Skip to Main content Skip to Navigation
Journal articles

Une nouvelle approche pour les réseaux de neurones: la Représentation Scalaire Distribuée

Abstract : Nowadays, neural networks are largely used in signal and image processing. We propose a new neuron model that uses a special coding of its output, which we will call “Scalar Distributed Representation” (SDR). This representation is based on the idea of representing the neuron’s output by a function, and not only by a scalar. We show that SDR produces a non-linear behaviour of connections between neurons. The SDR is described in general and then specialized on practical considerations. We consider the use of SDRfor a Multi-Layer Perceptron, and we propose a learning algorithm.Finally, we validate the model on two applications : dimensionality reduction, and prediction. In both cases,an important benefit is obtained over the classical model.
Document type :
Journal articles
Complete list of metadata

https://hal.univ-brest.fr/hal-03221467
Contributor : Gilles Burel Connect in order to contact the contributor
Submitted on : Saturday, May 8, 2021 - 7:59:15 PM
Last modification on : Thursday, May 13, 2021 - 8:05:18 PM

Identifiers

  • HAL Id : hal-03221467, version 1

Collections

`

Citation

Gilles Burel. Une nouvelle approche pour les réseaux de neurones: la Représentation Scalaire Distribuée. Traitement du Signal, Lavoisier, 1993, 10 (1), pp.41-51. ⟨hal-03221467⟩

Share

Metrics

Record views

33