±m2m2
0

C3: Recurrenceq
l(l + 1)¡m(m¡ 1)hl1m1l2m2jlmi =

q
l1(l1 + 1)¡m1(m1 ¡ 1)hl1;m1 ¡ 1; l2;m2jl;m¡ 1i

+
q
l2(l2 + 1)¡m2(m2 ¡ 1)hl1;m1; l2;m2 ¡ 1jl;m¡ 1i

hl;m; l;¡mj0; 0i = (¡1)l¡mp
2l + 1

and h00lmjlmi = 1

C4: Symmetries
a) hl1;¡m1; l2;¡m2jl;¡mi = (¡1)l1+l2+lhl1m1l2m2jlmi
b) hl2m2l1m1jlmi = (¡1)l1+l2+lhl1m1l2m2jlmi
c) hl1m1l2m2jlmi = (¡1)l2+m2

s
2l + 1

2l1 + 1
hl2;¡m2; l;m; jl1;m1i

Appendix 3: Proof of some properties of the invari-
ants

P1:

(cml )
¤ = hYlmjªi¤
= h(Ylm)¤jª¤i
= h(¡1)mYl;¡mjªi

because ª¤ = ª and (Ylm)¤ = (¡1)mYl;¡m
= (¡1)mc¡ml
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P2:

¦(l2; l1)
m
l =

X
m1;m2

hl2m1l1m2jlmicm1
l2
cm2
l1

=
X
m1;m2

(¡1)l1+l2+lhl1m2l2m1jlmicm1
l2
cm2
l1

(using C4-b)

= (¡1)l1+l2+l¦(l1; l2)ml

P3:

[¦(l1; l2)
m
l ]
¤ =

X
m1;m2

hl1m1l2m2jlmi(cm1
l1
)¤(cm2

l2
)¤

=
X
m1;m2

(¡1)l1+l2+lhl1;¡m1; l2;¡m2jl;¡mi(¡1)m1+m2c¡m1
l1

c¡m2
l2

(using C4-a and P1)

= (¡1)l1+l2+l+m¦(l1; l2)¡ml
(using C1-a)

P5:
a)

P (l; l2; l1) = ¦(l2; l1)
m
l clm

= (¡1)l1+l2+l¦(l1; l2)ml clm (using P2)

= (¡1)l1+l2+lP (l; l1; l2)

b)

P (l; l1; l2) =
X

m;m1;m2

hl1m1l2m2jlmicm1
l1
cm2
l2
clm

=
X

m;m1;m2

(¡1)l2+m2

s
2l1 + 1

2l + 1
hl2;¡m2; l;mjl1;m1icm2

l2
(¡1)mc¡ml (¡1)m1cl1;¡m1

(using C4-c and P1)

=
X

m;m1;m2

(¡1)l2+m2

s
2l1 + 1

2l + 1
(¡1)l1+l2+lhl2;m2; l;¡mjl1;¡m1icm2

l2
(¡1)mc¡ml (¡1)m1cl1;¡m1

(using C4-a)
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= (¡1)l+l1
s
2l1 + 1

2l + 1
P (l2; l; l1)

(using C1-a)

P6:

P (l; l1; l2)
¤ =

X
m

[¦(l1; l2)
m
l ]
¤cml

=
X
m

(¡1)l1+l2+l+m¦(l1; l2)¡ml (¡1)m(c¡ml )¤

(using P3 and P1)

= (¡1)l1+l2+lP (l; l1; l2)

Appendix 4: Suppression of degeneracy using the
Hamiltonian

Here, we propose to suppress the degeneracy mentioned in section 6.1 using the Hamiltonian
operator corresponding to the electric …eld. In quantum mechanics, the eigenfunctions of
the electron in the hydrogen atom are the solutions to the system below:

Hj­klmi = Eklj­klmi
L2j­klmi = l(l + 1)j­klmi
LZ j­klmi = mj­klmi

where H is the Hamiltonian (energy operator), and Ekl its eigenvalues.

H = ¡
¹h

2¹

1

r

@2

@r2
r +

1

2¹r2
L2 ¡ q

2
e

r

where ¹h is the Planck constant, ¹ is the magnetic constant, and qe is the electric quantum.
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The solutions are:

Rkl(r) = r
le¡r=(k+l)

k¡1X
q=0

cqr
q

where

cq = ¡ 2(k ¡ q)
q(q + 2l + 1)(k + l)

cq¡1

and c0 is determined by the normalization condition. The practical problem with this kind
of solution is that it is di¢cult to determine an upper bound for k. Thence, in section 6.1,
we propose to use harmonic functions instead.

39

Signal Processing, vol 45, no 1, pp. 1-22, July 1995



G. Burel & H. Hénocq 3D invariants

List of Figures

1 Conventions for spherical coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Overview of the approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Example of object: P=3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4 Example of function aµ;Á(r) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5 Reconstruction of aµ;Á(r) for some values of K . . . . . . . . . . . . . . . . . . . . . 21

6 Some spherical harmonics (from left to right and top to bottom:
Y10; Y11; Y20; Y21; Y50; Y51) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

7 Reconstruction of a vertebra at various resolutions (from left to right and top to
bottom: L= 2, 4, 6, 10, 20, and original) . . . . . . . . . . . . . . . . . . . . . . . . . 26

8 Values of the invariants for various orientations of the F14 . . . . . . . . . . . . . . . 27

9 In‡uence of the sampling step size on the values of the invariants (F14) . . . . . . . 28

10 Comparison of an unknown object with three models . . . . . . . . . . . . . . . . . . 29

11 Two classes of vertebrae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

12 Poorly segmented vertebra of class B . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

13 Scanner slices of bones: 2 radii, 2 ulnae, 1 humerus, 1 hip bone, and 1 vertebra . . . 30

14 Eigenvalues obtained by PCA (90 invariants) . . . . . . . . . . . . . . . . . . . . . . 32

40

Signal Processing, vol 45, no 1, pp. 1-22, July 1995



G. Burel & H. Hénocq 3D invariants

Contents

1 Introduction 3

2 Principle of the approach 4

3 Decomposition on eigenvectors of angular momentum 6

4 Computation of invariants 10

4.1 Tensor theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4.2 Construction of tensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4.3 Using tensor contraction to derive invariants . . . . . . . . . . . . . . . . . . . . . . . 12

5 Symmetry relations between invariants 13

6 Extension to full 3D description 16

6.1 Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

6.2 Determination of the decomposition level . . . . . . . . . . . . . . . . . . . . . . . . 19

6.3 Link with moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

7 Experimental Results 24

7.1 The spherical harmonics and the decomposition of an object . . . . . . . . . . . . . . 24

7.2 Veri…cation of 3D invariance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

7.3 In‡uence of sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

7.4 Recognition results using a nearest-neighbour classi…er . . . . . . . . . . . . . . . . . 25

7.5 Study of redundancies using PCA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

8 Conclusion 31

41

Signal Processing, vol 45, no 1, pp. 1-22, July 1995




