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Registration of 3D objects using linear algebra

Gilles BUREL, Hugues HENOCQ, Jean-Yves CATROS

Thomson Broadband Systems, Av. Belle Fontaine, 35510 Cesson-S¶evign¶e, France

Abstract. A method for estimating the orientation of 3D objects with-

out point correspondence information is described. It is based on the

decomposition of the object onto a basis of spherical harmonics. Tensors

are obtained, and their normalization provides the orientation.

1 Introduction

Methods for estimating the orientation of 3D objects have largely focused on

polyhedral models [5], and numerous methods need point correspondence infor-

mation [6]. Another kind of approach is based on the minimization of a distance

between the objects to register, with respect to a set of parameters modeliz-

ing the 3D transformation. Such approaches avoid the need of correspondence

information, and may modelize non-rigid transformations, but they are compu-

tationally intensive. The use of genetic algorithms has been proposed recently

to speed up the algorithm [3].

In this paper, a method which is not restricted to polyhedral objects, and which

does not need point correspondence information is proposed. The method is fast

because the 3D transformation is computed directly, without iterative search.

The basic idea is to take pro¯t of linear algebra theory. The 3D object is de-

composed onto a basis of spherical harmonics, wherefrom tensors are obtained.

The normalization of these tensors determines the orientation of the object with

respect to a standard position. The input of the method is a 3D representation of

the surface of the object. For instance, in the medical domain, such information

can be easily derived from scanner data.

The paper is organized as follows. In the next section, the principle and the

interest of the representation of a 3D object in the basis of spherical harmonics

are presented. Then, the determination of the 3D transformation is explained.

Finally, experimental results on a problem of registration of vertebrae are shown.

2 Decomposition onto the basis of spherical harmonics

Let us note FS the space of di®erentiable functions from [0; ¼]x[0; 2¼] to C, with
¯nite energy. To each 3D object, we associate a function jªi such that ª(µ; Á) is
the distance between the center of gravity of the object and the farthest point

still belonging to the object in the direction given by the spherical coordinates

(µ; Á). This kind of representation is usual for 3D medical data [1] [2].

The spherical harmonics are functions of FS which can be computed using Leg-
endre polynomials [4]. In the medical domain, they have been used to represent
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cranial surfaces [1]. The set of spherical harmonics fjYlmi; l = 0; :::;1; m =

¡l; :::; lg is an orthonormal basis of FS . Hence, any function ª(µ; Á) can be
described by its coordinates in this basis:

cml = hYlmjªi =
Z 2¼

0

dÁ

Z ¼

0

sinµ dµ Y ¤lm(µ; Á) ª(µ; Á) (1)

The e®ect of a rotation of the object on these coordinates is given by:
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This equation shows the interest of reasoning in the basis of spherical harmonics:

FS is decomposed into a direct sum of orthogonal subspaces globally invariant

by rotation, such as E2 whose basis is fjY2;¡2i; jY2;¡1i; jY20i; jY21i; jY22ig. Using
group theory [7], one can prove that is is impossible to ¯nd a basis in which the

rotation operator takes a simpler form.

Let us de¯ne a rotation by Euler angles. A rotation of the coordinates system

(x,y,z) is decomposed into 3 elementary rotations: a rotation ® around z, which

transforms y into u, followed by a rotation ¯ (0 · ¯ < ¼) around u, which

transforms z into Z, and ¯nally a rotation ° around Z. The e®ect of the rotation

on cml is [7]:

cml (®; ¯; °) =
X

n

Dl
nm(®; ¯; °)c

n
l (3)

Dl
nm(®; ¯; °) = e

¡i®n:dlnm(¯):e
¡i°m (4)

Let us note c = cos¯ and s = sin¯. In E2 we have:
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3 Determination of the orientation

3.1 Principle of the method

The method determines the Euler angles that rotate the object to a standard

orientation characterized by constraints on the tensor cml . Using basic properties



of the spherical harmonics, one can prove that c¡ml = (¡1)m(cml )¤. Hence, we
consider only coe±cients with m · 0. Since we have 3 degrees of freedom, we

can, for instance, cancel one complex coe±cient, plus one imaginary part. We

will try to determine the rotation which yields to:

8
<
:
c¡12 (®; ¯; °) = 0
c¡22 (®; ¯; °) real, positive and maximal
Refc¡11 (®; ¯; °)g ¸ 0 and Imfc¡11 (®; ¯; °)g ¸ 0

(6)

We have c¡11 (®; ¯) = cos¯ Re
©
c¡11 (®)

ª
+ i Im

©
c¡11 (®)

ª
¡ sin¯p

2
c01(®). The

interest of positivity and maximality constraints is to avoid residual ambiguities.

