Skip to Main content Skip to Navigation
Journal articles

Ti-decorated zigzag graphene nanoribbons for hydrogen storage. A van der Waals-corrected density-functional study

Abstract : We perform density functional calculations to investigate The adsorption of molecular hydrogen on Ti-doped zigzag graphene nanoribbons using a nonlocal van der Waals functional that has recently been proposed for accurate description of exchange and correlation effects in weakly bound systems. Our results show that The adsorption of a single H2 molecule is dissociative in purely energetic terms, but there exists an energy barrier that prevents dissociation when The molecule is deposited on The Ti-doped graphene nanoribbon. When The Ti atom is adsorbed at a central or lateral hole site, each atom can bind up to four H2 molecules, in each case satisfying The binding energy criterion specified by The U.S. Department of Energy for novel hydrogen-storage materials. On this basis, one can consider an effective hydrogen coverage on Ti-coated graphene nanoribbons with gravimetric density beyond The target of 6-%. © 2015 Hydrogen Energy Publications, LLC.
Document type :
Journal articles
Complete list of metadata

https://hal.univ-brest.fr/hal-03198955
Contributor : Nicolas Renard <>
Submitted on : Thursday, April 15, 2021 - 11:54:26 AM
Last modification on : Friday, April 16, 2021 - 3:19:12 AM

Identifiers

Collections

Citation

A. Lebon, J. Carrete, L.J. Gallego, A. Vega. Ti-decorated zigzag graphene nanoribbons for hydrogen storage. A van der Waals-corrected density-functional study. International Journal of Hydrogen Energy, 2015, 40 (14), pp.4960-4968. ⟨10.1016/j.ijhydene.2014.12.134⟩. ⟨hal-03198955⟩

Share

Metrics

Record views

13