3.2 Determination of ® and ¯

In E2, the e®ect of a rotation ® is given by cm2 (®) = e¡im®cm2 . Let us note:
c02(®) = a0 c¡12 (®) = ¡a1 + ib1 c¡22 (®) = a2 ¡ ib2 (7)

Then, according to equation (5) the e®ect of a rotation ¯ is given by:

c¡12 (®; ¯) = Asin(2¯)¡ a1cos(2¯) + i(b1cos¯ ¡ b2sin¯) (8)

where A = (a2
2
¡ 1

2

q
3
2
a0). To cancel c

¡1
2 (®; ¯), we must have:

2tan¯

1¡ tan2¯ =
a1

A
and tan(¯) =

b1

b2
(9)

By replacing the second equation in the ¯rst one, and assuming Ab2 6= 0 and

b21 6= b22, we get F(®) = 0, where:

F(®) = a1(b22 ¡ b21)¡ b1b2(a2 ¡
r
3

2
a0) (10)

Then, ® must be a solution of F(®) = 0. One can prove that the number

of solutions in the interval [0; ¼[ is always comprised between 1 and 3. These

solutions can be found by any zero-¯nding method. Once ® is determined, ¯ is

given by the second equation of (9). Finally, (®; ¯) which produces the largest

value of jc¡22 (®; ¯)j is kept.

3.3 Determination of °

A rotation ° 2 [0; ¼[ produces: c¡22 (®; ¯; °) = e2i°c¡22 (®; ¯). We obtain c¡22 (®; ¯; °)
real and positive if:

° = ¡1
2
Arg(c¡22 (®; ¯)) (11)

Until now, we restricted ® and ° to [0; ¼[. One can prove that, when this re-

striction is cancelled, we get 3 new candidates. Hence, the possible solutions are

f(®; ¯; °); (®; ¯; °+¼); (®+¼; ¼¡¯; °); (®+¼; ¼¡¯; °+¼)g. The constraint on
the sign of the real and imaginary parts of c¡11 (®; ¯; °) determines the solution
to keep. In fact, the sign of the real and imaginary parts of any c¡1l (®; ¯; °) with
l 6= 2 could be used for this determination.



4 Experimental results: registration of vertebrae

Let us note Rstd1; Rstd2 the rotations which bring objects 1 and 2 to their stan-

dard position. Then the rotation between the two objects is given by: R12 =

R¡1std1:Rstd2.
Figure 1 illustrates the result obtained for a medical imaging application. We

have two 3D images of a vertebra provided by a scanner. The acquisitions took

place at di®erent times. Using the method described above, the second acquisi-

tion has been registered with respect to the ¯rst one. The residual angular errors

are usually less than a degree. This registration helps the specialist to compare

the 3D images.

The method does not need the determination of speci¯c points for correspon-

Vertebra A Vertebra B Vertebra B registered w.r.t. A

Fig. 1. Medical imaging application: registration of a vertebra

dence. Such points could be hard (and computationally expensive) to reliably

determine on this kind of shape. Furthermore, because the vertebrae above have

similar variances on two principal axes, methods based on the moments of inertia

as in [2] do not apply.

The vertebra to register is originally represented by a 3D voxel matrix of size

100x120x150. Figure 2 shows the error on the estimation of angle ¯ with respect

to the error on the estimation of the barycenter position. An error on the esti-

mation of the barycenter could be due to incomplete scanning, for instance. The

e®ect on the estimation of ¯ becomes noticeable when the translation estimation

error is about 15 pixels (that is more than 20% of the including sphere radius).

The experimentations above have been done with a discretization step of 5o for

the computation of the cml . Since the spherical harmonics can be precomputed,

equation (1) shows that the number of multiplications is (360=5)(180=5) = 2592

for each of c02; c
0
1, and 2x2592 = 5184 for each of c¡22 ; c

¡1
2 ; c

¡1
1 (because in that

case the spherical harmonic is complex). Hence, the total number of multiplica-

tions is 20736. On a standard PC machine realizing more than 1 multiplication

per ¹s, this represents a computation time of 20ms only.

5 Conclusion

A method for determining the orientation of 3D objects has been proposed. It

is not restricted to polyhedral objects, it does not need point matching, and it
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Fig. 2. Evaluation of the robustness of the method

is fast because it is not iterative. Since it needs 3D information on input, it can

be applied to any domain in which such an information is available, but it is not

appropriate for domains in which only 2D information is available, unless 3D

reconstruction by computer tomography can be performed. On the theoretical

point of view, this work opens new directions of investigation: approaches based

on linear algebra and tensor theory instead of structural methods.

Determination of the orientation of 3D objects is a problem of practical interest

in medical applications. It allows the registration of 3D data taken at di®erent

times or in di®erent conditions. It might also be useful in future medical robotics

applications. Since the method1 is fast and simple it does not require expensive

hardware or software.
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